UNIVERSITÀ DI MILANO BICOCCA Dottorato di Ricerca in Matematica Pura ed Applicata

Degree theory and quasilinear elliptic equations

Marco Degiovanni

Università Cattolica del Sacro Cuore

Sede di Brescia

1 Notations

1 Notations

If D is a set, Y a normed linear space and $F: D \to Y$ a bounded map, we set $\|F\|_{\infty,D} = \sup \{\|F(u)\|: u \in D\}$ (we agree that $\|F\|_{\infty,D} = 0$ if $D = \emptyset$).

If X, Y are finite dimensional normed linear spaces, A an open subset of X and $F: A \to Y$ a map of class C^1 , we set $S_F = \{ u \in A : dF(u) \text{ is not surjective} \},\$ where $dF(u) : X \to Y$ denotes the differential of F at u.

If X, Y are finite dimensional normed linear spaces, A an open subset of X and $F: A \to Y$ a map of class C^1 , we set $S_F = \{ u \in A : dF(u) \text{ is not surjective} \},\$ where $dF(u) : X \to Y$ denotes the differential of F at u.

The elements of S_F are called *singular points* or critical points of F, while S_F is the singular set or critical set of F.

If $Y = \mathbb{R}$, then $u \in A$ is critical if and only if dF(u) = 0.

If $Y = \mathbb{R}$, then $u \in A$ is critical if and only if dF(u) = 0.If X = Y, we also introduce the Jacobian deter-

minant of F at u

$$J_F(u) = \det dF(u) \,.$$

If $Y = \mathbb{R}$, then $u \in A$ is critical if and only if dF(u) = 0.If X = Y, we also introduce the Jacobian determinant of F at u

$$J_F(u) = \det dF(u) \,.$$

Thus, in the case X = Y, $u \in A$ is critical if and only if $J_F(u) = 0$.

2 Recalls on finite dimensional degree theory

2 Recalls on finite dimensional degree theory

See e.g.

K. DEIMLING, "Nonlinear functional analysis", Springer-Verlag, Berlin, 1985.

M. A. KRASNOSEL'SKIĬ AND P. P. ZABREĬKO, "Geometrical methods of nonlinear analysis", *Grundlehren der Mathematischen Wis*senschaften, **263**, Springer-Verlag, Berlin, 1984. Throughout this section, X will denote a finite dimensional normed linear space over \mathbb{R} and A a bounded and open subset of X. Throughout this section, X will denote a finite dimensional normed linear space over \mathbb{R} and A a bounded and open subset of X.

If $F: \partial A \to X$ is a continuous map and $w \in X \setminus F(\partial A)$, then one can define the topological degree

$$\deg\left(F,A,w\right)\in\mathbb{Z}$$

which satisfies the following properties:

(a) if $B(w, r) \cap F(\partial A) = \emptyset$ and $G \in C(\partial A; X)$ and $z \in X$ satisfy $\|G - F\|_{\infty,\partial A} + \|z - w\| < r$,

then $z \notin G(\partial A)$ and

$$\deg\left(G,A,z\right) = \deg\left(F,A,w\right) ;$$

(b) if $F \in C(\overline{A}; X) \cap C^1(A; X)$ and $w \in X \setminus F(\partial A)$ satisfies $F^{-1}(w) \cap S_F = \emptyset$, then $F^{-1}(w)$ is a finite set and

$$\deg (F, A, w) = \sum_{u \in F^{-1}(w)} \operatorname{sgn} (J_F(u))$$

(we agree that deg (F, A, w) = 0 if $F^{-1}(w) = \emptyset$).

(b) if $F \in C(A; X) \cap C^1(A; X)$ and $w \in X \setminus F(\partial A)$ satisfies $F^{-1}(w) \cap S_F = \emptyset$, then $F^{-1}(w)$ is a finite set and $\deg(F, A, w) = \sum \operatorname{sgn}(J_F(u))$ $u \in F^{-1}(w)$ (we agree that deg (F, A, w) = 0 if $F^{-1}(w) = \emptyset$). Here sgn $(s) = \frac{s}{|s|}$ denotes the sign of s.

