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We demonstrate the existence of a topological disconnection threshold, recently found in Ref. [1],
for generic 1 − d anisotropic Heisenberg models interacting with an inter–particle potential R−α

when 0 < α < 1 (here R is the distance among spins). We also show that if α is greater than the
embedding dimension d then the ratio between the disconnected energy region and the total energy
region goes to zero when the number of spins becomes very large. On the other hand, numerical
simulations in d = 2, 3 for the long-range case α < d support the conclusion that such a ratio remains
finite for large N values. The disconnection threshold can thus be thought as a distinctive property
of anisotropic long-range interacting systems.

PACS numbers: 05.50.+q, 75.10.Hk, 75.10.Pq

I. INTRODUCTION

Despite the wide use in statistical physics, long-range
interacting systems, that is those systems characterized
by a pairwise interaction decaying as a power law of the
mutual distance with an exponent α less than the em-
bedding dimension, do not have a well defined thermo-
dynamic limit[2]. Also is it not at all clear whether their
equilibrium properties can be described by the ordinary
tools of statistical mechanics. For instance, the nonequiv-
alence between the microcanonical and the canonical ap-
proach has been recently found in a long-range rotators
model in the thermodynamic limit[3].

Besides these relevant implications in the foundation of
statistical mechanics and in theoretical physics as well[4],
the non-extensive behavior of long range systems has
nowadays become important for applications too, rang-
ing from neural systems[5] to spin glasses[6].

Within the class of long-range interacting systems,
classical spin models, widely investigated during the last
years[7], are the most easy-to-handle both from the an-
alytical and the numerical point of view. Within such
class of systems, (to be more precise, a class of anisotropic
Heisenberg models) the existence of a threshold of discon-
nection in the energy surface has been demonstrated[1]
for an interparticle interaction with infinite range. It
has been called non-ergodicity threshold for historical
reasons[8], even if the term can generate some confusion.
Indeed non-ergodicity is only an obvious consequence:
it simply means that the energy surface is topologically
disconnected in two regions characterized by positive and
negative magnetization. In other words it cannot exist
a dynamical path connecting them and all trajectories
starting from one region of the phase space stay there
forever. For this reason we prefer here to call it Topolog-
ical Non-connectivity Threshold (TNT).

The presence of the TNT cannot be considered an ex-
otic mathematical peculiarity of some toy model. Its dy-
namical relevance has been studied in [9], where an ex-
plicit expression for the reversal times of the magnetiza-

tion (the time necessary to jump from one branch to the
other) has been given in the neighbors of the critical en-
ergy point. Reversal times diverge at the TNT as a power
law with an exponent dependent on the number of the
particles (and, probably, on the embedding dimension) as
in ordinary phase transitions. Strictly speaking, even if
in different context and for different models, the relation-
ship between energy thresholds and topology transitions
in the configuration space of classical spin models has
been recently investigated[10].

Also, while the threshold was explicitly found within
a class of anisotropic classical Heisenberg models with
an easy axis of magnetization and all-to-all constant in-
teraction, at the same time systems with nearest neigh-
bor interaction were found to have a different behavior.
For instance, the portion of disconnected energy region
grows with the number of particles N , less than the en-
ergy itself, thus resulting in a zero ratio in the thermo-
dynamic limit. Needless to say, such ratio stays finite for
anisotropic coupling and all to all interaction.

While this feature is surely due to the anisotropy of
the coupling (such finite ratio disappears for isotropic
coupling even in the case of infinite range interaction),
the question arises whether the presence of the TNT
can be considered a pathological effect of the unphys-
ical infinite interaction range or it is just somehow re-
lated with the long-range effects. This does not repre-
sent an academic question. Indeed, despite the possible
applications of such model even in the case of all-to-all
interaction[11], physical models require taking into ac-
count more realistic interactions, usually anisotropic[12]
and depending generically from the inter–spin distance,
as for the dipole-dipole coupling or when the spin is cou-
pled with the electron spin of the conduction band of
a metal, e.g. the RKKY model [13]. This leads quite
naturally to Hamiltonians with an interparticle potential
decaying as a generic power law with an exponent α of
the relative distance R. The results found in Ref.[1] can
thus be recovered by letting respectively α → 0 (all to all
coupling) or α → ∞ (nearest neighbor coupling).
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Here, we extend the previous results to the whole
class of models with an inverse power distance poten-
tial and show that α = 1 is a critical exponent for non-
connectivity in d = 1 chains.

