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In this paper we investigate the properties of the quan-
tized discrete Frenkel Kontorova model. The structure
of the ground state is numerically analyzed by means
of the Metropolis algorithm; special attention is given
to the effects of quantization on the Cantori structure
of the classical ground state. These quantum effects pro-
duce a new structure which can be approximately de-
scribed by using a sawtooth map instead of the Standard
map. The dependence of the quantum energy on temper-
ature is also investigated and discussed in connection
with these structural modifications.

1. Introduction

The understanding of the correspondence between quan-
tum and classical mechanics for nearly integrable sys-
tems is a subject of considerable interest [1]. Following
the highlights of the Kolmogorov-Arnol’d-Moser theo-
rem, an effectual combination of mathematical skill and
sophisticated computer performances has been revealing
in more and more detail the process of destruction of
invariant surfaces that takes place when a classical in-
tegrable system is subjected to a perturbation of increas-
ing strength. It is now known that after the breakup
of certain invariant surfaces (tori), some relics may be
left in the form of invariant Cantor sets, which are named
Cantori [2, 3, 4].

Now the necessity arises of understanding the quan-
tal relevance of such intriguing classical results. Increas-
ing efforts are devoted to the investigation of the effect
of classical Cantori on the structure of quantum wave
functions [5, 6]. Up to now, only dynamical models have
been considered, i.e. models describing the evolution in
time of some physical system. However, Cantori can be
relevant also for static properties of many-particle sys-
tems. A well known example from Solid State Physics
is the discrete Frenkel-Kontorova model (FK) [3, 4, 7].

The classical version of this model has attracted
much attention because of the unusual properties of its
ground state. A rigorous mathematical analysis has
shown that the configuration of the (properly defined)
classical ground state is determined by certain invariant
sets of the Standard map, which can be tori or Cantori
according to whether the parameter of the map is smaller
or larger than a critical value.

This transition involves a deep change in the struc-
ture of the ground state and is accompanied by a number
of physically relevant phenomena, such as the appear-
ance of a phonon gap. 1t is therefore important to investi-
gate to what extent such classical predictions survive
in the more realistic quantum domain. To the best of
our knowledge, only a few attempts have been made
at theoretically investigating this problem [7, 8, 9] and
very little is known, because the high nonlinearity of
the model renders a mathematical analysis very difficult.

In this paper we present the first numerical results
on the structure of the quantum ground state (some of
these results were anticipated in [10]). In our simulations
we used the Metropolis algorithm [11, 12] for computing
Feynman-Kac integrals. In Sect. 2 some basic facts about
the FK model are briefly reviewed and the numerical
methods of our quantum simulation are described. In
Sect. 3 the classical and quantum numerical results are
discussed. .

Finally, Sect. 4 is devoted to some results on the
quantum thermodynamics of the model, which illustrate
the dependence of the energy on the temperature.

2. Model and numerical method

The discrete Frenkel-Kontorova model is an infinite lin-
ear chain of linearly coupled oscillators, in an external
periodic potential. It is defined by the Hamiltonian:

H=T+ VZZE%E2+%(xi—xi—1)2'—K cos (x;)] 2.1)
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where we have taken the mass of the particles and the
elastic constant equal to one. The abscissae x; of the
particles in the equilibrium configuration must satisfy
the condition:

ov
0x;
Upon introducing new variables p; . ; = x; , ; — x; the con-

dition can be written in the form of an area-preserving
map

=xi+1 +2xi—xi_1+K Sin(xi)=0. (22)

Pi+1=p;+ K sin(x))

which becomes the well known Standard map [13] as
soon as the variables x; are taken modulo-2 7.

