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Transient dynamics in magnetic force microscopy for a single-spin measurement
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We analyze a single-spin measurement using a transient process in magnetic force microscopy which could
increase the maximum operating temperature by a factor ofQ ~the quality factor of the cantilever! in com-
parison with the static Stern-Gerlach effect. We obtain an exact solution of the master equation, which confirms
this result. We also discuss the conditions required to create a macroscopic quantum superposition in the
cantilever.
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I. INTRODUCTION

A magnetic force microscopy~MFM! normally studies
the magnetic stray field near the sample surface. The de
tion of the cantilever with the ferromagnetic tip measure
magnetic force produced by the atomic spins of the sam
The MFM resolution below 50 nm allows one to study t
magnetic domains in the high-density magnetic record
media.

The routine MFM seems to be of a little use for a sing
spin detection in solids. Even for unrealistically small d
tances between the ferromagnetic particle on the cantile
tip and the spin, the maximum temperature for a single-s
measurement comes to a millikelvin region@1#. That is why
the single-spin magnetic measurement is expected to c
from magnetic-resonance force microscopy~MRFM! tech-
nique @2–4#.

This paper is outside the mainstream of the magn
single-spin measurement, based on MRFM. We show
opportunity of significant increase of the MFM sensitivit
which may transfer the MFM single-spin measurement fr
a ‘‘gedanken experiment’’ to a realistic proposal.

In this paper, we show that using a transient process,
can increase the maximum temperature of a single-spin m
surement by a factor ofQ ~the quality factor of the cantile
ver!. Alternatively, one can increase the distance between
ferromagnetic particle and the cantilever tip if one is willin
to work at millikelvin temperatures. In Sec. II, we expla
the basic idea of our work. In Secs. III–IV, we obtain a
exact solution of the master equations, which confirms
idea. In Sec. VI, we derive the conditions for creating
macroscopic quantum superposition in MFM. In Conclusi
we summarize our results.

II. TRANSIENT PROCESS IN MFM

In this section, we describe the basic idea of our wo
Suppose that a ferromagnetic particle on the cantilever
interacts with a single spin on the solid surface.~See Fig. 1.!
The equilibrium position of the cantilever tip depends on
spin direction. The distance between two possible equi
1050-2947/2003/68~1!/012102~8!/$20.00 68 0121
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rium positions, corresponding to two spin stationary states
given by 2F/kc , wherekc is the cantilever spring constant,F
is the magnetostatic force between the ferromagnetic par
and the spin. In order to measure the state of the spin,
distance must be greater than twice the uncertainty due to
thermodynamical noise of the cantilever position. This u
certainty can be estimated as (kBT/kc)

1/2, where kB is
Boltzmann’s constant andT is the temperature. Thus, th
condition for a single-spin measurement~the static Stern-
Gerlach effect! is @1#

T,Tmax5F2/kBkc . ~1!

Now, assume that we quickly change the stationary s
of the spin and consider the transient cantilever vibratio
after this change. The amplitude of the cantilever vibratio
at timet!Q/vc (vc is the cantilever frequency andQ/vc is
the time constant of the cantilever! is 4F/kc . In addition,
assume that we detect the position and momentum of a p
on the cantilever tip with an accuracy that satisfies the qu
tum limit (dPZ)(dZ)'\/2 ~the cantilever oscillates alon
the z axis.! To find out the state of the spin, we are going
compare the observed trajectory of the cantilever tip with

FIG. 1. Geometry of the proposed gedanken experiment.mF

andmp are the magnetic moments of the ferromagnetic particle
paramagnetic atom.
©2003 The American Physical Society02-1
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theoretical prediction. The theory predicts the cantilever
jectory within an uncertainty due to the thermal noise. Ho
ever, the thermal uncertainty of the cantilever position
time t!Q/vc increases as@ t(vc /Q)(kBT/kc)#1/2. We can
obtain this expression assuming an initial (t!Q/vc) thermal
diffusion with two common properties:~1! The dispersion
(dZ)2 is proportional to timet and~2! the uncertainty of the
cantilever position equals its thermodynamical value if
formally put t5Q/vc .