In general, the extension to higher dimensions is far
from trivial, both numerically and analytically. However,
we prove that the TNT, if any, can not “survive” (and
we will specify the precise meaning below) when N →
∞, and α > d. Numerical simulations in 2–d and 3–
d also suggest that, for α < d, the ratio between the
disconnected energy region and the total energy range is
finite in the thermodynamic limit. We thus conjecture
that the TNT is a generic property of anisotropic long-
range systems in any dimension.

II. THE MODEL

The Hamiltonian is a simple generalization of that con-
sidered in Ref. [1], and it is given by:

H = −1

2

N
∑

j 6=i

c|i−j|(S
y
i Sy

j − ηSx
i Sx

j ), (1)

where ~Si = (Sx
i , Sy

i , Sz
i ) is the spin vector with contin-

uous components and modulus 1, N is the number of
spins, η (0 ≤ η < 1) is an anisotropic coefficient, and
c|i−j| = |i − j|−α, with α > 0. For definiteness we con-
sider here only the case of an even number N of classical
spins.

Such kind of models are characterized by a minimal
and maximal energy Emin, Emax, and by a finite energy
range Emax − Emin that we call energy spectrum (ES).
In order to define properly the disconnection threshold,
let us introduce the set A of all spin configurations with
a zero projection of the total magnetization along the
y-axis:

A = {C(~S1, . . . ~SN )| my =

N
∑

i=1

Sy
i = 0}. (2)

The TNT is thus defined as:

Edis = MinC∈A[H ], (3)

and the spin configurations corresponding to Edis will be
indicated as Cdis. Here we are mainly interested in all
those cases where the TNT, if any, occupies a significant
portion of the ES in the thermodynamic limit. For this
reason let us define the disconnection ratio:

r =
Edis − Emin

|Emin|
> 0 (4)

A system will be considered disconnected only if r →
const. > 0, when N → ∞. Note that the definition of r
given in Eq. (4) has a meaning only for systems with a
bounded energy range.

A dynamical consequence of the TNT is that below it,
a sample with a given initial magnetization my, cannot
change the sign of my for any time, since the constant
energy surface is disconnected in a positive and a negative
magnetization regions, thus no continuous dynamics can
bring an isolated system from one region to the other.

Our proof will follow two steps: in the first part we find
the minima of the x and y parts separately. Then we will
show that the disconnected ratio goes to zero for long-
range interaction, while it goes to some finite constant in
the short range case.

III. ONE DIMENSIONAL CASE

A. TNT, if any, is in the XY plane

Roughly speaking, since Hamiltonian (1) is indepen-
dent of the z-component of spins, the minimum will oc-
cur when the spins are as large as possible in (1), namely
in the XY plane.

In order to prove that the configuration Cdis effectively
lies in the XY plane, let us assume that it has some Sz

component different from zero. For definiteness assume
Sz

1 > 0. It is then possible to define another configuration
C′ simply making a rotation around the y-axis clockwise
or counterclockwise which puts the spin Sz

1 onto the plane
XY . The energy difference between these two configura-
tions can be computed at glance:

∆E = η
N
∑

i=2

ci−1S
x
i

(

±
√

1 − (Sy
1 )2 − Sx

1

)

. (5)

Here the different sign ± indicates the different way
(clockwise or counterclockwise) of rotation. Since Sx

1 =

±
√

1 − (Sy
1 )2 − (Sz

1 )2, it is then clear that, according to
this sign it is always possible to rotate in such a way to
have ∆E ≤ 0.

The same procedure can be applied n times for any
other Sz

i 6= 0, so that we will end with a configuration
C(n) ∈ A (the rotation does not change the constraint)
with energy E(n) ≤ Edis . We can therefore consider the
configurations in the XY plane. This choice has the main
advantage that it is sufficient to consider as independent
variables the angles θi of the i-th spin w.r.t. the x-axis,
thus satisfying automatically the conditions on the unit
spin modulus : Sx

i = cos θi and Sy
i = sin θi. Therefore

we have to minimize the following expression:

H =
1

2

∑

j 6=i

c|i−j|(η cos θi cos θj−sin θi sin θj) ≡ ηHx+Hy,

(6)

under the constraint
∑N

i=1 sin θi = 0. Since

Edis = Min(H |my = 0) ≥ Min(ηHx)+Min(Hy|my = 0),
(7)

a lower bound of Edis can be provided finding the minima
of the two terms in the r.h.s. of Eq. (7). Note that
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the first term on the right of Eq.(7) does not contain
constraints, indeed we will show in the next section that
the absolute minimum of Hx automatically satisfied the
constraint my = 0.