If a fixed density is assumed for the infinite chain,
then the equilibrium configuration corresponds to an
orbit of the Standard map with a given rotation number
v. In our investigations we used a finite chain of s oscilla-
tors, with a given length 27r and fixed boundary condi-
tions. This amounts to approximating the true infinite
orbit with rotation number v by means of periodic orbits
with rational rotation numbers v,=r/s. This kind of ap-
proximation is frequently used in numerical investiga-
tions of the breakup of KAM curves [14]. In our case,
we have taken for v, the rational approximants of the
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Fig. 1a—f. Structure of the classical ground
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golden mean (]ﬁ— 1)/2, as provided by a continued frac-
tion expansion. This choice is motivated by well-known
results of the KAM theory for the Standard map: for
irrational v and K small enough, there is an invariant
torus (a KAM curve) of the Standard map, with rotation
number v. These KAM curves break at some critical
value K, of K; in their places, invariant Cantor sets
named Cantori are left. The last KAM curve undergoing
this fate corresponds to the most irrational rotation

number v=(]/§—1)/2; its breakdown occurs at K =
0.971635... [14, 15]. The bulk of our classical and quan-
tum computations were made with r=34, s=55; how-
ever, also additional checks with r=233, s=377 were
performed.

The breakup of the invariant tori of the Standard
map has a counterpart in the FK model; indeed at
K=K, an abrupt change occurs in the nature and prop-
erties of ground state of that model. This transition was
investigated by Aubry [3, 4] and is known as a “transi-
tion by breaking of analyticity”, for the following reason.
Let u;=x;(mod 27) and let I=2nv the average distance
between neighbouring oscillators. Then a function f is
proven to exist, such that, for any i,
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where a is an appropriate phase. This f is called a “hull
function”. For K <K,, it is a monotonic analytic func-
tion, and for K>K,, it is a monotonic function with
a countable set of step discontinuities. The stepwise char-
acter of f for K>K_, reflects the presence of Cantori
in the Standard map, and shows that the ground state
of the FK model is never chaotic.

The transition by breaking of analyticity is accompa-
nied by a number of physically relevant manifestations.
Of particular relevance to the present work is the appear-
ance of a gap in the “phonon spectrum” [16] - ie.,
the spectrum of frequencies of small oscillations around
the equilibrium configuration.

The above sketched classical phenomenology is illus-
trated by the numerical results shown in Fig. 1, which
provide a term of comparison for the quantum results
to be discussed below. In order to compute the equilibri-
um positions of the classical model we exploited the gra-
dient method described in [16]. The left and the right
columns in Fig. 1 refer to values of K=0.5 (subcritical)
and K=35 (overcritical) respectively. Besides the hull
functions (la, 1d), we show pictures of the points
X;, pi(=x;—x;_,) in the phase space of the Standard map
(not to be confused with the phase space of the FK mod-
el). Moreover we present a plot of the values g;, defined
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gi= X 2.5)
versus the values x;. As is apparent from (2.3) the points
thus obtained must belong in the graph of the function
g(x)=sin (x); actually in the overcritical case they belong
in a Cantor subset of that graph.

The Hamiltonian (2.1) depends on (s—1) configura-
tion variables x;, j=2, ..., 5, (x; =0, x,4 , =27r). For nu-
merically investigating the ground state of the quantum
model we used a well known method [11, 12], based
on Feynman quantization. In the Feynman approach
the quantum propagator between states |x;> and |x;)
from time O up to time t is given by

(xple Ry o [[dg] en®)

(2.6)

where x denote vectors of positions x;, 2<j<s and S[q]
is the classical action of a path which starts from |x;)
at time 0 and reaches |x,) at time t. The formal integral
{[dq] means the sum over all such paths.

Upon going over to the euclidean time t=it, one
gets the euclidean propagator:

{xyl e x> = Z Bx (xp) ¥ (x:) e En/h

with ¥(x), E, the energy eigenfunctions and eigenvalues
of the Hamiltonian. In the Feynman-Kac formulation
this propagator can be found by averaging over all classi-
cal paths weighted by the Boltzmann factor ¢ ~**/* where
S is now the euclidean action. According to (2.7) this
average yields quantum thermodynamical averages [11,
12] with the parameter #/t playing the role of tempera-
ture. Nevertheless, if t/4 is large enough the ground state
contribution dominates in formula (2.7) and the ground
state expectation value of any observable can be comput-
ed as an average over such a Boltzmann distributed en-
semble of paths.