At the timet5p/vc ~half of the first period!, the distance
between two possible cantilever positions takes its maxim
possible value 4F/kc . At the same time, the thermal unce
tainty of the position predicted by the theory is still mu
smaller than its thermodynamical value. Now, the condit
for a single-spin measurement is

T,Tmax5
4QF2

pkBkc
. ~2!

One can see that the maximum temperature for a single-
measurement increases by a factor ofQ, compared with the
static Stern-Gerlach effect. In the next three sections, we
confirm this estimation by a direct solution of the mas
equation.

III. THE HAMILTONIAN AND THE MASTER EQUATION

We assume that the cantilever tip with an attached fe
magnetic particle can oscillate along thez axis. ~See Fig. 1.!
A single paramagnetic atom with spin12 is placed near the
cantilever tip. The dimensionless Hamiltonian of the cant
ver tip interacting with a single spin is

Ĥ5 1
2 ~ p̂z

21 ẑ2!22h ẑŜz . ~3!

We introduced the following notations~below we omit hats
for operators!:

z5Z/Zq , pz5Pz /Pq , h5gmBU]Bz

]z U/2Fq , ~4!

whereZq , Pq , andFq are the ‘‘quants’’ of the coordinate
momentum, and force acting on the cantilever,

Zq5S \vc

kc
D 1/2

, Pq5\/Zq , Fq5kcZq . ~5!

The variablesZ andPz are the ‘‘dimensional’’ coordinate an
momentum of the cantilever tip,kc is the cantilever ‘‘spring
constant,’’vc is its frequency,g is the ‘‘g factor’’ of the spin
~below we useg52), ]Bz /]z is the magnetic-field gradien
produced by the ferromagnetic particle at the spin locat
when the cantilever is in the equilibrium position with n
spin (z50). Note that the cantilever interacts with thez
component of the spin, which is an integral of motion in o
system. In the Hamiltonian~3!, we omitted the term
(gmBB0 /\vc)Ŝz , whereB0 is the magnetic field on the spi
when the cantilever is at the origin (z50). This term may be
eliminated ‘‘physically’’ ~by application of a uniform exter
01210
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nal field of magnitudeB0 in the negativez direction! or
‘‘mathematically’’ ~by transferring to the system of coord
nates rotating with the frequencygmBB0 /\).

The master equation describes the evolution of the den
matrix of the system interacting with the environment~see,
for example, Refs.@5–8#!. We are taking into account th
interaction of the cantilever with its environment, and igno
the direct interaction between the spin and the environm
assuming that the spin relaxation and decoherence times
large enough. The effect of the environment depends on
‘‘spectral density,’’ i.e., the density of environmental oscill
tors at a given frequency. Probably, the simplest model of
environment is the ‘‘ohmic’’ model, where the spectral de
sity is proportional to the frequencyv for v,V, whereV is
the cutoff frequency for the environment. A master equat
for the non-ohmic environment has been derived in Ref.@8#.
For the ohmic model, the simplest master equation has b
obtained in Ref.@5#. This equation is valid in the ‘‘high-
temperature limit’’kBT@\V. The master equation derive
in Ref. @6# is valid for arbitrary temperature. As pointed o
in Ref. @8#, both master equations derived in Refs.@5,6# fail
at times shorter than or close to\/kBT.

Note that quantum effects in nanomechanical oscillat
have been studied previously~see, for example, Ref.@9#!.
However, to the best of our knowledge, the exact solution
the master equation for the spin-cantilever system has n
been obtained.