(b) if $F \in C(A; X) \cap C^1(A; X)$ and $w \in X \setminus F(\partial A)$ satisfies $F^{-1}(w) \cap S_F = \emptyset$, then $F^{-1}(w)$ is a finite set and $\deg(F, A, w) = \sum \operatorname{sgn}(J_F(u))$ $u \in F^{-1}(w)$ (we agree that deg (F, A, w) = 0 if $F^{-1}(w) = \emptyset$). Here sgn $(s) = \frac{s}{|s|}$ denotes the sign of s. From these two facts one can deduce all the properties of the topological degree.

Even if F is defined only on ∂A , the degree depends on A, not only on ∂A . For instance, let $X = \mathbb{R}$,

$A_0 =]0, 1[\cup]2, 3[\cup]3, 4[,$ $A_1 =]0, 1[\cup]1, 2[\cup]3, 4[.$

For instance, let $X = \mathbb{R}$,

$$A_0 =]0, 1[\cup]2, 3[\cup]3, 4[,$$

 $A_1 =]0, 1[\cup]1, 2[\cup]3, 4[.$

Then A_0 and A_1 are two bounded and open subsets

of \mathbb{R} with $\partial A_0 = \partial A_1 = \{0, 1, 2, 3, 4\}.$

For instance, let $X = \mathbb{R}$,

$$A_0 =]0, 1[\cup]2, 3[\cup]3, 4[,$$

 $A_1 =]0, 1[\cup]1, 2[\cup]3, 4[.$

Then A_0 and A_1 are two bounded and open subsets of \mathbb{R} with $\partial A_0 = \partial A_1 = \{0, 1, 2, 3, 4\}$. If we consider $w = \frac{3}{2}$ and F(u) = u, then $w \in A_1 \setminus \overline{A_0}$, so that $\deg(F, A_0, w) = 0$, $\deg(F, A_1, w) = 1$. (2.1) Theorem Let $F : \partial A \to X$ be a continuous map and let $w \in X$. Then $F(u) \neq w$ for any $u \in \partial A$ if and only if $F(u) - w \neq 0$ for any $u \in \partial A$, and in this case $\deg(F, A, w) = \deg(F - w, A, 0)$.

(2.1) Theorem Let $F : \partial A \to X$ be a continuous map and let $w \in X$. Then $F(u) \neq w$ for any $u \in \partial A$ if and only if $F(u) - w \neq 0$ for any $u \in \partial A$, and in this case $\deg(F, A, w) = \deg(F - w, A, 0)$. (2.2) Theorem (Existence criterion) Let $F : \overline{A} \to X$ be a continuous map and let

 $w \in X \setminus F(\partial A)$ with deg $(F, A, w) \neq 0$. Then $w \in F(A)$. (2.3) Theorem (Excision-additivity) Let $\{U_j : j \in J\}$ be a family of pairwise disjoint open subsets of A, let

$$F:\overline{A}\setminus\left(\bigcup_{j\in J}U_j\right)\to X$$

be a continuous map and let

$$w \in X \setminus F\left(\overline{A} \setminus \left(\bigcup_{j \in J} U_j\right)\right)$$

Then

$\partial A \subseteq \overline{A} \setminus \left(\bigcup_{j \in J} U_j\right),$ $\partial U_j \subseteq \overline{A} \setminus \left(\bigcup_{j \in J} U_j\right) \quad for \ any \ j \in J ,$ $\deg \left(F, U_j, w\right) \neq 0 \quad for \ at \ most$

finitely many $j \in J$,

$$\deg(F, A, w) = \sum_{j \in J} \deg(F, U_j, w) .$$

(2.4) Theorem (Homotopy invariance) Let $\mathcal{H} : \partial A \times [0, 1] \to X$ be a continuous map and let $w \in X \setminus \mathcal{H}(\partial A \times [0, 1]).$

Then the function

$$\{t \longmapsto \deg\left(\mathcal{H}_t, A, w\right)\}$$

is constant on [0,1]

(we write $\mathcal{H}_t(u)$ instead of $\mathcal{H}(u,t)$).

