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Transient dynamics in magnetic force microscopy for a single-spin measurement
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We analyze a single-spin measurement using a transient process in magnetic force microscopy which could
increase the maximum operating temperature by a fact@® ¢he quality factor of the cantilevein com-
parison with the static Stern-Gerlach effect. We obtain an exact solution of the master equation, which confirms
this result. We also discuss the conditions required to create a macroscopic quantum superposition in the
cantilever.
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[. INTRODUCTION rium positions, corresponding to two spin stationary states, is
given by Z/k., wherek. is the cantilever spring constait,

A magnetic force microscopyMFM) normally studies is the magnetostatic force between the ferromagnetic particle
the magnetic stray field near the sample surface. The defleand the spin. In order to measure the state of the spin, this
tion of the cantilever with the ferromagnetic tip measures alistance must be greater than twice the uncertainty due to the
magnetic force produced by the atomic spins of the sampleghermodynamical noise of the cantilever position. This un-
The MFM resolution below 50 nm allows one to study thecertainty can be estimated a&g{/k.)*? where kg is
magnetic domains in the high-density magnetic recordindg3oltzmann’s constant and is the temperature. Thus, the
media. condition for a single-spin measureme(tihe static Stern-

The routine MFM seems to be of a little use for a single-Gerlach effedtis [1]
spin detection in solids. Even for unrealistically small dis-
tances between the ferromagnetic particle on the cantilever T<Tmax=F?/kgke. (1)
tip and the spin, the maximum temperature for a single-spin

measurement comes to a millikelvin regifii. That is why Now, assume that we quickly change the stationary state
the single-spin magnetic measurement is expected t0 COMg the spin and consider the transient cantilever vibrations
from magnetic-resonance force microscoyRFM) tech-  after this change. The amplitude of the cantilever vibrations
nique[2—4]. _ _ _attimet<Q/w, (w, is the cantilever frequency af@l v is

_ This paper is outside the mainstream of the magnetighe time constant of the cantileyeis 4F/k.. In addition,
smgle—spm measurement, based on MRFM. We sh.o_vv_ th&ssume that we detect the position and momentum of a point
opportunity of significant increase of the MFM sensitivity, o the cantilever tip with an accuracy that satisfies the quan-
which may transfer the MFM single-spin measurement fromy,m |imit (s5P,)(s5Z)~#/2 (the cantilever oscillates along
a “gedanken experiment” to a realistic proposal, the z axis) To find out the state of the spin, we are going to

In this paper, we show that using a transient process, oNg,mpare the observed trajectory of the cantilever tip with the
can increase the maximum temperature of a single-spin mea-

surement by a factor d (the quality factor of the cantile-
vern). Alternatively, one can increase the distance between the
ferromagnetic particle and the cantilever tip if one is willing
to work at millikelvin temperatures. In Sec. Il, we explain
the basic idea of our work. In Secs. IlI-IV, we obtain an
exact solution of the master equations, which confirms our
idea. In Sec. VI, we derive the conditions for creating a
macroscopic quantum superposition in MFM. In Conclusion,
we summarize our results.