We are going to consider the gedanken experiment
cussed in Ref.@1#. Suppose that initially (t50) the spin is in
a superposition of the two states with thez projection of the
spin Sz51/2 andSz521/2. These two states of the sp
correspond to two different equilibrium positions of the ca
tilever tip. Thus, the cantilever~without decoherence! would
transform into a MSCS: two simultaneous equilibrium po
tions. Certainly, decoherence will destroy this state. T
master equation describes both the appearance of the M
and its destruction due to decoherence.

Following Ref. @1#, we consider the ultrathin cantileve
reported in Ref.@10#. It has the spring constantkc56.5
31026 N/m, the frequencyvc/2p51.7 kHz, and the qual-
ity factor Q56700. The ferromagnetic particle on the can
lever tip is taken to be a sphere of radiusR515 nm at a
distance 5 nm from the paramagnetic atom.~Below we con-
sider conditions for increasing the distance between the c
tilever and spin.! For this case, the static displacement of t
cantilever tip due to its interaction with the single spin e
ceeds the thermal vibrations of the cantilever for tempe
tures

T,Tmax5
~mB]Bz /]z!2

kBkc
'1.7 mK. ~6!

In our gedanken experiment for the temperatureT
@\vc/kB'831028 K, we can use the simplest high
temperature limit in the ohmic model.

The master equation in the high-temperature limit can
written in the form@5#
2-2
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]rs,s8
]t

5F i

2
~]zz2]z8z8!2

i

2
~z22z82!2

1

2
b~z2z8!~]z2]z8!

2Db~z2z8!222ih~z8s82zs!Grs,s8 . ~7!

Here, s and s8 take values61/2 ~we uses instead ofSz),
t5vct, b51/Q, andD5kBT/\vc . Using new coordinates

r 5z2z8, R5 1
2 ~z1z8!, ~8!

Eq. ~7! can be written as

]rs,s8~R,r ,t!

]t
5$ i ]Rr2 iRr2br ] r2Dbr 22 ih@~2R2r !s8

2~2R1r !s#%rs,s8~R,r ,t!. ~9!

Performing a Fourier transformation of this equation w
respect to the variableR, one obtains, after rearrangement

]r̂s,s8
]t

1~br 2k!
]r̂s,s8

]r
1@r 12h~s82s!#

]r̂s,s8
]k

5@2Dbr 21 ihr ~s81s!#r̂s,s8 , ~10!

where

r̂s,s8~k,r ,t!5E
2`

1`

eikRrs,s8~R,r ,t!dR.

We can study separately the spin diagonal case (s5s8) and
the off-diagonal case (sÞs8). For s85s ~up-up or down-
down spins!, we have the following equation:

]r̂s,s

]t
1~br 2k!

]r̂s,s

]r
1r

]r̂s,s

]k
5~2Dbr 212ihrs!r̂s,s ,

~11!

and fors8Þs ~up-down or down-up spins!,

]r̂s,2s

]t
1~br 2k!

]r̂s,2s

]r
1~r 14hs!

]r̂s,2s

]k
52Dbr 2r̂s,2s .

~12!

We will derive the exact solution of the master equation~7!
for the case when the spin is ‘‘prepared’’ initially in the s
perposition of two states withs51/2 ands521/2, while the
cantilever tip is in the quasiclassical coherent state

c~z,s,0!5
1

~p!1/4
exp@ ip0z2~z2z0!2/2# ^ S a

bD , ~13!

where the amplitudesa andb correspond to the values ofs
51/2 ands521/2, respectively. The corresponding dens
matrix can be written as

rss8~z,z8,0!5c~z,s,0! ^ c†~z8,s8,0!. ~14!
01210
Note that we consider an ensemble of spin-cantilever s
tems with the same initial state. This implies that the expe
menter can detect the position and momentum of a poin
the cantilever tip with quantum limit accuracy(dpz)

2(dz)2

51/4. ~In our gedanken experiment, this corresponds to
uncertainty of 300 fm for position and 300 nm/s for velo
ity.! Based on the master equation, we can predict the a
age position of the cantilever tip for its given initial stat
depending on the spin state. If the double uncertainty of
position is smaller than the separation between two poss
average positions, the cantilever tip will measure the stat
the spin.