(2.4) Theorem (Homotopy invariance) Let $\mathcal{H} : \partial A \times [0, 1] \to X$ be a continuous map and let $w \in X \setminus \mathcal{H}(\partial A \times [0, 1]).$

Then the function

$$\{t \longmapsto \deg\left(\mathcal{H}_t, A, w\right)\}$$

is constant on [0,1]

(we write $\mathcal{H}_t(u)$ instead of $\mathcal{H}(u, t)$).

A remarkable result of H. Hopf provides a form of

converse.

(2.5) Theorem (Hopf)

Assume that A and $X \setminus \overline{A}$ are both connected. Let $F_0, F_1 : \partial A \to X$ be two continuous maps and let $w \in X \setminus (F_0(\partial A) \cup F_1(\partial A))$ with $\deg (F_0 \land w) = \deg (F_1 \land w)$

 $\deg\left(F_0, A, w\right) = \deg\left(F_1, A, w\right) \ .$

Then there exists a continuous map

 $\mathcal{H}: \partial A \times [0,1] \to X$, with $w \notin \mathcal{H}(\partial A \times [0,1])$, such that $\mathcal{H}_0(u) = F_0(u)$ and $\mathcal{H}_1(u) = F_1(u)$ for any $u \in \partial A$. (2.6) Definition Let $L : X \to X$ be linear. We say that $\lambda \in \mathbb{R}$ is an eigenvalue of L if there exists $u \in X \setminus \{0\}$ such that

 $Lu = \lambda u$.

(2.6) Definition Let $L : X \to X$ be linear. We say that $\lambda \in \mathbb{R}$ is an eigenvalue of L if there exists $u \in X \setminus \{0\}$ such that

$$Lu = \lambda u$$
.

The linear space $\mathcal{N}(L - \lambda \mathrm{Id})$ is said to be the eigenspace relative to λ , while any element of $\mathcal{N}(L - \lambda \mathrm{Id}) \setminus \{0\}$ is said to be an eigenvector relative to λ .

$\dim \mathcal{N}\left(L - \lambda \mathrm{Id}\right)$

is called *geometric multiplicity* of λ and the integer

$$\lim_{m \to \infty} \left(\dim \mathcal{N} \left((L - \lambda \mathrm{Id})^m \right) \right)$$

algebraic multiplicity of λ .

$\dim \mathcal{N}\left(L - \lambda \mathrm{Id}\right)$

is called *geometric multiplicity* of λ and the integer

$$\lim_{m \to \infty} \left(\dim \mathcal{N} \left((L - \lambda \mathrm{Id})^m \right) \right)$$

algebraic multiplicity of λ .

The limit does exist, as

$$\mathcal{N}\left((L - \lambda \mathrm{Id})^m\right) \subseteq \mathcal{N}\left((L - \lambda \mathrm{Id})^{m+1}\right) ,$$

$$\dim \mathcal{N}\left((L - \lambda \mathrm{Id})^m\right) \leq \dim \mathcal{N}\left((L - \lambda \mathrm{Id})^{m+1}\right) .$$

(2.7) Theorem Let $L : X \to X$ be linear and bijective.

Then, for every $w \in L(A)$, we have $\deg\left(L, A, w\right) = \operatorname{sgn}\left(\det L\right) = (-1)^{m},$ where m is the sum of the algebraic multiplicities of the eigenvalues λ of L with $\lambda < 0$ (we agree that m = 0 if there is no eigenvalue λ with $\lambda < 0$).

(2.8) Corollary Let $K : X \to X$ be linear with Id - K bijective. Then, for every $w \in (\mathrm{Id} - K)(A)$, we have $\deg(\mathrm{Id} - K, A, w) = (-1)^m$, where m is the sum of the algebraic multiplicities of the eigenvalues λ of K with $\lambda > 1$ (we agree that m = 0 if there is no eigenvalue λ with $\lambda > 1$).