II. TRANSIENT PROCESS IN MFM

In this section, we describe the basic idea of our work.
Suppose that a ferromagnetic particle on the cantilever tip
interacts with a single spin on the solid surfa¢®ee Fig. 1). FIG. 1. Geometry of the proposed gedanken experiment.
The equilibrium position of the cantilever tip depends on theandm, are the magnetic moments of the ferromagnetic particle and
spin direction. The distance between two possible equilibparamagnetic atom.
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theoretical prediction. The theory predicts the cantilever tranal field of magnitudeB, in the negativez direction or
jectory within an uncertainty due to the thermal noise. HOow-“mathematically” (by transferring to the system of coordi-
ever, the thermal uncertainty of the cantilever position at,teg rotating with the frequenagytsBo/4).
time t<Q/w. increases at(w./Q)(ksT/k:)]"> We can The master equation describes the evolution of the density
obtain this expression assuming an initiekQ/ w.) thermal  matrix of the system interacting with the environmésee,
diffusion with two common propertieg1) The dispersion fqy example, Refs[5-8]). We are taking into account the
(62)? is proportional to time and (2) the uncertainty of the  interaction of the cantilever with its environment, and ignore
cantilever position equals its thermodynamical value if wethe direct interaction between the spin and the environment,
formally putt=Q/wc. assuming that the spin relaxation and decoherence times are
At the timet = 7/ 0. (half of the first periog the distance large enough. The effect of the environment depends on its
between two possible cantilever positions takes its maximumspectral density,” i.e., the density of environmental oscilla-
possible value B/k.. At the same time, the thermal uncer- tors at a given frequency. Probably, the simplest model of the
tainty of the position predicted by the theory is still much environment is the “ohmic” model, where the spectral den-
smaller than its thermodynamical value. Now, the conditionsity is proportional to the frequeney for <€), whereQ is
for a single-spin measurement is the cutoff frequency for the environment. A master equation
) for the non-ohmic environment has been derived in R&f.
T<T. .= 4QF 2 For the ohmic model, the simplest master equation has been
max mkgk,’ obtained in Ref[5]. This equation is valid in the “high-
temperature limit"kgT>7%(). The master equation derived
One can see that the maximum temperature for a single-spif Ref.[6] is valid for arbitrary temperature. As pointed out
measurement increases by a factopfcompared with the  in Ref.[8], both master equations derived in Rd#5,6] fail
static Stern-Gerlach effect. In the next three sections, we willt times shorter than or close &dkgT.

confirm this estimation by a direct solution of the master Note that guantum effects in nanomechanical oscillators

equation. have been studied previous(gee, for example, Ref9)).
However, to the best of our knowledge, the exact solution of
Ill. THE HAMILTONIAN AND THE MASTER EQUATION the master equation for the spin-cantilever system has never

. - been obtained.
We assume that the cantilever tip with an attached ferro- \yie gre going to consider the gedanken experiment dis-

magnetic particle can oscillate along thexis.(See Fig. D.  ¢,5qed in Ref[1]. Suppose that initiallyt=0) the spin is in

A single paramagnetic atom with spinis placed near the 5 superposition of the two states with therojection of the
cantllle\(er tip. '!'he d!men3|_onless Hamlltoman of the cantlle-spin S,=1/2 andS,=—1/2. These two states of the spin
ver tip interacting with a single spin is correspond to two different equilibrium positions of the can-
tilever tip. Thus, the cantilevemwithout decoherengevould
transform into a MSCS: two simultaneous equilibrium posi-
tions. Certainly, decoherence will destroy this state. The
master equation describes both the appearance of the MSCS
and its destruction due to decoherence.

Following Ref.[1], we consider the ultrathin cantilever
I2Fq, (4 reported in Ref.[10]. It has the spring constark.=6.5
X107 % N/m, the frequencyw /2= 1.7 kHz, and the qual-
ity factor Q=6700. The ferromagnetic particle on the canti-
lever tip is taken to be a sphere of radiRs=15 nm at a
distance 5 nm from the paramagnetic at¢Below we con-

12 sider conditions for increasing the distance between the can-
) . Pg=tlZ,, Fq=KcZ,. (5) tilev_er and '_s,pir). For this case, the sta?ic displa_cement _of the
cantilever tip due to its interaction with the single spin ex-

ceeds the thermal vibrations of the cantilever for tempera-

H=3(pi+2%)-27zS,. (3)

We introduced the following notatiori®elow we omit hats
for operatorg

B
z=21Z4, p,=P,/Pyg, n=gMBT;

whereZ,, Py, andF, are the “quants” of the coordinate,
momentum, and force acting on the cantilever,

hog

ke

The variableZ andP, are the “dimensional” coordinate and

tures
momentum of the cantilever tifk,; is the cantilever “spring
constant,”’w. is its frequencyg is the “g factor” of the spin
(below we usey=2), dB,/dz is the magnetic-field gradient (ugdB,l92)?
produced by the ferromagnetic particle at the spin location T<Tmax:kB—k%1-7 mK. (6)
C

when the cantilever is in the equilibrium position with no

spin (z=0). Note that the cantilever interacts with tke

component of the Spin, which is an integral of motion in ourin our gedanken experiment for the temperatu’fe
system. In the Hamiltonian3), we omitted the term sy /ky~8x10"8 K, we can use the simplest high-
(gueBo/fiw.)S,, whereB, is the magnetic field on the spin temperature limit in the ohmic model.