In order to numerically compute such an ensemble
average we discretized the path with a suitable time step
and we exploited the Metropolis algorithm [11, 12]. This
method performs an “importance sampling” by random-
ly generating a finite set of paths which mainly contribute
in the Feynman-Kac integral. The number of paths in
the randomly generated sample determines the conver-
gence of the finite-sample statistics, and it must be large
enough for the fluctuations to be acceptably small. The
actual number of steps required for that depends on the
time step, which in turn must be large enough to isolate
the ground state contribution. We used 300-1000 time
steps and ensembles of 2000-8000 paths. The whole algo-
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rithm was adjusted by working out the case K=0 for
which exact analytical results are available; the final
agreement between exact and Metropolis data was good.

3. Numerical results on the quantum model

The above described numerical approach was used to
investigate the properties of the ground state of the quan-
tum FK model. The expectation values {x;> (j=2,5)
of the positions of the oscillators at negligibly small tem-
perature T=ht"! computed by the Metropolis algo-
rithm were used to construct the quantum analogues
of Fig. 1.

In order to check that the obtained results describe
the actual ground state structure and not just some tem-
perature effects, we increased or decreased the tempera-
ture in a few times; in no case significant changes were
observed. Moreover, from the study of thermal effects
in the quantum model (Sect. 4) we got some quantitative
information about the temperature required for signifi-
cant excitation above the ground state. This temperature
is measured by the plateau in Fig. 8. The temperatures
in our ground state simulations were much smaller than
that.

First of all, “quantum hull functions” (QHF) were
produced by plotting the ground state average positions
{x;» (mod 27) against the unperturbed ones (mod 2x).
As discussed above, in the classical case this procedure
yields a set of points in the square [0, 27] x [0, 2x],
which belongs in the graph of the “hull function™. It
is by no means obvious that the set of points obtained
from quantum data should belong in the graph of a
function whatsoever. Nevertheless, this kind of a plot

allows for a straightforward pictorial comparison of

quantum and classical data, and we loosely call it a
“quantum hull function” for the sake of simplicity.

Besides that, from the quantum expectations {x;>
we computed the “momenta” <{p;>=<{x;>—<{x;—{),
which were used to construct a phase space picture to
be compared with Fig. 1b, e.
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Finally, we computed the values g; according to (2.5)
with {(x;> in place of x;; a plot of the g; versus {(x;>
yields a quantum counterpart for Figs. 1c, f. Such a plot
we call a “g-function” (GF), though this denomination
may be abusive on strict mathematical grounds.

Examples of such quantum results, below and above
the critical value of K and for a small value of A are
shown in Figs. 2, 3. A comparison of these figures with
their classical analogues (Fig. 1) shows that for small A
the quantum average positions approximately follow the
classical ones. In particular, the classical transition is
mirrored by a crossover in the nature of the QHF. In-
deed, in the overcritical regime, the QHF has a step-like
character, remindful of the classical hull function.

Nevertheless, a closer analysis revealed remarkable
deviations from the classical behaviour in the overcritical
regime. A first hint on the nature of these quantum effects
was provided by the analysis of the variances of the posi-
tions of the oscillators. This is shown in Fig. 3¢, which
is a plot of the mean-square deviations of the oscillators
from their average positions:

17 k N
ax=| T 05-C5) ]

here k labels the Metropolis paths, and N is the number
of paths. In Fig. 3¢ we observe a strong correlation be-
tween oscillators which belong to the same plateau in
the hull function. The largest variances are given by oscil-
lators which are located near the edge of a gap. This
is explained by quantum tunneling; the quantum system
is resonating between different configurations, in which
the oscillators close to the edges of a gap belong to oppo-
site sides of the gap itself. Such a picture was confirmed
by the analysis of the probability distribution for the
positions of the oscillators (Fig. 4). Oscillators near the
edge of a gap have a double peaked distribution, with
peaks corresponding to opposite edges of the gap itself.
The most interesting illustration of the effect of quan-
tum fluctuations was provided by the quantum phase

Fig. 4a, b. The probability density p(x) of a
the oscillator with a small variance singled
out by the vertical arrow in Fig. 3a, b the
oscillator with a big variance indicated by the
horizontal arrow in Fig. 3a. The x-coordinate
is measured from the left hand end of the
chain (with the chosen units the area under
the curve is equal to 1). Parameter values are