B. Minimum of Hx

The minimum of Hx due to the overall plus sign (η >
0), can be obtained as in a standard anti-ferromagnetic
spin system with neighbors interaction, that is disposing
alternatively the spins along the x-axis as +1 and −1.

Indeed, for any α, let us call the k−th spin component
Sx

k = s and rewrite the energy as follows:

Ex = s
∑

j 6=k

c|j−k|S
x
j +

1

2

∑

k 6=i6=j

c|k−i|S
x
kSx

i ≡ as + b,

where a, b are constants independent of s. There are
two possibilities, a = 0 or a 6= 0. In the first case the
energy Ex turns out to be independent of the k − th
spin, while for a 6= 0, the minimum is attained when s
has its maximal value (+1 if a < 0, −1 if a > 0). So,
in any case we can say that the minimum occurs when
|s| = 1. Since the procedure can be iterated for all spins
components, the minimum occurs when Sx

k = ±1 for any
k, namely in the class of Ising models (σ1, ..., σN ) with
σi = ±1 and long range interaction.

We still have to prove that the minimal energy is ob-
tained when the spins have alternating signs. To this end,
let us consider the interaction between two neighbor spin
pairs, the j-th, namely σ2j−1σ2j and the (j + k + 1)-th,
namely σ2j+2k+1σ2j+2k+2 (this can be done since there
is an even number of spins). There are 16 possibilities
but only six of them have different energy due to the
symmetry on the whole change of sign. They are:

+ + ++ E1 = 2 + c2k+1 + 2c2k+2 + c2k+3

+ + +− E2 = c2k+1 − c2k+3

+ + −+ E3 = −E2

+ + −− E4 = 2 − c2k+1 − 2c2k+2 − c2k+3

+ − +− E5 = −2 − c2k+1 + 2c2k+2 − c2k+3

+ − −+ E6 = −2 + c2k+1 − 2c2k+2 + c2k+3.

From the monotonicity of the function cx one gets,

E5 < E1, E2, E3, E4.

Imposing E5 < E6 we obtain

2c2k+2 < c2k+1 + c2k+3,

that holds from the convexity property of cx.
Since E5 is minimal for each pair interaction, the ab-

solute minimum will be obtained using, for each pair, the
configuration

Cx = {Sx
i = (−1)i}N

i=1. (8)
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FIG. 1: (Color online) Spin values along the chain vs the spin
index (only the central part of the chain has been shown) for
the Hamiltonian Hy. a) for fixed α = 0.1 and different N
values as indicated in the legend; b) for fixed N = 20 and
different α values (see the legend).

The energy Ex for this configuration can be computed
immediately:

Ex =

N−1
∑

k=1

(−1)k (N − k)

kα
. (9)

Let us notice that such a result is far from being ob-
vious. Indeed a decreasing non-convex function cx could
give rise to a different minimal configuration.

C. Minimum of Hy

Let us now switch to the more difficult task (due to
the constraint) of computing Ey = Min(Hy|my = 0).
Physically, due to the overall minus sign in front of Hy,
one can expect that clusters of aligned spin with unit
modulus (ferromagnetic order) will decrease the energy
with respect to other configurations. This is surely true
for nearest neighbor interaction (α = ∞) but it can not
be true for all α values. For instance, when α = 0, the
energy corresponding to the configuration with half spins
equal to 1 and half equal to −1 (the order is irrelevant)
is E0 = N/2 > 0, while the true minimum E = 0 is
attained when all spins are 0.

Then, the question arises of what can be the minimum
in presence of a generic α.

Applying the standard Lagrange multipliers formalism,
one has to minimize the function:

H = −1

2

∑

j 6=i

c|i−j| sin θi sin θj − λ
∑

i

sin θi. (10)

where λ is the Lagrange multiplier associated to my = 0.
Taking the derivatives, we get, for each spin, two pos-

sible solutions:

cos θi = 0, (11)
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∑

j 6=i c|i−j| sin θj − λ = 0. (12)

However, solving, even numerically, the system (11,12) is
more difficult than finding directly the minimum.