when the cantilever is at the origiz€ 0). This term may be The master equation in the high-temperature limit can be
eliminated “physically” (by application of a uniform exter- written in the form[5]
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&psysf | |
o7 = E(‘?zz_ 0p171)— 5(22_2,2)_

1 !
> B(z=2')(3,= 0)

—DB(z=2')?~2in(z's' =29 |pss - @)

Here,s ands’ take values*+1/2 (we uses instead ofS,),
T=wct, B=1/Q, andD=kgT/A w.. Using new coordinates

8

r=z—z', R=3(z+7"),

Eq. (7) can be written as

&pS’S/(R,I‘ y T)

e ={idg,—iRr—Bro,—DBr2—in[(2R-r)s’

_(2R+r)s]}ps,s’(R1r!T)' (9)
Performing a Fourier transformation of this equation with
respect to the variablR, one obtains, after rearrangements,

Ips, Ips,s'
ar ak

dps,s’

T

s/

+(Br—Kk) +[r+27n(s'—s)]

=[—DBre+inr(s'+s)lpss (10)

where

+

;35,5,(k,r,7)=f e Rps o (R,r,7)dR.
We can study separately the spin diagonal cases() and
the off-diagonal casesgs’). For s'=s (up-up or down-
down sping, we have the following equation:

aﬁs,s ’9;’5,5 ‘9;)5,5_ 2 . ~
P +(Br—k) r +r oK =(—DpBre+2inrs)pgs,
(11)
and fors’ #s (up-down or down-up spins
IPs, s s, s s s "
P +(Br—k) or +(r+4ns) K DBreps —s.
(12

We will derive the exact solution of the master equati@n
for the case when the spin is “prepared” initially in the su-
perposition of two states witk= 1/2 ands= —1/2, while the
cantilever tip is in the quasiclassical coherent state

, (13

T s
w(z,s,O)—mexp:lpoz—(z—zo) 12]® b

where the amplitudea andb correspond to the values of
=1/2 ands= —1/2, respectively. The corresponding density
matrix can be written as

pssr(Z,Z,,O):lﬂ(Z,S,O)@lﬂT(Z/,SI,O). (14)

PHYSICAL REVIEW A 68, 012102 (2003

Note that we consider an ensemble of spin-cantilever sys-
tems with the same initial state. This implies that the experi-
menter can detect the position and momentum of a point on
the cantilever tip with quantum limit accuragyp,)?(6z)?
=1/4. (In our gedanken experiment, this corresponds to an
uncertainty of 300 fm for position and 300 nm/s for veloc-
ity.) Based on the master equation, we can predict the aver-
age position of the cantilever tip for its given initial state,
depending on the spin state. If the double uncertainty of the
position is smaller than the separation between two possible
average positions, the cantilever tip will measure the state of
the spin.

After the Fourier transformation, the “cantilever part” of
the density matrix is represented by

ps.s (KT, 0 cexdipor +ikzo—r2/4—k?/4]. (15
IV. SOLUTION FOR SPIN DIAGONAL MATRIX
ELEMENTS

The equations for the characteristics of Etfl) are

dr  dk dpss

S Br—K T (—DBr+2i s pes

dr (16)

or, explicitly
dr ‘
ar Pk

dk

ar "

(17)

dps,s’

dr

=(—DBr2+2iysnpsg -

From the first two equations in E@L7), one obtains

d’%k  dk
a2 Par TR0

which has the following general solution:

k=ef"?(c,cosfr+c,sind7), (18
where 6= \/1— B?/4. (Here we are considering the cage
<2 so# is a real number. The cage>2 can also be solved
analytically) Using the second equation in Ed.7), one ob-
tains

Esin 67+ 6 cosor

r= eBT/Z
2

(gcosb’r— 0 sin 0r)c1+ Cy|.
(19

Inverting Eqs.(18) and(19) as a function ot; andc,, one
obtain the characteristic curves
ci=e P"2(qik+qsr) (20)

and
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Co=€ P (pik+pyr), (21) 61t (Do
1T (Po