> >
Q. Q.
1.5 F 1.5
1k 1
0.5} 05t
0 ! ) 0 . )
169.5 170 170.5 171 171.5 197 198

199

l as in Fig. 3
200 201



138

Lo L
@) &
0.75 0.75
(o) (b)
0.5 0.5 ;
’.
0.26 0.25 .
0 of :
-0.25 -0.25 :
—0.5 ) -05 Tt
S
-0.75 M ~0.75
-1 -1
5 0 2 3 4 5 6
Lo ! w1 \
O o SN
0.75 0.75 / \
(c) (d)
0.5 0.5 / \
II \\
025 025 /l \\‘
III L] - ‘\\
0 - O . - ~ l‘. \\-a
N ‘\\ Py .-' R I ‘/
-0.25 At -0.25 \ "
\ 1
\ !
-0.5 -0.5 \\ /’ .
\ / Fig. 5a—d. Variation of Quantum g-function
-0.75 ~0.75 with # for v=34/55, K=5.a h=1;b h=3; ¢
N\ J h=5;d h="7; the dashed line corresponds to
-1 -1 R the classical g-function g(x)=sin (x)
0 1 2 3 4 5 6 0 1 2 3 4 5 6

space picture (Fig. 3d) and by the quantum GF (Fig. 5).
The comparison of the classical phase picture {1¢) with
the quantum one (3d) shows that the quantum points
spread out of the classical Cantorus, along straight lines
that connect the edges of the gaps. As a result, a new
object is formed, which we call a quantorus.

A similar tendency to fill the convex envelope of the
classical Cantor structure is revealed by the analysis of
the quantum GF (Fig. 5) for several values of A. The
points of the quantum GF are not concentrated in a
small Cantor-like set (as they would classically) but ap-
pear to be more smoothly distributed. Surprisingly en-
ough, even for large # the points do not spread in the
plane but follow a well defined curve, which is different
from the classical g(x)=sin (x) and is close to a continu-
ous sawtooth curve especially for <4 (for K =35).

The indications provided by Figs. 3 and 5 yield quali-
tative but nevertheless definite evidence that quantum
effects in the FK model tend to reduce the gaps in the
classical structures. One may even be tempted to say
that the quantum structures look more like KAM curves
than the classical ones; though, of course, the blurring
due to fluctuations makes it meaningless to speak about

invariant curves or Cantori in the strict mathematical
sense.

The nature of the quantum GF suggests that the
quantum ground state configuration is better described
by a sawtooth map than by the Standard map. Follow-

ing this idea, we fitted the quantum GF by a continuous
sawtooth function:

cx O<x<xq
g(x)=1a(r—x) Xo=x=2m—X, (3.1
c(x—2n) 2m—xo<x<2m

where a=(cxg)/(t—x,) and the parameters ¢, x, were
obtained from the quantum numerical data. Then we
studied the dependence of the fitting parameter g, =cx,
(which gives the maximum value of the GF) on #. It
was found that g, monotonically decreases as % increases
(see Fig. 6); instead, the dependence of x, on # is much
less regular. The decrease of the value g, is consistent
with the idea put forward in [8, 9] that quantum effects
in the FK model may be accounted for by a reduction
of the kick strength of the Standard map; anyway a more
important quantum modification is given by the change
of the GF to a sawtooth function.

For values of K not too much above K, (for example
K ~2) the sawtooth function has to be replaced by some
piecewise linear function obtained by connecting the
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points of the Classical Cantorus by straight lines. Never-
theless the shape of the sawtooth function is practically
the same for all K >4,

As h is increased, the steps in the QHF are more
and more smoothed, and the QHF comes closer and
closer to the diagonal [10]. In such deeply quantum
regimes, the classical transition is completely effaced by
quantum fluctuations.

In order to check that the above described picture
is not just an outcome of the relatively small number

1
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of oscillators, we made additional computations with
v=2_89/144 and v=233/377. The obtained data are shown
in Fig. 7 and demonstrate the independence of our re-
sults on the number of oscillators.