We have therefore calculated the minimal configura-
tion under constraint, using an iterative optimization ap-
proach based on the FFSQP solver [14] and also devel-
oping the following approach outlined here below.

• Start with a random configuration with my = 0.

• Chose for the k−th spin a new value between −1 to
1 and compute the energy. This generally produces
a change in magnetization ∆my 6= 0.

• Distribute equally ∆my 6= 0 among the other spins
taking into account the constraint about their mod-
ulus. Specifically subtract/add to every spin the
minimum of its distance from the values ±1 and
the mean of ∆my.

• Iterate over all spins up to an energy variation less
than some fixed value (from 10−3 to 10−8 in our
simulations).

The two approaches give the same result: for any ini-
tial random configuration the algorithm described above
converges to some smooth configuration, for any finite
N and α > 0, as indicated in Fig. 1. There, we consid-
ered respectively the case of α fixed varying N (Fig. 1a),
and N fixed varying α (Fig. 1b). Within the numerical
errors the spins in the minimal energy configuration are
distributed monotonically and anti-symmetrically w.r.t.
the center of the chain. Then we assume that Ey is given
by an anti-symmetric distribution of the spin with a non-
decreasing (or non increasing) monotonic dependence of
the y− spin component along the chain.

An interesting feature is the presence of a finite domain
wall (defined by those spins having length less than 1)
between two clusters with Sy

i = +1 (↑) and Sy
i = −1

(↓) respectively. With decreasing range of interaction
(increasing α: Fig. 1b) or increasing number of spins
(Fig. 1a), the interface region between the clusters (↑)
and (↓) decreases. This agrees, at least qualitatively,
with the results obtained for the nearest neighbor model
(α = ∞) where the minimal configuration is given by

C↑↓ = (↑ ... ↑; ↓ ... ↓).

Thus, due to long range interaction, an interface region
between the two clusters with opposite magnetization is
produced. It is, of course, physically relevant to under-
stand if the size of the interface region goes to zero in the
N → ∞ limit.

Strictly speaking the configuration E↑↓ is not an abso-
lute minimum for any α > 0 and finite N . In order to
prove that, consider the configuration

Cs = (↑ ... ↑; s;−s; ↓ ... ↓),

0 0.1 0.2 0.3 0.4 0.5
α

100

101

102

103

104

N

Es

Est

FIG. 2: Critical Ncr as a function of α. The region above the
line is where the TNT is given by Es (one spin pair decreased)
and the region below it is where the TNT has more than one
spin pair decreased (Est).

with N − 2 spins satisfying condition (11) and the two
central ones satisfying the condition (12). The energy Es

corresponding to Cs can be written as

Es = Ē + c1s
2 − 2s[c1 − cN/2], (13)

where Ē is independent of s. The minimum is thus ob-
tained when s = 1 − cN/2/c1 6= 1. The energy difference
to E↑↓ is

∆E = Es − E↑↓ = −
c2
N/2

c1
= −

(

2

N

)2α

< 0. (14)

Therefore, for any finite chain and finite α, Es < E↑↓.
Physically, Cs has an energy less than C↑↓ due to border

effects. Indeed the energy of two opposite spins of length
1 is E = c1, while it is only c1s

2 for two shorter spins
|s| < 1. On the other hand the interaction between s (−s)
and the other spins of length 1 (−1) is canceled one to
one but the interaction with the closest spin (−s c1) and
with the last opposite one (s cN/2). This gives Eq.(13).

The same procedure can be applied taking a trial con-
figuration with energy Est:

Cst = (↑ ... ↑; t; s;−s;−t; ↓ ... ↓).
In this case a minimum with s < t < 1 can be found

only for N < Ncr(α) = (2α+1 −1/2)1/α. Asymptotically,
for large N , this implies that for N > 2C1/α, where
C = 2e−1/4 > 1, the minimal solution has energy Es. In
Fig. 2 we show the graph of Ncr(α), and the two regions
in the plane (N, α), where Es is the minimal solution,
and where another minimal solution with four (or more)
spins with length less than 1 is possible (Est). Since
Ncr(α) → ∞ for α → 0, for any α 6= 0 a sufficiently large
N > Ncr(α) value exists (thus in the thermodynamic
limit) such that Es is the minimal solution. Then, for
N > Ncr(α):