R 1
psys(k,r,r)ocexp|i (Epo,BJr Zo+27sGy

where the time-dependent constagts g,, p;, andp, have

been defined as B? 1 B6
+275G,)c, | fexpl — || ==+ = |c2+ ——cyc,
1/8 16 4 4
ql:5<§sin 0T+ 000307) . o
+ ch Jexp{— DB(Fc2+2¢,CF 3+ Focd)},
1
o= — gsin or, (27)
1 B whereF; andG;, are defined as
p1=‘—9( — Ecosar+ fsin 07), (22
Fi(n)=fi(1)—fio, Gi(7)=0i(7)—gjo-
1
p,=-C0SHT. Substituting in Eq(27) the values of the characteristics as a
4 function ofk andr [Egs.(20) and(21)], one obtains
Substituting Eq(19) into the third equation of Eq17) and R
integrating in time, one obtains psd k.1, )cexd —r?C,+irC,+(iB,—rBy)k—o2k?],
- (28)
ps,s(K,r, 1) Q(cq,Cr)exdi2ns(C191+ Co05)
where
—Dp(cif1+2ciC,f3+c5f5)], (23
where the functions$;’s andg;’s are defined as 2 _ . —pt B 1 2 PO 0 2 2
: : o,=¢ 16 7/%t 7 9Pt Zp1+D,3(F1Q1
efr 6?
fi(r)=—|| B+—|+Bcos207—260sin207|,
8 B +201p;Fa+FapD) |, (29
eBT 2 .
fz(T)=? (,84‘7 —pBcos297+26sin207|, I B_2+£2qq +ﬁ(qp +qp)+0_22pp
; 1 16 4 142 4 1M2 2M1 4 1M2
e T
fa(7)= [26 cos 207+ Bsin 207], (24)
8 +2DB[F 10102+ (d1p2+d2p1) F3+ Fopaipo], (30

g,(7)=ef"cosor,

1
ga(7)=ef"%singr. Ba(s)= e—Bt/2[ 5PoB+2zo+ 2775(3'1) fi

The arbitrary functionA which depends on the characteris-
tics is determined by the initial density matrix +(Pob+27sGy)py

pss(k(0),r(0),0),

: (31)

A(Cy,C2) = ps,s(C1,3BC1+ 05,0 ex] — 2i 7S(C1010 C,=e # '%25-1- % a5+ ?quﬁ—%zp?— DA(F.q5
+C200) Jex D B(C5f 10+ 261 Cof 30t C5F 20 ],
(25 +20,p2F3+ szg)}' (32
where f;o=1;(0) andgio=09;(0). From the initial density
matrix [Eq. (15)], we obtain C2(5)=e‘5"2{ %p0ﬁ+20+277561) 0
pss (K.r,0) < expi[ (3o +20)C1+ Pobics]}
B> 1\ , po 0, +(po¢9+2778G2)p2} (33
o [t B ]

(26) In Egs. (31) and (33), the explicit dependence amis pre-
sented. Performing the inverse Fourier transform, one ob-
Substituting Eqs(25) and (26) into Eq. (23), one obtains tains
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| From Egs.(35), we obtaine4= 2 o, and

2
4o,

20/2=— % (37)
¢ 402C,—B2

For a single-spin measurement, the two peaks corresponding
to p1)51,, and pM35 1, must be well separated. It follows
that the conditiom ;> 204 must be satisfied.
First, we consider the casg@r>1 or r>Q/w., where
Q/w. is the time constant for the cantilever. In this case, we
obtain two equilibrium positions for the cantilever, when the
transient process is over. We hagg=27 and oq=\D.
> The valuesy= D is the thermodynamical uncertainty in the
Z cantilever position caused by the thermal noise. The two
FIG. 2. Schematic view of the Gaussians representing the diagequilibrium positions can be distinguished 7> yD or T
onal elementsp_y, 1] and|py, 4 (seen from the topin the <F2?/kgks, where F=ug|dB,/dz| is the magnetostatic
(z,z') plane. We show the centeld__ andM . , , the variances force between the ferromagnetic particle and the paramag
o} (transversgandoy (paralle), and the distance between diagonal netic atom. The last expression exactly coincides with for-

centersiy. mula (1).
Next, we consider the initial transient process after the
EE instant {=0) at which the paramagnetic spin has been trans-
pr2idRr,T)= " exf —r2C,+irC,(1/2)] ferred into the superpositional state. Fr<1, we have
T Oy
. . T
Xexp{—rB;+iBy(1/2) —iR}*/40% ], Ad=47;sin2§, o4=[1/2+DB7— DB cosrsin ]2