After the Fourier transformation, the ‘‘cantilever part’’ o
the density matrix is represented by

r̂s,s8~k,r ,0!}exp@ ip0r 1 ikz02r 2/42k2/4#. ~15!

IV. SOLUTION FOR SPIN DIAGONAL MATRIX
ELEMENTS

The equations for the characteristics of Eq.~11! are

dt5
dr

br 2k
5

dk

r
5

dr̂s,s8

~2Dbr 212ihsr!r̂ss

, ~16!

or, explicitly

dr

dt
5br 2k,

dk

dt
5r , ~17!

dr̂s,s8
dt

5~2Dbr 212ihsr!r̂s,s8 .

From the first two equations in Eq.~17!, one obtains

d2k

dt2 2b
dk

dt
1k50,

which has the following general solution:

k5ebt/2~c1cosut1c2sinut!, ~18!

whereu5A12b2/4. ~Here we are considering the caseb
,2 sou is a real number. The caseb.2 can also be solved
analytically.! Using the second equation in Eq.~17!, one ob-
tains

r 5ebt/2F S b

2
cosut2u sinut D c11S b

2
sinut1u cosut D c2G .

~19!

Inverting Eqs.~18! and~19! as a function ofc1 andc2, one
obtain the characteristic curves

c15e2bt/2~q1k1q2r ! ~20!

and
2-3
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c25e2bt/2~p1k1p2r !, ~21!

where the time-dependent constantsq1 , q2 , p1, andp2 have
been defined as

q15
1

u S b

2
sinut1u cosut D ,

q252
1

u
sinut,

p15
1

u S 2
b

2
cosut1u sinut D , ~22!

p25
1

u
cosut.

Substituting Eq.~19! into the third equation of Eq.~17! and
integrating in time, one obtains

r̂s,s~k,r ,t!}Q~c1 ,c2!exp@ i2hs~c1g11c2g2!

2Db~c1
2f 112c1c2f 31c2

2f 2!#, ~23!

where the functionsf i ’s andgi ’s are defined as

f 1~t!5
ebt

8 F S b1
4u2

b D1b cos 2ut22u sin 2utG ,
f 2~t!5

ebt

8 F S b1
4u2

b D2b cos 2ut12u sin 2utG ,
f 3~t!5

ebt

8
@2u cos 2ut1b sin 2ut#, ~24!

g1~t!5ebt/2cosut,

g2~t!5ebt/2sinut.

The arbitrary functionA which depends on the characteri
tics is determined by the initial density matr
r̂s,s„k(0),r (0),0…,

A~c1 ,c2!5 r̂s,s~c1 , 1
2 bc11uc2,0!exp@22ihs~c1g10

1c2g20!#exp@Db~c1
2f 1012c1c2f 301c2

2f 20!#,

~25!

where f i05 f i(0) and gi05gi(0). From the initial density
matrix @Eq. ~15!#, we obtain

r̂s,s8~k,r ,0!}exp$ i @~ 1
2 p0b1z0!c11p0uc2#%

3expH 2F S b2

16
1

1

4D c1
21

bu

4
c1c21

u2

4
c2

2G J .

~26!

Substituting Eqs.~25! and ~26! into Eq. ~23!, one obtains
01210
r̂s,s~k,r ,t!}expH i F S 1

2
p0b1z012hsG1D c11~p0u

12hsG2!c2G J expH 2F S b2

16
1

1

4D c1
21

bu

4
c1c2

1
u2

4
c2

2G J exp$2Db~F1c1
212c1c2F31F2c2

2!%,

~27!

whereFi andGi are defined as

Fi~t!5 f i~t!2 f i0 , Gi~t!5gi~t!2gi0 .

