VOLUME 77, NUMBER 23 PHYSICAL REVIEW LETTERS 2 BCeEMBER 1996

Diffusion and Localization in Chaotic Billiards
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We study analytically and numerically the classical diffusive process which takes place in a chaotic
billiard. This allows one to estimate the conditions under which the statistical properties of eigenvalues
and eigenfunctions can be described by random matrix theory. In particular, the phenomenon of
guantum dynamical localization should be observable in real experiments. [S0031-9007(96)01802-9]

PACS numbers: 05.45.+b, 03.65.Sq, 05.40. +j

One of the main modifications that quantum mechanicsinder which the standard random matrix theory is not
introduces in our classical picture of deterministic chaosapplicable.
is “quantum dynamical localization” which results, e.g., We consider the motion of a particle having mass
in the suppression of chaotic diffusivelike process whichvelocity v, and elastically bouncing inside the stadium
may take place in systems under external periodic pertushown in Fig. 1. We denote witl® the radius of the
bations. This phenomenon, first pointed out in the modesemicircle and witl2a the length of the straight segments.
of quantum kicked rotator [1], is now firmly established The total energy i€ = mv2/2.
and observed in several laboratory experiments [2]. The statistical properties of the billiard are controlled

For conservative Hamiltonian systems the question oby the dimensionless parameter= a/R and, for any
localization is much less investigated. The situation here > 0, the motion is ergodic, mixing, and exponentially
is much more intriguing: on one hand, in a conservativaunstable with Lyapunov exponert which, for smalle,
system, one may argue that there is always localizatiois given by [6]A ~ €!/2.
due to the finite number of unperturbed basis states For the analysis of classical dynamics, a typical choice
effectively coupled by the perturbation; on the otherof canonical variables igs,v,) where s measures the
hand, a large amount of numerical evidence indicates thatosition along the boundary of the collision point and
guantization of classically chaotic systems leads to results; is the tangent velocity. These variables, however, are
which appear in agreement with the predictions of randonguite difficult to treat from the quantum point of view.
matrix theory (RMT) [3]. For this purpose it is convenient instead to consitler

Recently the problem of localization in conservativethe angular momentum calculated with respect to the
systems has been explicitly investigated. In particularcenter of the stadium, and the anglewhich describes,
on the base of Wigner band random matrix modeltogether withr (@), the position of the particle in the usual
conditions for localization were explicitly given together polar coordinates. It is important to stress that, with this
with the relation between localization and level spacingchoice of variables, the invariant measuig = ds dv,
distribution [4].

Billiards are very important models in the study of
conservative dynamical systems since they provide clear
mathematical examples of classical chaos, and their quan-
tum properties have been extensively studied theoreti-
cally and experimentally. Moreover, they are becoming
increasingly relevant for the study of optical processes
in microcavities which may lead to possible applications
such as the design of novel microlasers or other optical
devices [5].

In this paper we focus our attention on a two dimen-
sional chaotic billiard, the Bunimovich stadium, and study
the classical diffusive process which takes place in anguei. 1. The Bunimovich stadium with radiug and straight

lar momentum. This will allow us to predict the condi- segmentaq; the variablegr(6), 6] indicate the position of the
tions for quantum localization and therefore the conditiongoint along the boundary.
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is preserved only to ordee, that is, du = dsdv, = Yy
dodl + O(e).

At a given energyE, the angular momentum must
satisfy the relation|!| < I = (R + a)v2Em. It is
therefore convenient to introduce the rescaled quantity 0.5
L = [/l4.x. Then the classical motion takes place on the
cylinder0 = 0 <27, -1 <L <.

It is expected that fore < 1 a diffusive process
will take place in angular momentum with a diffusion
coefficient D = D(e). In order to obtain an estimate
for D(e) we now derive an explicit expression for the
boundary map in the variabldg.,§). The changeAL -0.5
after a collision with the boundary can be easily obtained
to order €, by neglecting collisions with straight lines
and by taking into account that in the collision only the

LNy B B B B B |

normal velocityv, = ¥ - n changes the sign. Here= - L L L |

¢, + esgn(cosh)ey, ¢,, and ¢y being the usual polar 0 2 4 6
coordinates unit vectors. One then gets 0

AL =L — L = —2esind sgr(cosh) sgnL)V1 — L2. FIG. 2. Comparison between the billiard dynamics and the

1) map (6), Here we plot the variable* versusd (see text).
Points are obtained from numerically integrating the motion
On the other side the change & to zero order, is ©of one particle in the billiard for 100 iterations, starting from

given by L, =0 and a random position along the boundary, while

_ . the full line is the functionf(6) (see text). Heres = 0.01.