(2.9) Theorem Let $F : \partial A \to X$ be a continuous map, $L : X \to X$ linear and bijective and $w \in X \setminus (L \circ F)(\partial A).$

Then

 $\deg\left(L\circ F,A,w\right)$

 $= [\operatorname{sgn} (\det L)] \deg (F, A, L^{-1}w) .$

(2.10) Theorem (Reduction) Let $F : \partial A \to X$ be a continuous map and $w \in X \setminus F(\partial A).$ Assume there exists a linear subspace Y of X

such that $w \in Y$ and $(\mathrm{Id} - F)(\partial A) \subseteq Y$.

Then

$$\begin{aligned} \partial_Y (A \cap Y) &\subseteq Y \cap \partial A \,, \quad F(\partial_Y (A \cap Y)) \subseteq Y \,, \\ w \not\in F(\partial_Y (A \cap Y)) \,, \\ \deg \left(F, A, w \right) &= \deg \left(\left. F \right|_{\partial_Y (A \cap Y)}, A \cap Y, w \right) \,. \end{aligned}$$

3 Linear spaces with scalar product
3 Linear spaces with scalar product

Assume now that X is a finite dimensional linear space over \mathbb{R} endowed with a scalar product (|), while A is again a bounded and open subset of X.

(3.1) Theorem Let $0 \in A$ and let $F : \partial A \to X$ be a continuous map with $0 \notin F(\partial A)$. Assume that

$$(u|F(u)) \ge 0$$
 for any $u \in \partial A$.

Then

$$\deg\left(F,A,0\right)=1\,.$$

(3.2) Theorem Let $F : \partial A \to X$ be a continuous map. Assume there exists a linear subspace Y of X such that $\left\{ u \in \partial A : (u|F(u)) \le 0 \right\}$ $(v|F(u)) = 0 \quad \forall v \in Y \left\} = \emptyset.$

Then

 $F(u) \neq 0 \quad \forall u \in \partial A$, $\partial_Y (A \cap Y) \subseteq Y \cap \partial A \,,$ $(P_Y \circ F)(u) \neq 0 \quad \forall u \in \partial_Y (A \cap Y),$ $\deg(F, A, 0) = \deg\left(\left(P_Y \circ F\right)\Big|_{\partial_Y(A \cap Y)}, A \cap Y, 0\right).$ Here $P_Y: X \to Y$ is the orthogonal projection.

4 A different setting in finite dimension

4 A different setting in finite dimension

Throughout this section, X will denote a finite dimensional normed linear space over \mathbb{R} and A a bounded and open subset of X.

4 A different setting in finite dimension

Throughout this section, X will denote a finite dimensional normed linear space over \mathbb{R} and A a bounded and open subset of X.

We aim to consider a continuous map

 $F: \partial A \to X' \text{ and } w \in X' \setminus F(\partial A).$

(4.1) Proposition The following facts hold:
(a) there exists a linear and bijective map
J: X → X' such that

$\langle Ju, u \rangle \ge 0 \qquad \forall u \in X;$

(4.1) **Proposition** The following facts hold: (a) there exists a linear and bijective map $J: X \to X'$ such that $\langle Ju, u \rangle \ge 0 \qquad \forall u \in X;$ (b) if $F : \partial A \to X'$ is a continuous map, $w \in X' \setminus F(\partial A)$ and J_1, J_2 are as in (a), then $\deg (J_1^{-1} \circ F, A, J_1^{-1}w)$ $= \deg \left(J_2^{-1} \circ F, A, J_2^{-1} w \right) .$

(4.2) Definition If $F : \partial A \to X'$ is a continuous map and $w \in X' \setminus F(\partial A)$, we set $\deg(F, A, w) = \deg(J^{-1} \circ F, A, J^{-1}w) ,$ where $J: X \to X'$ is any linear and bijective map such that

$$\langle Ju, u \rangle \ge 0 \qquad \forall u \in X.$$

(4.3) Theorem Let $F : \partial A \to X'$ be a continuous map and let $w \in X'$. Then $F(u) \neq w$ for any $u \in \partial A$ if and only if $F(u) - w \neq 0$ for any $u \in \partial A$, and in this case $\deg\left(F, A, w\right) = \deg\left(F - w, A, 0\right) \,.$

(4.3) Theorem Let $F : \partial A \to X'$ be a continuous map and let $w \in X'$. Then $F(u) \neq w$ for any $u \in \partial A$ if and only if $F(u) - w \neq 0$ for any $u \in \partial A$, and in this case $\deg(F, A, w) = \deg(F - w, A, 0)$. (4.4) Theorem (Existence criterion) Let $F : \overline{A} \to X'$ be a continuous map and let $w \in X' \setminus F(\partial A)$ with deg $(F, A, w) \neq 0$. Then $w \in F(A)$.