Substituting in Eq.~27! the values of the characteristics as
function of k and r @Eqs.~20! and ~21!#, one obtains

r̂ss~k,r ,t!}exp@2r 2C11 irC 21~ iB22rB1!k2s
*
2 k2#,

~28!

where

s
*
2 5e2btF S b2

16
1

1

4Dq1
21

bu

4
q1p11

u2

4
p1

21Db~F1q1
2

12q1p1F31F2p1
2!G , ~29!

B15e2btH S b2

16
1

1

4D2q1q21
bu

4
~q1p21q2p1!1

u2

4
2p1p2

12Db@F1q1q21~q1p21q2p1!F31F2p1p2#J , ~30!

B2~s!5e2bt/2F S 1

2
p0b1z012hsG1Dq1

1~p0u12hsG2!p1G , ~31!

C15e2btF S b2

16
1

1

4Dq2
21

bu

4
q2p21

u2

4
p2

21Db~F1q2
2

12q2p2F31F2p2
2!G , ~32!

C2~s!5e2bt/2F S 1

2
p0b1z012hsG1Dq2

1~p0u12hsG2!p2G . ~33!

In Eqs. ~31! and ~33!, the explicit dependence ons is pre-
sented. Performing the inverse Fourier transform, one
tains
2-4
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r1/2,1/2~R,r ,t!5
uau2

2Ap s*
exp@2r 2C11 irC 2~1/2!#

3exp@$2rB11 iB2~1/2!2 iR%2/4s
*
2 #,

r21/2,21/2~R,r ,t!5
ubu2

2Ap s*
exp@2r 2C11 irC 2~21/2!#

3exp@$2rB11 iB2~21/2!2 iR%2/4s
*
2 #.

~34!

Equations~34! represent two squeezed Gaussians w
modulus

ur1/2,1/2~R,r ,t!u5
uau2

2Ap s*
exp@2r 2~C12B1

2/4s
*
2 !#

3exp@2$B2~1/2!2R%2/4s
*
2 #,

ur21/2,21/2~R,r ,t!u5
ubu2

2Ap s*
exp@2r 2~C12B1

2/4s
*
2 !#

3exp@2$B2~21/2!2R%2/4s
*
2 #.

~35!

Figure 2 shows schematically two peaks~seen from the top
as ellipses! corresponding to the two matrix elemen
ur1/2,1/2u and ur21/2,21/2u. We denote the centers of the e
lipses, which lie on the diagonalz5z8, by M 11 andM 22 ,
the semimajor axis bysd , the semiminor axis bysd8 , and
the distance between the centers byDd . The r1/2,1/2

max is lo-
cated at M 115„r 50,R5B2(1/2)… or z5z85B2(1/2),
while ther21/2,21/2

max is at M 225„r 50,R5B2(21/2)… or „z
5z85B2(21/2)…. The distanceDd is given by

Dd5B2~1/2!2B2~21/2!. ~36!

FIG. 2. Schematic view of the Gaussians representing the d
onal elementsur21/2,21/2u and ur1/2,1/2u ~seen from the top! in the
(z,z8) plane. We show the centersM 22 and M 11 , the variances
sd8 ~transverse! andsd ~parallel!, and the distance between diagon
centersDd .
01210
h

From Eqs.~35!, we obtainsd5A2 s* and

2sd8
25

4s
*
2

4s
*
2 C12B1

2
. ~37!

For a single-spin measurement, the two peaks correspon
to r1/2,1/2

max and r21/2,21/2
max must be well separated. It follow

that the conditionDd.2sd must be satisfied.
First, we consider the casebt@1 or t@Q/vc , where

Q/vc is the time constant for the cantilever. In this case,
obtain two equilibrium positions for the cantilever, when t
transient process is over. We haveDd52h and sd5AD.
The valuesd5AD is the thermodynamical uncertainty in th
cantilever position caused by the thermal noise. The t
equilibrium positions can be distinguished ifh.AD or T
,F2/kBkc , where F5mBu]Bz /]zu is the magnetostatic
force between the ferromagnetic particle and the param
netic atom. The last expression exactly coincides with f
mula ~1!.