Ey = E↑↓ −
(

2

N

)2α

, (15)
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FIG. 3: (Color online) Ex (full black line), E↑↓ (dashed red
line) and Edis (open circles) versus α, for η = 0.9 and different
N values : (a) N = 10, (b) N = 100.

where E↑↓ can be written in closed form as:

E↑↓ =

(

2

N

)α−1

+

N/2−1
∑

k=1

3k − N

kα
+

N/2− k

(N/2 + k)α
. (16)

We thus proved that for α > 0 and N > Ncr(α)

E↑↓ > Edis > ηEx + Ey, (17)

where the expressions for E↑↓, Ex, and Ey are given
respectively by Eqs. (16, 9, 15).

D. Thermodynamic limit

Let us now show that, in the long range case 0 < α < 1,
the ratio r between the disconnected ratio, defined by
Eq. (4), goes to a non zero constant when the number of
spins goes to infinity, while, for short range interaction
α > 1, it goes to zero, thus revealing the intrinsic long
range nature of the TNT.

The minimum energy, having as a configuration
Cmin = {Si

y = 1}N
i=1 (all spins aligned along the y-

direction) can be easily found:

Emin =

N−1
∑

k=1

k − N

kα
. (18)

Let us also define the quantities:

r1 =
Ey + ηEx − Emin

|Emin|
,

r2 =
E↑↓ − Emin

|Emin|
. (19)

Due to (17), 0 < r1 < r < r2.

1. Long Range

Consider first the long-range case 0 < α < 1. The fol-
lowing asymptotic expression, for N → ∞, can be found
by substituting sum with integrals:

Emin ' − N2−α

(2 − α)(1 − α)
+ O(N), (20)

E↑↓ ' N2−α 1 − 2α

(1 − α)(2 − α)
+ O(N), (21)

Ex ' −bαN + O(N1−α), (22)

where bα > 0 is a constant independent of N .
Since both r1 → |2−2α| and r2 → |2−2α| for N → ∞,

it follows r → |2−2α| too, so that the disconnected energy
region remains finite w.r.t. the ES in the thermodynamic
limit. This prove the disconnection of the system below
the TNT. It is interesting to note that, as α → 1, r → 0.

2. Short Range

In the short-range case, α > 1, one can write the fol-
lowing asymptotic expression (by substituting sums with
integrals) :

Emin ' cαN + O(N2−α), (23)

where −1 + 1/(1 − α) < cα < −1 + 21−α/(1 − α).
Let us first show that, as N → ∞:

lim
N→∞

E↑↓ − Emin

N
= 0. (24)

Computing explicitly the l.h.s. of (24) one gets :

0 ≤ lim
N→∞

2

N





N/2−1
∑

k=1

1

kα−1
+

N−1
∑

k=N/2+1

N − k

kα





≤ lim
N→∞

2

N

(

∫ N/2

1

dx x1−α+

∫ N

N/2+1

dx
N − x

xα

)

= 0. (25)

Then, r2 → 0 and, since r2 > r > 0 it follows r → 0
and the system is not disconnected.

This concludes our proof, which is valid for anti-
symmetric coupling (positive η).

E. 1d, numerical solution for the full model

Despite the proof of the existence of the TNT did not
require the explicit knowledge of the spin configuration,
it may be of some interest to find it.

Finding analytically the spin configuration of the full
model under the constraint my = 0 for any α, η and N is
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FIG. 4: (Color online) (a) x and y spin components for the
numerical TNT. Here is N = 100, η = 0.9 and α = 0.05.
(b) x and y spin components for the numerical TNT. Here is
N = 10, η = 0.9 and α = ∞.

a complicated task. Indeed, depending on the different
values of the parameters, the minimal configuration can
completely change its shape, for instance from all spins
along the x-axis with alternating signs (giving rise to the
energy Ex) to all spins along the y-axis (first half positive,
second half negative) giving rise to E↑↓. For instance,
when α = 0, Ex < 0 < E↑↓, while for α → ∞ and N
sufficiently large E↑↓ < Ex < 0 (for small N it is also
possible to have Ex < E↑↓ < 0).

