ANALISI MATEMATICA I

UNITÀ 1

COMPITO DI ESAME DEL 4 FEBBRAIO 2014

1) Si calcoli, al variare di $\alpha \in \mathbb{R}$, il seguente limite di funzione reale di variabile reale:

$$\lim_{x \to 0^+} \frac{\sin x - \arctan(\sin x)}{x^{\alpha}}.$$

Si calcoli poi il seguente limite:

$$\lim_{x \to 0^+} \frac{3\sin x - 3\arctan(\sin x) - x^3}{x^5}.$$

2) Si determinino le soluzioni non nulle dell'equazione in campo complesso

$$z^2|z| + |z|^2 zi = 0.$$

TEMPO: 1 ORA E 30 MINUTI

N.B.: Non è ammesso l'uso di alcuna calcolatrice e di libri di testo (sono consentiti la dispensa del corso e gli appunti).

ANALISI MATEMATICA I

UNITÀ 2

COMPITO DI ESAME DEL 4 FEBBRAIO 2014

1) Si determini, al variare di $\lambda \in \mathbb{R}$, il numero di soluzioni dell'equazione

$$3(x - \lambda)^2 \exp[-(x - \lambda)^2] = \lambda.$$

2) Si determini la primitiva F della funzione $f:\mathbb{R}\to\mathbb{R}$ definita da

$$f(x) = \frac{1}{(1+x^2)^2}$$

tale che $\lim_{x \to -\infty} F(x) = 0$.

TEMPO: 1 ORA E 30 MINUTI

N.B.: Non è ammesso l'uso di alcuna calcolatrice e di libri di testo (sono consentiti la dispensa del corso e gli appunti).

SOLUZIONI

1) Ricordando lo sviluppo di Taylor della funzione seno e della funzione arcotangente, ossia $\sin x = x - \frac{x^3}{6} + x^4 \omega_1(x)$ e arctan $x = x - \frac{x^3}{3} + x^4 \omega_2(x)$ per $x \to 0$, per composizione si ottiene

$$\arctan(\sin x) = x - \frac{x^3}{6} + x^4 \omega_1(x) - \frac{1}{3} \left(x - \frac{x^3}{6} + x^4 \omega_1(x) \right)^3 + \left(x - \frac{x^3}{6} + x^4 \omega_1(x) \right)^4 \omega_3(x),$$

avendo posto

$$\omega_3(x) = \omega_2 \left(x - \frac{x^3}{6} + x^4 \omega_1(x) \right).$$

Trascurando tutte le potenze di ordine superiore a x^3 , si trova

$$\arctan(\sin x) = x - \frac{x^3}{6} - \frac{x^3}{3} + x^4 \omega_4(x) = x - \frac{x^3}{2} + x^4 \omega_4(x).$$

Pertanto il limite dato risulta pari a

$$\lim_{x \to 0^+} \frac{x - \frac{x^3}{6} + x^4 \omega_1(x) - x + \frac{x^3}{2} - x^4 \omega_4(x)}{x^{\alpha}} = \lim_{x \to 0^+} \frac{\frac{x^3}{3} + x^4 \omega_5(x)}{x^{\alpha}}$$

ovvero a

$$\lim_{x \to 0^+} x^{3-\alpha} \left(\frac{1}{3} + x\omega_5(x) \right),\,$$

quindi vale 0 se $\alpha < 3$, $\frac{1}{3}$ se $\alpha = 3$ e $+\infty$ se $\alpha > 3$.

Consideriamo ora il secondo limite. Dagli sviluppi di Taylor appena calcolati risulta subito che

$$3\sin x - 3\arctan(\sin x) = x^3 + x^4\omega(x),$$

di conseguenza gli sviluppi di Taylor visti non sono sufficienti per trattare il numeratore del nuovo limite.

Consideriamo dunque gli sviluppi di sin x e arctan x al quinto ordine per $x \to 0$:

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + x^6 \omega_1(x)$$
$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + x^6 \omega_2(x)$$

Per composizione si trova

$$\arctan(\sin x) = x - \frac{x^3}{6} + \frac{x^5}{120} + x^6 \omega_1(x) - \frac{1}{3} \left(x - \frac{x^3}{6} + \frac{x^5}{120} + x^6 \omega_1(x) \right)^3 + \frac{1}{5} \left(x - \frac{x^3}{6} + \frac{x^5}{120} + x^6 \omega_1(x) \right)^5 + \left(x - \frac{x^3}{6} + \frac{x^5}{120} + x^6 \omega_1(x) \right)^6 \omega_3(x),$$

avendo posto

$$\omega_3(x) = \omega_2 \left(x - \frac{x^3}{6} + \frac{x^5}{120} + x^6 \omega_1(x) \right).$$

Trascurando questa volta tutte le potenze di ordine superiore a x^5 , si trova

$$\arctan(\sin x) = x - \frac{x^3}{6} - \frac{x^3}{3} + \frac{x^5}{120} + \frac{x^5}{6} + \frac{x^5}{5} + x^6 \omega_4(x) =$$
$$= x - \frac{x^3}{2} + \frac{3}{8}x^5 + x^6 \omega_4(x).$$

Pertanto il limite dato risulta pari a

$$\lim_{x \to 0^{+}} \frac{3x - \frac{x^{3}}{2} + \frac{x^{5}}{40} + 3x^{6}\omega_{1}(x) - 3x + \frac{3}{2}x^{3} - \frac{9}{8}x^{5} - 3x^{6}\omega_{4}(x) - x^{3}}{x^{5}} = \lim_{x \to 0^{+}} \frac{-\frac{11}{10}x^{5} + x^{6}\omega_{5}(x)}{x^{5}} = \lim_{x \to 0^{+}} \left(-\frac{11}{10} + x\omega_{5}(x) \right) = -\frac{11}{10}.$$