Next, we consider the initial transient process after
instant (t50) at which the paramagnetic spin has been tra
ferred into the superpositional state. Forbt!1, we have

Dd54h sin2
t

2
, sd5@1/21Dbt2Db cost sin3t#1/2.

~38!

This expression forDd describes the oscillating distance b
tween the two peaks. It corresponds to initial vibrations
two classical oscillators near their equilibrium positionsz
5h andz52h. The distance between them is given byDd .
~For our gedanken experiment, the maximum value ofDd is
0.24 nm.! The formula forsd contains three terms. The firs
term 1/2 corresponds to the quantum dispersion of the in
wave function. The second termDbt describes the initial
diffusion of an ensemble of oscillators. Formally, settingt
;1/b, we can estimate the final dispersionsd5AD, which
corresponds to thermodynamical vibrations of the cantile
tip. The third term describes insignificant oscillations wi
small amplitude,Db.

Note that the condition for distinguishing the two cantil
ver positions at the beginning of the transient process
much less restrictive than the corresponding condition for
equilibrium positions atbt@1. Indeed, after the first hal
period (t5p), we haveDd54h and sd5(1/21pDb)1/2.
Taking into account thatb!1, the condition for distinguish-
ing the two positions,h.(1/21pDb)1/2, is much easier
thanh.AD. In our gedanken experiment, the condition f
distinguishing the two positions for the transient process

T,Tmax5
4

p

QF2

kBkc
514 K, ~39!

compared with T,Tmax51.7 mK for the static Stern-
Gerlach effect. This estimate seems to be too optimistic.
connected with the very small distance~5 nm! between the
ferromagnetic particle and the paramagnetic atom. If we
crease this distance to 50 nm, the temperatureTmax drops

g-
2-5
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from 14 K to 1.1 mK. Unlike our gedanken experiment,
MFM experiment at the distance of 50 nm in the millikelv
region of temperatures seems to be a realistic proposal.~The
MRFM experiments in the millikelvin region of temperatur
have been already reported in Ref.@3#.!

Note that expression~39! coincides exactly with our pre
liminary estimates~2!.

The conditionDd.2sd is satisfied for the first time at

t5t0'21/4/Ah. ~40!

This expression is valid ifh@1 andh@(Db)2/A8. For our
gedanken experiment, we haveh5144, D51.253107T (T
is the temperature in kelvin!, b51.531024, and t050.1.
Thus, the above conditions are both satisfied. The valu
t05vct0 is '9.3 ms.

V. SOLUTION FOR OFF-DIAGONAL SPIN MATRIX
ELEMENTS

The equations for the characteristics are now given by

dt5
dr

br 2k
5

dk

r 24hs
5

dr̂s,2s

2Dbr 2r̂s,2s

, ~41!

or

dr

dt
5br 2k,

dk

dt
5r 24hs, ~42!

dr̂s,2s

dt
52Dbr 2 r̂s,2s .

The solutions of the first two equations of Eqs.~42! are

k5ebt/2~c1cosut1c2sinut!14bhs,

r 5ebt/2F S b

2
cosut2u sinut D c11S b

2
sinut1u cosut D c2G

14hs. ~43!
01210
of

Following the same steps as above, we obtain the follow
for the Fourier transform:

r̂1/2,21/2~k,r ,t!

}A~c1 ,c2!exp$2Db@ f 1c1
212c1c2f 31 f 2c2

2#%

3exp$2Db@4h~g1c11g2c2!14h2t#%, ~44!

where we fixs51/2 @changing sign ofs corresponds to a
change of sign ofh, see Eq.~42!, therefore the cases5
21/2 can be easily obtained#. The functionsf i andgi have
been defined as above, andc1 andc2 are new characteristic
curves given by

c15e2bt/2~q1k1q2r 1hq3!,

c25e2bt/2~p1k1p2r 1hp3!. ~45!