For K below K, the situation is quite different. The
quantum GF is approximately sine-shaped, like the clas-
sical one, but its amplitude decrease as # is increased,
at least for not too large  (h ~ 1 for K ~0.5). The numeri-
cal analysis for larger # becomes very difficult, because
the decrease of temperature demands for a larger number
of time steps.

4. Dependence of energy on temperature

In this last section we investigate the dependence of the
energy of the quantum chain on temperature. Plots of
the average energy per oscillator in the quantum model
versus the temperature in the overcritical region are
shown in Fig. 8. The numerical data were obtained by
the Metropolis algorithm; in computing the average ki-
netic energy, the Feynman’s prescription was used [11].

Typically these curves exhibit a plateau for small
temperature and a linear growth (with unitary slope)
for high temperature. The latter feature agrees with the
classical predictions. Instead, the initial plateau appears
to be connected with the classical phonon gap, which

(b)

(d)

-

Fig. 7a—d. Quantum hull function (left) and g-
functions (right) for 4=02, K=35. a and b:
rotation number v=289/144, ¢ and d: v=233/
377

LI_ — LJ_
e : o
. (Q) "/ 0.75 jﬂ.
. 0.5
4 0.25
3 0
-0.25
2
-0.5
T — -0.75
N
0 -1
o 1 2 3 4 5 6 0o 1
L d . o L 1
T 6 ¥ O
e ‘g",.-i' 0.75 p
° (C) '.l‘."' o5 | &
4 . 025 |4
3 0
B¢ -0.25
2 .
% -0.5
""
1
;—-""v -0.75
L
s 1
0 1 2 3 4 5 s 0o 1



— 9
F— (d)
— yd
L
4‘
3¥
oy W
2 -
1L ’(fEJ‘"
.g-0-g
5o
0
-1
PN CuE | I | Loty Logv s laaaeld 1
005 1 15225 3 35 4 455

T

Fig. 8a—d. Average energy per oscillator E vs. temperature T for
winding number v=34/55. The lines give E(T) for the linearized
chain, the symbols are Metropolis data for the actual chain, Trian-
gles and full line a: A=1, K=35. Circles and dashed line d: #=1,
K =2. Squares and dotted line ¢: h=3, K=35. Stars: =5, K=5.
The dashed and dotted line b is obtained from the sawtooth approx-
imation with a fitting additive constant

sets a lower bound to the temperature required for signif-
icant excitation above the ground state. A more precise
theoretical description of this effect was obtained by lin-
earizing the classical model around the equilibrium con-
figuration. In this way a system of harmonic normal
modes was obtained. The spectrum of frequencies w; of
these modes (the phonon spectrum) is shown in Fig. 9.
In order to obtain an analytical expression for the depen-
dence of the energy E on the temperature T, we quantized
this system of phonons, and we used the Bose-Einstein
formula for the average energy:

s—1 1 h .
E(T)=Eo+ Y (5 hwﬁﬁ) @.1)
i=1
where
S 1 e ey2 > e
Ey= Z E(xi+1_xi) —K Z cos (x7) “4.2)
i=1 i=1

and x{ are the equilibrium positions for the classical
model at zero temperature. The dependence of energy
on temperature given by (4.1), for different values of K
and 4, is shown by the smooth lines in Fig. 8. For small
values of # the agreement is quite good, but for large
values of # the law (4.1) does not fit any more the Me-
tropolis data (see curve (c) on Fig. 8). This is probably
due to the fact that for large # the ground state structure
changes as we have shown in previous section. Neverthe-
less the failure of this theoretical curve, based on the
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Fig. 9. Phonon spectrum. Classical phonon spectra for linearized
motion, for v=34/55, K=35. Lozenges from linearizing the classical
motion around the equilibrium positions as given by the Standard
map. Asterisks from linearization around the equilibrium positions,
as given by the sawtooth map obtained from Fig. 5b, with parame-
ters xo=1.2, c=048 corresponding to h=3 (see Eq.(3.1)). Dots
from the sawtooth map obtained from Fig. 5a with parameters
xo=1, ¢=0.72 corresponding to h=1). w, is the frequency, n is
the wave number

linearized motion near classical equilibrium positions,
occurs for larger values of # than would be expected
on the grounds of the results of Sect. 3. For example
that curve acceptably works even for values of # for
which significant changes of the GF could be observed
(compare Fig. 1f with 5a). A qualitative explanation of
this relatively good agreement may be provided by the
fact that for the case with A=1 the number of points
which deviate from the sine curve is relatively small and
therefore does not lead to a significant change in energy.