(4.5) Theorem (Excision-additivity) Let $\{U_j : j \in J\}$ be a family of pairwise disjoint open subsets of A, let

$$F:\overline{A}\setminus\left(\bigcup_{j\in J}U_j\right)\to X'$$

be a continuous map and let

$$w \in X' \setminus F\left(\overline{A} \setminus \left(\bigcup_{j \in J} U_j\right)\right)$$

Then

$\partial A \subseteq \overline{A} \setminus \left(\bigcup_{j \in J} U_j\right),$ $\partial U_j \subseteq \overline{A} \setminus \left(\bigcup_{j \in J} U_j\right) \quad for \ any \ j \in J ,$ $\deg \left(F, U_j, w\right) \neq 0 \quad for \ at \ most$

finitely many $j \in J$,

$$\deg(F, A, w) = \sum_{j \in J} \deg(F, U_j, w) .$$

(4.6) Theorem (Homotopy invariance) Let $\mathcal{H}: \partial A \times [0,1] \to X'$ be a continuous map and let $w \in X' \setminus \mathcal{H}(\partial A \times [0,1]).$

Then the function

$$\{t \longmapsto \deg\left(\mathcal{H}_t, A, w\right)\}$$

is constant on [0, 1].

(4.7) Theorem (Hopf)

Assume that A and $X \setminus \overline{A}$ are both connected. Let $F_0, F_1 : \partial A \to X'$ be two continuous maps and let $w \in X' \setminus (F_0(\partial A) \cup F_1(\partial A))$ with $dog(F_1 \land w) = dog(F_1 \land w)$

 $\deg\left(F_0, A, w\right) = \deg\left(F_1, A, w\right) \ .$

Then there exists a continuous map

 $\mathcal{H}: \partial A \times [0,1] \to X', \text{ with } w \notin \mathcal{H}(\partial A \times [0,1]),$ such that $\mathcal{H}_0(u) = F_0(u)$ and $\mathcal{H}_1(u) = F_1(u)$ for any $u \in \partial A$. (4.8) Theorem Let $F : \partial A \to X'$ be a continuous map, $L : X' \to X'$ linear and bijective and $w \in X' \setminus (L \circ F)(\partial A).$

Then

 $\deg\left(L\circ F,A,w\right)$

 $= [\operatorname{sgn} (\det L)] \deg (F, A, L^{-1}w) .$

(4.9) Theorem Let $0 \in A$ and let $F : \partial A \to X'$ be a continuous map with $0 \notin F(\partial A)$. Assume that

 $\langle F(u), u \rangle \ge 0$ for any $u \in \partial A$.

Then

$$\deg\left(F,A,0\right)=1\,.$$

(4.10) Theorem Let $F : \partial A \to X'$ be a continuous map. Assume there exists a linear subspace Y of X such that $\left\{ u \in \partial A : \langle F(u), u \rangle \le 0 \right\}$ $\langle F(u), v \rangle = 0 \quad \forall v \in Y \left\} = \emptyset.$

Then

 $F(u) \neq 0 \quad \forall u \in \partial A$, $\partial_Y (A \cap Y) \subseteq Y \cap \partial A \,,$ $(i' \circ F)(u) \neq 0 \quad \forall u \in \partial_Y(A \cap Y),$ $\deg(F, A, 0) = \deg\left(\left(i' \circ F\right)\Big|_{\partial_Y(A \cap Y)}, A \cap Y, 0\right) \ .$ Here $i: Y \to X$ is the inclusion map and $i': X' \to Y'$ the dual map to i, so that $\langle i'w, v \rangle = \langle w, iv \rangle \qquad \forall w \in X', \ \forall v \in Y.$