Here,q1 ,q2 ,p1 ,p2 are defined by Eqs.~22! and q3 ,p3 are
given by

q35
2

u F2bS b

2
sinut1u cosut D1sinutG ,

p35
2

u FbS b

2
cosut2u sinut D2cosutG . ~46!

With the same initial condition, Eq.~15!, we can determine
the functionA(c1 ,c2) and obtain

r̂1/2,21/2~k,r ,t!}r̂1/2,21/2~c112bh, 1
2 bc11uc212h,0!

3exp$2Db@F1c1
212c1c2F31F2c2

2

14h~G1c11G2c2!14h2t#%, ~47!

whereFi(t) andGi(t) are defined as above. By substitutin
the initial condition~15!, we have

r̂1/2,21/2~k,r ,t!

}exp@2r 2C122rhC112h2C101 irC 211 ihC20#

3exp@~ iB202rB112hB10!k2s
*
2 k2#, ~48!

wheres is given by Eq.~29! and
*
C125e2btF S b2

16
1

1

4
1DbF1Dq2

21S bu

4
12DbF3Dq2p21S u2

4
1DbF2D p2

2G ,

C115e2btF S b2

16
1

1

4
1DbF1D2q2q31S bu

4
12DbF3D ~q2p31p2q3!G1e2btF S u2

4
1DbF2D2p2p3G

14e2bt/2F S 3b

8
1DbG1Dq21S u

4
1DbG2D p2G ,
2-6
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C105e2btF S b2

16
1

1

4
1DbF1Dq3

21S bu

4
12DbF3Dq3p31S u2

4
1DbF2D p3

2G14e2bt/2F S 3b

8
1DbG1Dq31S u

4
1DbG2D p3G

14S 1

4
1

b2

4
1Dbt D ,

C215e2bt/2F S p0b

2
1z0Dq21p0up2G , ~49!

C205e2bt/2F S p0b

2
1z0Dq31p0up3G12~p01z0b!,

B115e2btF S b2

16
1

1

4
1DbF1D2q2q11S bu

4
12DbF3D ~q1p21q2p1!G1e2btF S u2

4
1DbF2D2p2p1G ,

B105e2btF S b2

16
1

1

4
1DbF1D2q3q11S bu

4
12DbF3D ~q1p31q3p1!G1e2btF S u2

4
1DbF2D2p3p1G

14e2bt/2F S 3b

8
1DbG1Dq11S u

4
1DbG2D p1G ,

B205e2bt/2F S 1

2
p0b1z0Dq11p0up1G .
th

m

ic

se

i-

ag-
eed,
by

ef.

a-

ntum
us,

e
olu-

g
-

Performing the inverse Fourier transform and taking
modulus, we obtain

ur1/2,21/2~R,r ,t!u5
uab* u

Aps*
ejh2

e2(r 1r 0h)2/2s̃2
e2(B202R)2/4s

*
2
,

ur21/2,1/2~R,r ,t!u5
ua* bu

Aps*
ejh2

e2(r 2r 0h)2/2s̃2
e2(B202R)2/4s

*
2
,

~50!

where

s̃25
2s

*
2

4s
*
2 C122B11

2
,

r 05
2s

*
2 C112B11B10

4s
*
2 C122B11

2
, ~51!

j5
B10

2

4s
*
2

2C102
r 0

2

2s̃2
.

The maxima are located at (R5B20,r 52hr 0) for ur1/2,21/2u
and at (R5B20,r 5hr 0) for ur21/2,1/2u. In (z,z8) coordi-
nates, this corresponds toM 125(z5B202hr 0/2,z85B20
1hr 0/2) for ur1/2,21/2u and M 215(z5B201hr 0/2,z85B20
2hr 0/2) for ur21/2,11/2u, so that the distance between the

is given byDnd5A2hur 0u. Next, we consider the quadrat
form (r 6r 0h)/2s̃21(B202R)2/4s

*
2 in the (z,z8) plane.