_ 120 4 _
P12 1A R T) = o\mo, X —r7CyHirCo(—1/2)] This expression fon 4 describes the oscillating distance be-

tween the two peaks. It corresponds to initial vibrations of
Xexd{—rB,+iBy(—1/2—iR}?/402].  two classical oscillators near their equilibrium positians
(34) =y andz= — 5. The distance between them is givenky.
(For our gedanken experiment, the maximum valud gfis
Equations(34) represent two squeezed Gaussians with0-24 nm) The formula foroy contains three terms. The first
modulus term 1/2 corresponds to the quantum dispersion of the initial
wave function. The second ter B+ describes the initial
|a|? by diffusion of an ensemble of oscillators. Formally, setting
P12 AR, T)|= N exd —r?(C,—B3/40%)] ~1/B, we can estimate the final dispersiog= D, which
2y oy corresponds to thermodynamical vibrations of the cantilever
X exy] —{B,(1/2) — R}2/402 ], tip. The third term describes insignificant oscillations with
small amplitudepD .
Ib|? Note that the condition for distinguishing the two cantile-
— —r2(C. —B2/4,52 ver positions at the beginning of the transient process is
P12 1R 7) Jmo, exL ~r7(ComBildoy)] much less restrictive than the corresponding condition for the
21y 2 equilibrium positions ai3r>1. Indeed, after the first half
X exf —{Ba(—1/2) —R}“/40% ]. period (r=), we haveA =47 and o4=(1/2+ 7DB)*2
(35)  Taking into account thg8<1, the condition for distinguish-
ing the two positions,>(1/2+ 7D B)?, is much easier
Figure 2 shows schematically two pealseen from the top than#>/D. In our gedanken experiment, the condition for
as ellipses corresponding to the two matrix elements distinguishing the two positions for the transient process is
|p121/4 and |p_1/2—_15]. We denote the centers of the el-
lipses, which lie on the diagonakz', by M, andM__, 4 QF?
the semimajor axis by, the semiminor axis by, and T<Tmax=— @:14 K, (39
the distance between the centers by. The p7)5%,, is lo-
cated at M, ,=(r=0R=B,(1/2)) or z=z'=B,(1/2), compared with T<T.,=1.7 mK for the static Stern-

while thep™% 1, is atM__=(r=0R=B,(—1/2)) or (z  Gerlach effect. This estimate seems to be too optimistic. It is
=7'=B,(—1/2)). The distance\ is given by connected with the very small distant® nm) between the
ferromagnetic particle and the paramagnetic atom. If we in-
A4=By(1/2)—B,(—1/2). (36) crease this distance to 50 nm, the temperaiyyg, drops
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from 14 K to 1.1 mK. Unlike our gedanken experiment, aFollowing the same steps as above, we obtain the following
MFM experiment at the distance of 50 nm in the millikelvin for the Fourier transform:
region of temperatures seems to be a realistic propOBae
MRFM experiments in the millikelvin region of temperatures py/>—1/2(K,r, 7)
have been already reported in RES].)
Note that expressiof89) coincides exactly with our pre-

liminary estimateg?2). X expl— D 8l 4 C140,Co) + 472 44
The conditionA ;>20y is satisfied for the first time at A= DALAR(GCa+ 8z02) + 47 ]}, 49

OCA(C]_ ,C2)eXp[ - Dﬁ[flci"‘ 2C1C2f3+ fzcg]}

14 where we fixs=1/2 [changing sign ofs corresponds to a
=10~=2"\7. (40 change of sign ofy, see Eq.(42), therefore the case=

This expression is valid if;>1 and»> (D 8)%/\/8. For our —1/2 can be easily obtaingdThe functionsf; andg; have
gedanken experiment, we have= 144, D = 1.25x 10°T (T been def_lned as above, angdandc, are new characteristic
is the temperature in kelvin 3=1.5x10 %, and r,=0.1. curves given by

Thus, the above conditions are both satisfied. The value of ci=e A72(q.k+gor + 7q3),

tOZwC’TO is~9.3 MS.