This is explicitly shown in Fig. 3, where Ex, E↑↓ and
Edis (the TNT) obtained numerically for two different N
values have been plotted as a function of α. As one can
see, for α less than some value depending on η and N , say
α0(N, η), one has Ex < E↑↓, while for α > α0(N, η), one
can have different possible situations depending on the
η and N values. For instance for N = 10 and η = 0.9,
Ex < E↑↓ (Fig. 3a) for α → ∞, while E↑↓ < Ex for
α → ∞ and N = 100 (Fig. 3b).

It is also instructive to describe the behavior of Edis

as a function of α. As one can see (Fig. 3a), for rela-
tively small α, Edis closely follows Ex while for large α
values, Edis, even if different from both, is closer to E↑↓

than to Ex. This is the rule, at least for large N values,
and the difference between the configurations given by
E↑↓ and Edis is only restricted to a small domain wall
in the central part of the chain, see Fig. 4a, where the
configuration Cdis in a long range case has been shown.
Completely different is the situation for small N values,
e.g. Fig. 4b. Here only 10 particles are considered. In
this case, for α → ∞ (see discussion above) Ex < E↑↓

and the configuration Cdis is something between Cx and
C↑↓ (see Fig. 4b.)

Let us analyze in detail the behavior of the domain
wall under a change in the parameters of the system. To
this end we define the energy domain as

Edomain = |Edis − E↑↓|. (26)

10 100

N

0.1

1

10

E
do

m
ai

n

α=0.1
α=0.5
α=1
α=2

∆E’

FIG. 5: (Color online) Domain wall energy as a function of N
for different α values, as indicated in the legend, and η = 0.9.
Also shown as horizontal dashed line |∆E′| = η2/(1 + η).

Its behavior for different N and α values has been shown
in Fig. 5. As one can see, in the large N limit, the energy
domain approaches, for any α, some finite nonzero value
dependent only of η. This is remarkably different from
the domain wall obtained by minimizing Hy under the
constraint my = 0, see Sec. III C, where the formation of
the domain wall was essentially due to border effects and
whose energy disappears for large N values, see Eq. (15).

This asymptotic value can be understood as follows:
consider the trial configuration

Cxy =

{

Si
x = {0, . . . , 0, +

√
1− s2,−

√
1 − s2, 0, . . . , 0}

Si
y = {1, . . . , 1, +s,−s,−1, . . . ,−1}.

(27)
The energy Exy(s) of this configuration is given by

Exy(s) = Ē + c1s
2 − 2s[c1 − cN/2] − ηc1(1 − s2), (28)

where Ē is independent of s and η.
The minimum, as a function of s, is

smin =
c1 − cN/2

c1(1 + η)
. (29)

Then, for N → ∞, smin → 1/(1 + η), which is inde-
pendent from α. This value can be compared with our
numerical results. The energy difference to E↑↓ in the
limit N → ∞ is:

∆E′ = Exy(smin) − E↑↓ = − η2

1 + η
< 0. (30)

Its absolute value has been indicated as a horizontal
dashed line in Fig. 5. As one can see, all curves are
close to |∆E′| even at N ∼ 100. While we cannot exclude
that other configurations, with four or more central spins
Sy

i < 1, have an energy less than Exy(smin), we surely
have found a minimal configuration whose energy is dif-
fering from E↑↓ for a finite quantity in the limit N → ∞.
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FIG. 6: (Color online) TNT for the nearest neighbor interac-
tion (α = ∞) vs the parameter η. Here is N = 20. Different
energies are indicated in the caption inside the figure.

This in turn implies that the domain does not disappear
in the thermodynamic limit.

As a last remark, let us stress that the no-disconnection
of a system does not necessarily imply the non existence
of a TNT different from the minimal energy at finite N ,
even for short range interaction. To this end we con-
sider the strongest short range coupling, namely the near-
est neighbor one (α = ∞) and compute numerically the
TNT. Results are presented in Fig. (6).

As one can see the numerically computed Edis is differ-
ent from Emin for η 6= 1 so that a finite range of energies
Emin < E < Edis exists for finite N and nearest neighbor
interaction. Increasing N , the size of this energy range
remains constant, while Emin ∼ N . That is why the ra-
tio r → 0 for large N values. From the same Fig. 6 it
is clear that Cdis goes continuously from a configuration
close to C↑↓ when η � 1 to one close to Cx when η ' 1.

IV. MULTIDIMENSIONAL CASE

The results obtained in the previous Sections for d = 1
can be extended in greater dimension d ≥ 2.