On the other hand, a possible way for extending the
validity of (4.1) to larger values of # is suggested by
the results of Sect. 3, which show that for large # the
ground state configuration is approximately described
by a sawtooth map. This suggests that for such values
of #1 the phonon spectrum should be computed in a differ-
ent way, namely by linearizing an “effective Hamilton-
ian” constructed in such a way that its equilibrium posi-
tions are given by the sawtooth map. This effective Ha-
miltonian is determined by the sawtooth function ob-
tained from the quantum GF, apart from an additive
constant, which we used as a fitting parameter in our
computations.

The phonon spectrum determined in this way is
shown in Fig. 9. By this method a satisfactory agreement
with Metropolis data was obtained (see curve (b) on
Fig. 8). Moreover, for A < 1, the phonon spectra obtained
from the Standard map and from the sawtooth map
agree with each other (see Fig. 9), and this yields another
explanation of the good fitting of the Metropolis data
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by means of formula (4.1) with the original phonon spec-
trum o;.

The parameters of the sawtooth map depend ‘'on h
as illustrated in Fig. 5. Therefore, the phonon spectrum
associated with that map must be expected to change
with &, too. As a matter of fact, Fig. 9 clearly shows
that the phonon gap undergoes a sharp reduction as
% increases from 1 to 3. It is interesting to analyze this
phenomenon in the light of some rigorous mathematical
results on the sawtooth map available in the literature
[17]. According to these results no invariant curves exist
at all when*

4 (n—xo)
g0>gcr K 27'c—x0 . (43)
From (4.3) we obtain for xo=1, K=5, (which correspond
to h=1): g, =0.695. This is less than g0~0.72 numeri-
cally obtained from the quantum case, so that no invar-
iant curves for the sawtooth map should exist and a
nonzero phonon gap should be expected. On the other
hand the difference between these two values is quite
small, and quantum fluctuations make it difficult to de-
cide whether the Quantorus is better described by an
invariant curve or by a Cantorus.

* The connection between our parameters and the parameters Kk,
a used in [17] is the following: k=Kgo/(n —Xg); a=(1/2—x¢/27)

In the other case of Figs. 9 for xo=12, K=5 (A= 3)
we have g, =0.593 which is now larger than the numeri-
cal value g,~0.57 obtained from the quantum model.
Formula (4.3) does not any more exclude that invariant
curves for the sawtooth map exist, and this would quali-
tatively agree with the strong decrease of the phonon
gap observed in this case. This qualitative argument is
however not conclusive, because the critical value of g
at which all invariant curves with a given rotation
number v disappear depends on v in a peculiar fractal
way [17] and we do not actually know the exact critical
value for our rotation number. Anyway, on account of
the smallness of the phonon gap we can assume the
Quantorus to be closer to an invariant curve than in
the previous case with h=1.

Another interesting feature of the phonon spectrum
(for h=3) associated with the sawtooth map is the small
value of the first and second derivative (vg=dwg/dn~0,
1/M = d? @,/dn* ~0). This behaviour is qualitatively dif-
ferent from that of the linear phonon spectrum both
in the case of invariant curves (v,=const>0), and in
the case of Cantori (1/M >0). This property, which ap-
pears to correspond to a quasiparticle with a very large
mass M, can be connected with the unusual property
of the sawtooth map of having invariant curves even
for some rational rotation numbers.

It is also worth mentioning that classical thermal
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effects affect the FK model in quite a different way than
quantum effects do. In the first place the dependence
of energy on temperature in the undercritical as well
as in the overcritical case follows, for T>0.01, a straight
line of unitary slope, while in the quantum case we have
practically no change of energy for temperature less than
haw,/2, where w, is the phonon gap (see Fig. 8). The con-
clusion that the Quantum and the Classical FK model
at the same temperature display quite different properties
is also enforced by more detailed data [18]. For example,
a comparison of g-function and hull-functions (Fig. 10)
shows that while the quantum characteristics are still
close to the ground state ones, in spite of the nonzero
temperature, the classical g-function and hull-function
are completely destroyed.