2) Dal momento che

$$|z^{2}|z| + |z|^{2}zi = z|z|(z+i|z|)$$

e che si cercano soluzioni diverse dalla soluzione nulla, ci si riconduce all'equazione

$$z + i|z| = 0,$$

ovvero

$$x + iy + i\sqrt{x^2 + y^2} = 0$$

che porta al sistema

$$\begin{cases} x = 0, \\ y + \sqrt{x^2 + y^2} = 0. \end{cases}$$

Sostituendo x=0 nella seconda equazione si trova $y+\sqrt{y^2}=0$, ovvero y+|y|=0 da cui y<0 (dovendo considerare le soluzioni non nulle).

In conclusione le soluzioni non nulle dell'equazione sono della forma z = iy, con y < 0.

3) Ponendo

$$f(x) = 3(x - \lambda)^2 \exp[-(x - \lambda)^2],$$

la funzione f risulta definita per ogni $x \in \mathbb{R}$.

Dal momento che la funzione si presenta nella forma $f(x) = g(x-\lambda)$, con $g(t) = 3t^2 \exp(-t^2)$, il suo grafico deriverà dal grafico della funzione g mediante traslazione lungo l'asse x (verso destra per λ positivo, verso sinistra per λ negativo).

Inoltre, dal momento che l'equazione data viene ricondotta al sistema

$$\begin{cases} y = f(x), \\ y = \lambda \end{cases}$$

e dunque alla ricerca delle intersezioni fra il grafico di f e delle rette orizzontali, l'effetto della traslazione è ininfluente per calcolare il numero delle soluzioni (ma è invece fondamentale per quanto riguarda il loro segno, non richiesto).

In definitiva, è sufficiente studiare il grafico della funzione f per $\lambda = 0$, ossia il grafico di $g(x) = 3x^2 \exp(-x^2)$.

Dal momento che

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{3x^2}{\exp(x^2)} = 0,$$

la funzione presenta un asintoto orizzontale y=0.

Inoltre essa è una funzione pari, positiva e si annulla se e solo se x=0, che di conseguenza è un minimo assoluto.

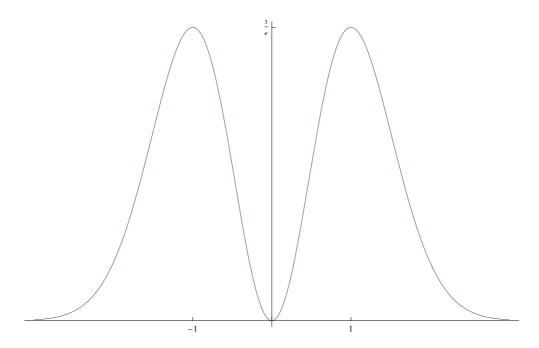
La sua derivata è pari a

$$g'(x) = 6x \exp(-x^2) + 3x^2 \cdot \exp(-x^2) \cdot (-2x) = 6x(1-x^2) \exp(-x^2)$$

e ponendo q'(x) > 0 si trova facilmente x < -1 o 0 < x < 1.

La funzione g ha dunque massimi (assoluti) in $x=\pm 1$ e, come visto in precedenza, minimo assoluto in x=0. Il valore dei massimi assoluti è $g(\pm 1)=\frac{3}{e}$.

Di seguito è riportato un grafico approssimativo della funzione g.



Intersecando il grafico di g con la retta orizzontale $y = \lambda$ è possibile determinare graficamente il numero delle soluzioni dell'equazione $g(x) = \lambda$, e precisamente:

- per $\lambda < 0$ l'equazione non ha soluzioni;
- per $\lambda = 0$ l'equazione ha una sola soluzione $(x = \lambda)$;
- per $0 < \lambda < \frac{3}{e}$ l'equazione ha quattro soluzioni;
- per $\lambda = \frac{3}{e}$ l'equazione ha due soluzioni;
- per $\lambda > \frac{3}{e}$ l'equazione non ha soluzioni.

4) Si ha

$$\int \frac{1}{(1+x^2)^2} \, dx = \int \frac{1+x^2-x^2}{(1+x^2)^2} \, dx = \int \frac{1}{1+x^2} \, dx - \int \frac{x^2}{(1+x^2)^2} \, dx.$$

Dal momento che il primo dei due integrali risultanti è immediato, studiamo il secondo. Si ha, integrando per parti,

$$\int \frac{x^2}{(1+x^2)^2} \, dx = \frac{1}{2} \int x \cdot \frac{2x}{(1+x^2)^2} \, dx = \frac{1}{2} \left[-\frac{x}{1+x^2} + \int \frac{1}{1+x^2} \, dx \right]$$

In definitiva,

$$F(x) = \int \frac{1}{(1+x^2)^2} dx = \arctan x - \frac{1}{2} \left(-\frac{x}{1+x^2} + \arctan x \right) + C =$$
$$= \frac{1}{2} \left(\arctan x + \frac{x}{(1+x^2)} \right) + C.$$

Poichè si ha

$$\lim_{x \to -\infty} F(x) = -\frac{\pi}{4} + C,$$

dovendo valere 0 tale limite risulta $C=\frac{\pi}{4}.$ Quindi la primitiva cercata è

$$F(x) = \frac{1}{2} \left(\arctan x + \frac{x}{(1+x^2)} \right) + \frac{\pi}{4}.$$