While it can be easily shown that, in the short–range
case d < α, the system cannot be disconnected in the
thermodynamic limit, the proof of the disconnection
for the long–range case is essentially based on the as-
sumption that the minimum energy with the constraint
my = 0 is given by an obvious extension of what we have
found in d = 1. This is, at the moment, justified only by
our numerical simulations.

Let us then consider a d–dimensional hypercube of side
L, such as Ld = N and divide it in two equal halves. Let
us then put half of the spins with y-component in one
region and the other half in the remaining with opposite
y-component and call E↑↓ the resulting energy for such
configuration. Surely the TNT has an energy value less
or equal to E↑↓, that is Edis ≤ E↑↓.

101 102 103 104

N
10-4

10-3

10-2

10-1

100

101

α 0

2D

101 102 103 104

N
10-4

10-3

10-2

10-1

100

101

α 0

3D

η

Ex
Ex

Ε Ε
0

1

b)a)

0.5

FIG. 7: (Color online) Critical α0 as a function of the number
of spins for different η indicated by different colors. (a) d = 2,
(b) d = 3.

Let us then write:

Emin = E↑ + E↑ + V↑↑,

E↑↓ = E↑ + E↓ + V↑↓, (31)

where E↑, E↓ are the energies of the respective halves
and V↑↓, V↑↑ are the interaction energies between the two
halves with, respectively, antiparallel and parallel spins.

Since E↑ = E↓ and −V↑↑ = V↑↓ > 0, one has:

0 ≤ r ≤ r↑↓ = 2
V↑↓

|Emin|
= 2

2E↑ − Emin

|Emin|
. (32)

We will make use of the results found in Ref.[15], that
in our variables read as:

lim
N→∞

Emin(d, α, N)

N2−α/d − N
= Cd(α), (33)

for α 6= d and where the constant Cd(α) > 0 for d < α
and Cd(α) < 0 for d > α depends only on d and α.

1. Short-Range

Let us discuss the short range case α > d. In this case
we have,

lim
N→∞

Emin(d, α, N)

N
= Cd(α), (34)

and, since E↑ = Emin(d, α, N/2), we can write

0 ≤ r ≤ r↑↓ = 2
2E↑/N − Emin/N

|Emin/N | → 0, for N → ∞.

(35)
This proves that, in the short–range case, r → 0 for

N → ∞.
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X

Y

FIG. 8: (Color online) TNT for the 2-d square lattice, for the
case α = 0.1, η = 0.5, N = 16 × 16 = 256 spins. Here is
Edis = −655.968997, while E↑↓ = −654.7308.

2. Long-Range

In the long range-case, α < d, let us assume that, for
large N values, Edis → E↑↓.

Estimate (33) becomes in this case:

lim
N→∞

Emin(d, α, N)

N2−α/d
= Cd(α), (36)

so that, for N → ∞,

r ' r↑↓ = 2
2E↑/N

2−α/d − Emin/N2−α/d

|Emin/N2−α/d| → 2 − 2α/d.

(37)
That way, r → const 6= 0 for N → ∞ and α 6= d, and

a finite disconnected energy range exists in the thermo-
dynamic limit.

It is also interesting to note that, as α → d, r → 0, so
that the result (35) is recovered.

The disconnection of the system in the long range case
can thus be proved if we assume Cdis ∼ C↑↓.

Numerical simulations confirm this assumption. In-
deed, let us define α0(η, N) as the smallest value such
that,

Ex(α0, η, N) = E↑↓(α0, η, N).

Its general dependence on parameters has been presented
in Fig. 7 for d = 2, 3. As one can see, α0 ∼ 1/N → 0 when
N → ∞. In the same picture we indicate the regions
where Ex or E↑↓ are respectively the minimal energies
satisfying the constraint my = 0. Also, α0 = d is plotted
as a dashed horizontal line, showing that the short-range
case (above the line) is characterized by E↑↓, while the
long-range case (below the line) can have different behav-
iors (Ex or E↑↓), even if physically interesting long-range
interactions are generally characterized by E↑↓.

10 100 1000

N

0

5

10

 E
do

m
ai

n

α=0.1
α=1

FIG. 9: (Color online) Domain energy as a function of the
number of lattice spins, for the 2-d square lattice and η = 0.5,
asterisks (α = 0.1), circles (α = 1). For α > 1, Edomain

becomes smaller than the computer precision.