A =60 — 0= — 2arcsinL). @3] The points not belonging to the curve are due to collisions

. . with one of the straight lines; this occurrence is outside the
According to a standard procedure [7] we introduce aapproximation of the map (6).

generating functiorG(L, #) in such a way that the map

defined by

0G — 4G map (6) a structure very close to the sawtooth map which
L=-g: 0= (3) is known [8] to be chaotic and diffusive with a diffusion

o ] ) ] ) rate D which, for small values of the kick strength is
coincides withAL at first order ine and withA6 at zeroth  given byp ~ €52, This behavior, according also to our

order. The generating function is given by numerical computations, appears to be generic for maps
_ _ L . which have such type of discontinuity.
G(L,0) = (0 + m)L — 2[ dL arcsinL We may proceed now to a numerical investigation

_ of the diffusive process. To this end we consider a
+ eg(L)lcosdl, (4)  distribution of particles with given initiaL, and random
whereg(Z) = 2sgn(Z) (1 — L)"/2. The generated (im- phase9 in the interval(0, 2r) and integrate the classical
plicit) area-preserving map is equations of motion inside the bizlliard. 2In Figs. 23(a) and
= _ . . (1 T21/2 3(b) we present the behavior AfL- = (L*) — (Ly)~ as a
f — L~ 2esing sgr(co_se)sgr(L)_(l L, 5 function of the number of collisions and the distribution
0 =6+ 7 —2arcsifL) + eg’(L)|cosb|. function f,,(L) at fixedn as a function of L — Lj). As
it is seen,AL> grows diffusively and the distribution
function is in good agreement with a Gaussian [9]. In
_ . _ 5 particular, the dependenc® = D(e) of the diffusion
L = L — 2esing sgn(cost) sgn(L y1 — Ly, coefficient can be easily computed, and the regul:
9 =6+ —2arcsinL), (©) Doe’? (see Fig. 4) is in agreement with predictions of
i , i o map (6) withDy = 1.5.
which remains area preserving and can be easily iterated s gnalysis of the classical diffusive process allows
(hereL is the initial angular momentum). __one to make some predictions concerning the quantum
The agreement of map (6) with the true dynamiCSygtion and, in particular, to estimate the conditions
can be numerically checked, and_it is shown in Fig. 2 nqer which the quantum localization phenomenon will
where we plotL* = (L — L)/(2ey/1 — L}) againstd.  take place [10]. First of all, in order that any quantum
Points represent billiard dynamics while the full line is diffusive process may start it is necessary to be above
the functionf (@) = —sind sgncosp). the perturbative regime. In particular, the level number
Notice that the functiony(#) is periodic of periodm  must be sufficiently high so that the de Broglie wave
and has a discontinuity at = 7/2. This gives to the numberk of the corresponding wave function must satisfy
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By taking the local approximation in the angular
momentum, the map (5) writes
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FIG. 4. Diffusion coefficientD = AL?/n for the stadium
1 (full circles) as a function ofe. Open circles indicate the
diffusion rate obtained from the map (6). The line is obtained
by the usual best fitting procedure to the true dynamics (full
0 circles) and give®d = Dye*> with Dy = 1.5.
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the discrete spectrum is not resolved and the quantum
FIG. 3. Diffusion in angular momentum for the billiard with motion mimics the classical diffusive motion [11,12].
il Al Ly = G and Tancm positan slong the boudary, HETE Dett = Doc*22mER? IS the classical diffusion

0 — . .. .
(a) AL? as a function of the number of collisioms the dashed coefficient in real (not scaled) angular momentu_m.
line is the best fit and give® = AL2/n = 1.5 X 107°. The nature of the quantum steady state will depend

(b) Distribution function aftern = 500 collisions averaged crucially on the ergodicity parameter [12]
over the last 50 collisions. The full line is the best fitting

Gaussian with average0.016 and variance 0.1. 22=TB (9)
TE
. o whererp = 2, /Detr = 2mER?/Dey is the ergodic re-
the relationk > 1/a. This impliest > E, = i*/2ma® |axatio:1EtimemaX/ eff = 2MER?/Degs g

which is the energy necessary to confine a quantum
particle inside a box of length. Using the well known
Weyl formula for the total number of states with energy
less tharE [3]

For A <« 1 the quantum steady state is localized while
for A > 1 we have quantum ergodicity. The critical
value A = 1 leads t0/n.x/i = Desr, that iS,E = E¢y =
2 ) € 3Dy *h?/2mR?. We then have
m 1 R

NE)= —E= —m|— | E, 7

WEN = 5w 8’"(5) 7) N=Nerg:16l;—25.
where A is the area of a quarter of billiard, and keeping 0€ _
only the leading term, we obtain that in order to be in a It follows that only forN > N, there is quantum er-

nonperturbative regime we have to consider level numbergodicity, and therefore one expects statistical properties of
1 eigenvalues and eigenfunctions to be described by RMT.

(10)

N>»>N, =—. (8) Instead forN < Neg, even if N > N,, namely, very
16€ deep in quasiclassical regions, statistical properties will
We call N, perturbative border. depend on parameter = Dy+/8Ne> and not separately

According to the well known arguments [11], aboveone or N. For example, the nearest neighbor levels spac-
the perturbative border (8) quantum diffusion in angularing distributionP(s) will approache % when < 1.
momentum takes place with a diffusion coefficient close We have tested this prediction by numerically comput-
to the classical one. This diffusion proceeds up to a timéng the level spacing distribution for different values of
78 ~ Des;/h? after which diffusion will be suppressed e and N. One example is shown in Fig. 5 for which
by quantum interference. This time is related to theN > N, butsinceA < 1 the distributionP(s) is close to
uncertainty principle. Namely, for times less thap ¢ ¢ as expected. Similar behavior is expected for other
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