(4.11) Theorem Let $L, J : X \to X'$ be linear and bijective with

$$\langle Ju, u \rangle \ge 0 \qquad \forall u \in X.$$

Then, for every $w \in L(A)$, we have

$$\deg\left(L,A,w\right) = (-1)^m\,,$$

where m is the sum of the algebraic multiplicities of the eigenvalues λ of $(J^{-1} \circ L)$ with $\lambda < 0$ (we agree that m = 0 if there is no eigenvalue λ with $\lambda < 0$). (4.12) Definition Let $L, K : X \to X'$ be two linear maps. We say that $\lambda \in \mathbb{R}$ is an eigenvalue of (L, K) if there exists $u \in X \setminus \{0\}$ such that

 $Lu = \lambda Ku$.

(4.12) Definition Let $L, K : X \to X'$ be two linear maps. We say that $\lambda \in \mathbb{R}$ is an eigenvalue of (L, K) if there exists $u \in X \setminus \{0\}$ such that

 $Lu = \lambda Ku$.

The linear space $\mathcal{N}(L - \lambda K)$ is said to be the eigenspace relative to λ , while any element of $\mathcal{N}(L - \lambda K) \setminus \{0\}$ is said to be an eigenvector relative to λ .

 $\dim \mathcal{N}\left(L - \lambda K\right)$

is called *geometric multiplicity* of λ .

(4.13) Proposition Assume that $\langle Ku, u \rangle \ge 0 \quad \forall u \in X$ and that there exists $\overline{\lambda} \in \mathbb{R}$ such that $\langle (L + \overline{\lambda}K)u, u \rangle > 0 \quad \forall u \in X \setminus \{0\}.$ (4.14)

(4.13) **Proposition** Assume that $\langle Ku, u \rangle \ge 0 \qquad \forall u \in X$ and that there exists $\lambda \in \mathbb{R}$ such that $\langle (L+\lambda K)u, u \rangle > 0 \qquad \forall u \in X \setminus \{0\}.$ (4.14) Then the following facts hold: (a) $(L + \lambda K)$ is bijective and any eigenvalue λ of (L, K) satisfies $\lambda > -\overline{\lambda}$;

(b) for every
$$\lambda > -\overline{\lambda}$$
, we have

and only if $\frac{1}{\lambda+\overline{\lambda}}$ is an eigenvalue of $(L+\overline{\lambda}K)^{-1} \circ K$ and the geometric multiplicity

is the same;

(c) if also $\hat{\lambda} \in \mathbb{R}$ satisfies (4.14), then the algebraic multiplicity of $\frac{1}{\lambda + \overline{\lambda}}$ as an eigenvalue of $(L + \overline{\lambda}K)^{-1} \circ K$ is equal to that of $\frac{1}{\lambda + \widehat{\lambda}}$ as an eigenvalue of $(L + \widehat{\lambda}K)^{-1} \circ K$.

(4.15) Definition Assume that $\langle Ku, u \rangle \ge 0$ $\forall u \in X$, $\langle (L + \mu K)u, u \rangle > 0$ $\forall u \in X \setminus \{0\},\$

for some $\mu \in \mathbb{R}$.

(4.15) Definition Assume that $\langle Ku, u \rangle \ge 0 \qquad \forall u \in X,$ $\langle (L + \mu K)u, u \rangle > 0 \qquad \forall u \in X \setminus \{0\},$ for some $\mu \in \mathbb{R}.$

If λ is an eigenvalue of (L, K), the algebraic multiplicity of λ is defined as the algebraic multiplicity of $\frac{1}{\lambda + \overline{\lambda}}$ as an eigenvalue of $(L + \overline{\lambda}K)^{-1} \circ K$, where $\overline{\lambda}$ is any real number satisfying $\langle (L + \overline{\lambda}K)u, u \rangle > 0 \qquad \forall u \in X \setminus \{0\}.$

(4.16) Theorem Let $L, K : X \to X'$ be two linear maps such that L is bijective and $\langle Ku, u \rangle \ge 0 \qquad \forall u \in X.$ Assume there exists $\lambda \in \mathbb{R}$ such that $\langle (L + \overline{\lambda}K)u, u \rangle > 0 \qquad \forall u \in X \setminus \{0\}.$ Then, for every $w \in L(A)$, we have $\deg\left(L, A, w\right) = (-1)^m,$ where m is the sum of the algebraic multiplicities of the eigenvalues λ of (L, K) with $\lambda < 0$.