Co=e P (pik+por + 7ps). (45
V. SOLUTION FOR OFF-DIAGONAL SPIN MATRIX
ELEMENTS Here,q;,0,,p1,p, are defined by Eqd22) andqs,p; are
given by
The equations for the characteristics are now given by > B
A =—| —B| 5zsinf7+ #cosfr|+sindr|,
L dr dk dps.s - ds 0[ B( 2
T= = = ~ 1
pr—k r—4gs _Dﬂrzpsﬁs 2 B
p3=—[ﬂ(—cosar— 0sin 07) —cosor|. (46)
or 0 2
r With the same initial condition, Eq15), we can determine
E_Z,Bf—k, the functionA(c,,c,) and obtain
dk P12 12K 1) Pz 112(C1+ 287, 3 Cy+ 0C+27,0)
—=r—4nys, 42
dr 7 42 X exp{— D B[F1C2+2¢,C,F 3+ FoC5
dps s g ; +47(G1c1+ Gyey) + 4727}, (47)
q- r~ ps,—s- . T
dr oe whereF;(7) andG;() are defined as above. By substituting
The solutions of the first two equations of E¢42) are the initial condition(15), we have
k=eP"2(c,cosf7+c,sin 1)+ 487, P12 1A KT, 7)
B B xexf] —r?Cyp—r 7Ci1— 7°CyoH+irC o +inCy
— B2 [ T _ H ™ i
r=e (Zcoser fsinfr|c,+ 23|n07-+ Hcoser)cz X extl (iBog— By~ 7Bk — 02 k2], (48)
+49s. (43)  whereo, is given by Eq.(29) and
|
(B Bo 6?
Ciz=e #7|| 75+ 7+ DBF1| a3+ | 7 +2DSF5|qzp+| 4+ DBF2| P3|,
B> 1

02
Cll:eiﬁT +eiBT (Z"‘ DIBFz) 2p2p3:|

Bo
1—6+ Z+ DBF]_) 2q2q3+ T"—ZDIBFS) (QZp3+ p2q3)

3 6
+4eﬁf/z[(§+o/ael A+ 7+ DBG2>p2}v

012102-6



TRANSIENT DYNAMICS IN MAGNETIC FORCE. .. PHYSICAL REVIEW A 68, 012102 (2003

2

2 1 0 0 3 0
cu=e | E X opr, g2+ B+ 20 gy qupat | -+ DpF, | 02|+ 402 | 22 1 D g, |qs+ | L+ DG, ps
16 4 4 4 8 4
4 ! ﬂz D
+ Z+Z+ BT,
Czlzeﬂﬂz[<¥+zo gx+ poﬁpg}, (49
_ PoB
Cpo=e ﬂf’Z[(%ﬂo U3+ Podps | +2(Pot208),
Bu=e 7| 75T 7T DBF1]20201+| 7~ +2DBF3 | (q1pa+dzPa) | +€ 77| -+ DBF2 | 2papy |,
—ﬁT ﬂz 1 Be _BT 02
Bio=e 7| 75+ 27 DBF1] 20501+ | = +2DBFs | (d1ps+dspy) | +e P77+ DBF2 | 2psp;
3 6
+4e_ﬁT/2 ?B'FDBG:L q1+ Z+DBG2)p1:|y

1
Boo= eﬁﬂz{ ( Epoﬁ’+ Zy|Qq1t poapl}-

Performing the inverse Fourier transform and tak|ng tthhose semiaxes are, respective'y' given :bwacross the

modulus, we obtain diagona) and 220, (along the diagonal The centers of
g * g g
. the peakdV , _ ,M _, are symmetric with respect to the di-
1p1a— 1o RT,7)| = |ab*| egr;zef(r+r0n)2/2}2e7(8207R)2/4oi1 agonal linez=z'.
' o, The most remarkable difference compared with the diag-

onal case is the presence of irreversible decoherence. Indeed,
the heights of the peaks are exponentially reduced in time by
the damping factor- exp(—47?DB7). This, in turn, defines a
characteristic time scale of decoherengg= 1/4%?D 3. This
50 formula exactly coincides with the expression derived in Ref.
where [1], based on a semiqualitative analysis. The value (is
very small. In our gedanken experiment~60 ps at the

2U§ temperaturel =1 mK.