A final remark is that the existence of the phonon
gap facilitates the quantum numerical investigation of
the ground state, because in this case there is a significant
distance between the ground state and the first excited
state. For this reason, it is not necessary to use so small
temperatures as would be required in the undercritical
case.

5. Conclusions

In this paper we have reported about results of extensive
numerical simulations on the quantum Frenkel-Kontor-
ova model. These results illustrate how the characteris-
tics of the quantum ground state reflect the sharp transi-
tion which takes place in the classical model at a critical
model at a critical value of the parameter, and provide
evidence that, at least for not too large #, a crossover
in the nature of the quantum ground state occurs, some-
how mimicking the classical transition. A more physical
evidence of this crossover is given by the behaviour of
the quantum energy as a function of temperature. We
emphasize that in the overcritical regime an important
modification appears in the quantum ground state aver-
age positions of the oscillators, which are described by
a sawtooth map instead of the Standard map.

The bulk of the above reported investigations was
aimed at analyzing the effects of quantum fluctuations
on the Cantori structure which characterize the classical
ground state in the overcritical regime. Our results give
for the first time some precise indication in this sense,
beyond the obvious intuition that the classical structure

should be somehow blurred. Though these indications
are very far from the standard of mathematical precision
of the classical theory of the FK model, we believe that
they may provide useful hints in connection with the
general problem of the relevance of classical Cantori in
quantum mechanics.

We are grateful to B.V. Chirikov for interesting discussions. This
work was partially realized according to the CNR (Italy) — Aca-
demy of Sciences (USSR) agreement.

References

1. Eckhardt, B.: Phys. Rep. 163, 205 (1988)
2. Mackay, R.S,, Meiss, J.D., Percival, [.C.: Physica. 13D, 55 (1984)
3. Aubry, S.: Physica 7D, 240 (1983)
4. Aubry, S., Daeron, P.Y.: Physica 8D, 381 (1983)
5. Chirikov, B.V,, Shepelyansky, D.: Radiofizika 29, 1041 (1986)
6. Geisel, T., Radons, G., Rubner, J.: Phys. Rev. Lett. 57, 2883
(1986)
7. Pokrovsky, V.L., Talapov, A.L.: Theory of incommensurate
crystals. Sov. Sc. Rev. Suppl. Series Phys. V.1 (1984)
8. Berman, G.P,, Iomin, A.M.: Phys. Lett. 107 A, 324 (1985); Zh.
Eksp. Teor. Fiz. 89, 946 (1985)
9. Beloshapkin, V.V, Berman, G.P,, lomin, A.M,, Tret’yakov,
A.G.: Zh. Eksp. Teor. Fiz. 90, 2077 (1986)
10. Borgonovi, F., Guarneri, I, Shepelyansky, D.: Phys. Rev. Lett.
63, (No. 19), 2010 (1989)
11. Creutz, M., Freedman, B.: Ann. Phys. 132, 427 (1981)
12. Shuryak, E.V., Zhirov, O.V.: Nucl. Phys. B242, 393 (1984)
13. Chirikov, B.V.: Phys. Rep. 52, 263 (1979)
14. Greene, J.M.: J. Math. Phys. 20, 6 (1979)
15. Mackay, R.S.: Physica 7D, 283 (1983)
16. Peyrard, M., Aubry, S.: J. Phys. C16, 1593 (1983)
17. Bullett, S.: Commun. Math. Phys. 107, 241 (1986)
18. Borgonovi, F.: Ph. D. Thesis, Universita’ di Pavia (Italy) (in
preparation)

F. Borgonovi!'?, 1. Guarneri’, D. Shepelyansky 2
! Dipartimento di Fisica Nucleare
¢ Teorica dell’ Universita di Pavia
and Istituto Nazionale di

Fisica Nucleare

Via Bassi 6

1-27100 Pavia

Italy

2 Institute of Nuclear Physics
SU-630090 Novosibirsk

USSR