(4.17) Theorem Let $0 \in A$ and let $L, K: X \to X'$ be two linear maps such that $\langle Ku, u \rangle \ge 0 \qquad \forall u \in X.$ Assume there exists $\lambda \in \mathbb{R}$ such that $\langle (L+\lambda K)u, u \rangle > 0 \qquad \forall u \in X \setminus \{0\}$ and let μ be an eigenvalue of (L, K) of odd algebraic multiplicity.

Then we have

$$\lim_{\lambda \to \mu^{-}} \deg \left(L - \lambda K, A, 0 \right) \\ \neq \lim_{\lambda \to \mu^{+}} \deg \left(L - \lambda K, A, 0 \right) \,.$$

5 Infinite dimensional spaces

5 Infinite dimensional spaces

See e.g.

H. BREZIS, "Functional analysis, Sobolev spaces and partial differential equations", Universitext, Springer, New York, 2011. (5.1) Theorem Let X be a normed space, E a bounded subset of X and $u \in X$ belonging to the weak closure of E.
(5.1) Theorem Let X be a normed space, E a bounded subset of X and $u \in X$ belonging to the weak closure of E.

Then there exists a separable and closed linear subspace X_0 of X such that $u \in X_0$ and u belongs to the weak closure of $E \cap X_0$ in X_0 . (5.2) Theorem Let X be a reflexive Banach space, E a bounded subset of X and $u \in X$ belonging to the weak closure of E.

(5.2) Theorem Let X be a reflexive Banach space, E a bounded subset of X and $u \in X$ belonging to the weak closure of E. Then there exists a sequence (u_k) in E weakly convergent to u. 6 Maps of class $(S)_+$

6 Maps of class $(S)_+$

In the following, X will denote a reflexive Banach space over \mathbb{R} .

6 Maps of class $(S)_+$

In the following, X will denote a reflexive Banach space over \mathbb{R} .

(6.1) Definition A map $F : D \to X'$, with $D \subseteq X$, is said to be demicontinuous if, for every sequence (u_k) convergent to some u in D, we have

$$\lim_{k} \langle F(u_k), v \rangle = \langle F(u), v \rangle \qquad \forall v \in X.$$

(6.2) Definition A map $F : D \to X'$, with $D \subseteq X$, is said to be of class $(S)_+$ if, for every sequence (u_k) in D weakly convergent to some u in X with

$$\limsup_{k} \langle F(u_k), u_k - u \rangle \leq 0,$$

it holds $||u_k - u|| \to 0.$

(6.3) Definition A map $F : D \to X'$, with $D \subseteq X$, is said to be completely continuous if it is continuous and, for every bounded sequence (u_k) in D, the sequence $(F(u_k))$ admits a convergent subsequence in X'.

(6.4) **Proposition** The following facts hold: (a) if $F_1 : D_1 \to X'$ and $F_2 : D_2 \to X'$ are of class $(S)_+$, then $(F_1 + F_2) : D_1 \cap D_2 \to X'$ is of class $(S)_+$; (b) if $F : D \to X'$ is of class $(S)_+$ and t > 0, then $tF: D \to X'$ is of class $(S)_+$; (c) if $F_1 : D_1 \rightarrow X'$ is of class $(S)_+$, and $F_2: D_2 \to X'$ is completely continuous, then $(F_1 + F_2) : D_1 \cap D_2 \to X' \text{ is of class } (S)_+;$

(d) if $F : D \to X'$ is of class $(S)_+$ and $w \in X'$, then $(F + w) : D \to X'$ is of class $(S)_+$.