At time 7= 7, when two diagonal peaks are clearly sepa-
rated, the damping factor is7#D B7,. We expect to observe
the coherence between the two peaks macroscopic quantum
superpostion if this factor is not more than one unit. Thus,

|a*b|

2 2/5-2 2 2
|p71/2‘1/iR'r,7-)|: e‘f” e—(r—fon) 120 e_(BZO_R) /40'*,
o,

o?= 2 2
40,Cq1o— BT

_ 20% C11—ByiByg

o= 402 Cyp— Bil ' (51) using the expression for, from Eg. (40), we can estimate
* the condition for the quantum coherence®87°°<1, or
2 2
528_12_ lo_r_o Q (hwy) "3
~5 Cc C
4o, 20 T< Tmax:k_B T (52

The maxima are located aRE Byg,r = — 5ro) for [py— 1/
and at R=By.,r =7ro) for |p_114. In (z,2') coordi-  For our gedanken experiment the valueTof.,, is approxi-
nates, this corresponds tdl, _=(z=Byo—7ro/22'=Bs  mately 3x 1077 K.
+7rof2) for |pap—1i2l @nd M, =(z=Byo+ 7r/2,2' =By Now, we will check the validity of our estimate for the

—nro/2) for [p_y2.11/2], so that the distance between them parameters chosen for our gedanken experiment. Our solu-
is given byA,q=+27|ro|. Next, we consider the quadratic tion is valid if »>(Dg)2/\/8. SettingT=T,,a, of D372

form (r =rq7)/20%+ (By—R)?%/402 in the (z,z') plane. =1, we obtainy*> 1/\/8, which is definitely true, assuming
Straightforward calculations show that this is an ellippse7>1. Next, the condition of the validity of the high tem-
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perature approximation i®>1. For T=T,y, it follows  One can see that the regime considered in our paper does not
that %?<Q. This inequality is roughly satisfied 7>  allow free manipulation of any parameter it Increasing
=1700, Q=6700). Finally, as we mentioned in the Intro- Q, we can satisfy the second inequality and, at the same
duction, the master equation fails at times#/kgT. Thus, time, increasd ,,,. IN our gedanken experiment, the tenfold
the time consideredry=2%/7, must be much greater increase ofQ (Q=67 000) provides the validity of the right-
Thus, than 1D, which is definitely wrong. Thus, our condi- hand inequality in Eq(53) and increase¥ . t0 3 u K.
tion (52) for the creation of the macroscopic quantum super-
postion is not justified for the parameters considered.

Next, we discuss at what values of the parameters a mac- VI. CONCLUSION
roscopic quantum superpostion can be generated. First, we
emphasize the qualitative difference between the following \\e have shown that the maximum temperature for
two conditions:(1) the condition for distingqishing tWo po- 5 single-spin measurement in MFM can be increased by
sitions of the cantilever an@) The condition for distin- 5 factor of Q if one utilizes the initial transient process
guishing two positions of the cantilever and the coherencésiead of the static displacement of the cantilever tip. We
between these two positions. The first condition is relatively,5ye obtained an exact analytical solution of the master
simple: T<Tmax:F2/kBk§ for equilibrium positions € equation, which describes ti@times magnification of the
>Q) and T<Tpax=4QF 7/ mkgk, for 7=m. The obvious  maximum temperature. In addition, we have found the con-

way to increasd , is by decreasing the spring const&gt  itions for generation of macroscopic Sctimger cat state
or increasing the magneto-static foreeFor 7=, one ad- j, MEM.

ditional way is to increase the quality fact@Qr Condition(2)
for generating an macroscopic quantum superpostion can be
satisfied at temperaturd <T .= % "“Qk¥¥kgF¥2m™®
wherem is the effective mass of the cantileven=k./w?.

At T=T,,ax, the macroscopic quantum superpostion will be
generated if we satisfy the inequalities<k><Q, or
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