As for the spin configuration Cdis, both for d = 2 and
d = 3, all physically significant cases can be represented
by C↑↓. Deviations occur for α << d, where a domain
wall appears, see for instance Figs. 8. As one can see,
Cdis is generically represented by two macroscopic blocks,
with opposite sign of the y-magnetization, with a do-
main wall at their interface. In the domain wall the y-
components increase in absolute value toward the center
and the x-components are more or less distributed with
alternating signs, see Figs. 8.

Defining the domain energy, as the difference between
the numerically found TNT and the energy E↑↓ (26), one
has that with increasing N it goes to some constant or
zero value (see Fig. 9) so that, in the thermodynamic
limit Edis ∼ E↑↓, which justify, at least numerically, our
previous assumption. This concludes our proof of the
disconnection of the system with η ≥ 0 for long–range
interaction in any dimension d.

V. NEGATIVE η

In this last part we briefly discuss the case η < 0. First
of all η > 0 is not a necessary condition for the existence
of a finite disconnection region.

Let us first consider the 1–d case; In Eq. (7) ηHx be-
comes ferromagnetic as Hy, and the configuration

C′
x = {Si

x = 1}N
i=1 ∈ A, (38)

has an energy E′
x < Ex (which is the energy of the con-

figuration Cx, see Eq. (8)). Moreover, since the number
of parallel spins in C′

x is larger than in C↑↓, we will expect
that the energy E′

x, even if decreased by a factor η, will
become soon or later less than E↑↓.

While this has no consequences in the case α > 1, (we
still have r2 → 0 and the TNT does not exist), in the
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FIG. 10: Edis (symbols) as a function of η for the long range
case α = 0.5 and N = 64 (d = 1), N = 8 × 8 (d = 2),
N = 4 × 4 × 4 (d = 3). Also shown as dotted horizontal lines
E↑↓, and, as dashed transverse lines E′

x.

long-range case (0 < α < 1) some interesting features
appear.

From Eq. (19) one has r1 → |2+ η− 2α|/2 for N → ∞
and a finite disconnection energy region still exists for
2α − 2 < η < 0.

In the other case −1 < η < 2−2α nothing can be said,
even if, according to our numerical simulations Cdis ∼ C′

x.
This effectively happens in all dimensions d = 1, 2, 3, as
indicated in Fig. 10, where Edis as a function of η as
been shown in a long range case. As one can see Edis is
close to E′

x (equal, within numerical accuracy, according
to our simulations) for η < ηcr(α, N), while it becomes
close to E↑↓, for η > ηcr(α, N). That holds true in any
dimensions.

Let us note that, as a realistic ηcr, we can assume the
intersection point between E ′

x and E↑↓, see Fig. (10). An
estimate, that holds only in the thermodynamic limit can
be obtained following the considerations made in Sec.(IV)
giving ηcr ∼ 1 − 2

α

d .
It is also clear that assuming:

Edis = ηEx = −ηEmin

one has r → 1 + η, and the system is disconnected even
for negative η in all dimensions.

VI. CONCLUSIONS

Summarizing, we have studied the occurrence of
a topological non–connectivity threshold (TNT) in
anisotropic Heisenberg models in d = 1, 2, 3 with an inter-
action strength depending on a power law of their relative
distance with the exponent α. We have found that the
system, in the thermodynamic limit, is disconnected only
in presence of a long-range interaction 0 ≤ α < d. On the
other side, in the short-range case, the ratio between the
disconnected energy region and the total energy region
goes to zero when N → ∞. The anisotropy represents in
this class of systems a necessary condition : indeed, in
the isotropic case, the TNT coincides with the minimal
energy, thus there is no disconnected energy region.

Future investigations concern the experimental evi-
dence of TNT, for instance by looking for the divergence
of de-magnetization times[9] as a function of energy in
small magnetic samples.

Finally, let us point out that from a quantum mechan-
ical point of view the classical disconnection does not ex-
clude the flipping of the magnetization through Macro-
scopic Quantum Tunneling [16]. Thus the existence of
TNT could give the possibility to study the emergence
of Macroscopic Quantum Phenomena in a wide energy
range (for macroscopic long range interacting systems),
as has been shown in [17], where the quantum signatures
of the TNT in an anisotropic Heisenberg model with all-
to-all interaction have been studied, and the relevance of
the TNT w.r.t. Macroscopic Quantum Phenomena ad-
dressed.
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