Straightforward calculations show that this is an ellip
01210
ewhose semiaxes are, respectively, given bys̃ ~across the
diagonal! and 2A2s* ~along the diagonal!. The centers of
the peaksM 12 ,M 21 are symmetric with respect to the d
agonal linez5z8.

The most remarkable difference compared with the di
onal case is the presence of irreversible decoherence. Ind
the heights of the peaks are exponentially reduced in time
the damping factor;exp(24h2Dbt). This, in turn, defines a
characteristic time scale of decoherence:td51/4h2Db. This
formula exactly coincides with the expression derived in R
@1#, based on a semiqualitative analysis. The value oftd is
very small. In our gedanken experimenttd'60 ps at the
temperatureT51 mK.

At time t5t0, when two diagonal peaks are clearly sep
rated, the damping factor is 4h2Dbt0. We expect to observe
the coherence between the two peaks macroscopic qua
superpostion if this factor is not more than one unit. Th
using the expression fort0 from Eq. ~40!, we can estimate
the condition for the quantum coherence asDbh3/2,1, or

T,Tmax5
Q

kB

~\vc!
7/4kc

3/4

F3/2
. ~52!

For our gedanken experiment the value ofTmax is approxi-
mately 331027 K.

Now, we will check the validity of our estimate for th
parameters chosen for our gedanken experiment. Our s
tion is valid if h@(Db)2/A8. SettingT5Tmax or Dbh3/2

51, we obtainh4@1/A8, which is definitely true, assumin
h@1. Next, the condition of the validity of the high tem
2-7
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perature approximation isD@1. For T5Tmax, it follows
that h3/2!Q. This inequality is roughly satisfied (h3/2

51700, Q56700). Finally, as we mentioned in the Intro
duction, the master equation fails at timest<\/kBT. Thus,
the time considered,t0521/4/Ah, must be much greate
Thus, than 1/D, which is definitely wrong. Thus, our cond
tion ~52! for the creation of the macroscopic quantum sup
postion is not justified for the parameters considered.

Next, we discuss at what values of the parameters a m
roscopic quantum superpostion can be generated. First
emphasize the qualitative difference between the follow
two conditions:~1! the condition for distinguishing two po
sitions of the cantilever and~2! The condition for distin-
guishing two positions of the cantilever and the cohere
between these two positions. The first condition is relativ
simple: T,Tmax5F2/kBkc for equilibrium positions (t
@Q) and T,Tmax54QF2/pkBkc for t5p. The obvious
way to increaseTmax is by decreasing the spring constantkc
or increasing the magneto-static forceF. For t5p, one ad-
ditional way is to increase the quality factorQ. Condition~2!
for generating an macroscopic quantum superpostion ca
satisfied at temperatureT,Tmax5\7/4Qkc

13/8/kBF3/2m7/8,
wherem is the effective mass of the cantilever,m5kc /vc

2 .
At T5Tmax, the macroscopic quantum superpostion will
generated if we satisfy the inequalities 1!h2!Q, or

1!
mF2

\kc
3/2

!Q. ~53!
v-

.

01210
r-

c-
we
g

e
y

be

One can see that the regime considered in our paper doe
allow free manipulation of any parameter butQ. Increasing
Q, we can satisfy the second inequality and, at the sa
time, increaseTmax. In our gedanken experiment, the tenfo
increase ofQ (Q567 000) provides the validity of the right
hand inequality in Eq.~53! and increasesTmax to 3 m K.

VI. CONCLUSION

We have shown that the maximum temperature
a single-spin measurement in MFM can be increased
a factor of Q if one utilizes the initial transient proces
instead of the static displacement of the cantilever tip.
have obtained an exact analytical solution of the mas
equation, which describes theQ-times magnification of the
maximum temperature. In addition, we have found the c
ditions for generation of macroscopic Schro¨dinger cat state
in MFM.
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