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1 Notations



1 Notations

If D is a set, Y a normed linear space and

F: D —Y abounded map, we set
|Flloc,0 = sup [ ()] : u € D}

(we agree that || F||so.p = 01if D = 0).



If X, Y are finite dimensional normed linear
spaces, A an open subset of X and

F:A—Y amap of class C!, we set
Sp={u € A: dF(u) is not surjective} ,

where dF(u) : X — Y denotes the differential
of F'at u.



If X, Y are finite dimensional normed linear
spaces, A an open subset of X and

F:A—Y amap of class C!, we set
Sp={u € A: dF(u) is not surjective} ,

where dF(u) : X — Y denotes the differential
of F'at u.

The elements of Sg are called singular points or
critical points of F', while Sy is the singular set

or critical set of F'.



IfY =R, then u € A is critical if and only if
dF'(u) = 0.



IfY =R, then u € A is critical if and only if
dF'(u) = 0.
It X =Y, we also introduce the Jacobian deter-

manant of F' at u

Jp(u) = det dF(u).



IfY =R, then u € A is critical if and only if
dF'(u) = 0.
It X =Y, we also introduce the Jacobian deter-

manant of F' at u
Jp(u) = det dF(u).

Thus, in the case X =Y, u € A is critical if and
only if Jp(u) = 0.



2 Recalls on finite dimensional degree theory



2 Recalls on finite dimensional degree theory

See e.g.

K. DEIMLING, “Nonlinear functional analysis”,

Springer-Verlag, Berlin, 1985.

M. A. KRASNOSEL'SKII AND P. P. ZABREIKO,
“Geometrical methods of nonlinear analy-
sis”,  Grundlehren der Mathematischen Wis-

senschaften, 263, Springer-Verlag, Berlin, 1984.
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Throughout this section, X will denote a finite di-

mensional normed linear space over R and A a

bounded and open subset of X .



Throughout this section, X will denote a finite di-

mensional normed linear space over R and A a

bounded and open subset of X .

If F': 0A — X is a continuous map and

w € X\ F(0A), then one can define the topological
degree

deg (F, A,w) € Z

which satisfies the following properties:



(a)if B (w,r) N F(0A) = and
G € C(0A; X) and z € X satisfy

|G = Fllocoa + |lz —wl|| <,
then z € G(0A) and
deg (G, A, 2) = deg (F, A, w) :



(L)if F e C(A; X)NCYA; X) and
w € X \ F(OA) satisfies F~Hw) N Sp =0, then
F~Hw) is a finite set and

deg (F, A, w) = Z sen (Jp(u))

ueF~1(w)

(we agree that deg (F, A, w) = 0if F~1(w) = 0).



(L)if F e C(A; X)NCYA; X) and
w € X \ F(OA) satisfies F~Hw) N Sp =0, then
F~Hw) is a finite set and

deg (F, A, w) = Z sen (Jp(u))

ueF~1(w)

(we agree that deg (F, A, w) = 0if F~1(w) = 0).

Here sgn (s) = iy denotes the sign of s.



(L)if F e C(A; X)NCYA; X) and
w € X \ F(OA) satisfies F~Hw) N Sp =0, then
F~Hw) is a finite set and

deg (F, A, w) = Z sen (Jp(u))

ueF~1(w)
(we agree that deg (F, A, w) = 0if F~1(w) = 0).
Here sgn (s) = iy denotes the sign of s.
From these two facts one can deduce all the prop-

erties of the topological degree.
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Even if F'is defined only on 0A, the degree depends
on A, not only on 0A.



For instance, let X =R,

Ap=]0,1|U|2,3|U]3,4],
A1=10,1] U1, 2[U |3, 4].

1N



For instance, let X =R,
AO:]Oa 1[U]273[U]374[7
A=0,1{U|1,2[U|3,4].

Then Ay and A; are two bounded and open subsets

of R with aAO 8141 {O, 1, 2 3 4}
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For instance, let X =R,
Ap=]0,11U |2, 3| U3, 4],
A=0,1{U|1,2[U|3,4].

Then Ay and A; are two bounded and open subsets

of R with aAO 8141 {O, 1, 2 3 4}

If we consider w = 2 and F(u) = u, then

w € Ap\ Ap, so that

deg(F,AO,w):O, deg(FaAlaw)zl’

1N



(2.1) Theorem Let F': 0A — X be a contin-
uous map and let w € X.

Then F(u) # w for any u € A if and only if
F(u) —w # 0 for any uw € 0A, and in this case

deg (F, A,w) = deg (F —w, A,0) .
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(2.1) Theorem Let F': 0A — X be a contin-
uous map and let w € X.

Then F(u) # w for any u € A if and only if
F(u) —w # 0 for any uw € 0A, and in this case

deg (F, A,w) = deg (F —w, A,0) .

(2.2) Theorem (Existence criterion) Let

F: A — X be a continuous map and let
w € X \ F(OA) with deg (F, A, w) # 0.
Then w € F(A).

11



(2.3) Theorem (Excision-additivity) Let
{U;: 7€ J} be a family of pairwise disjoint
open subsets of A, let

F:ﬂ\(UU])%X

jed
be a continuous map and let

weX\F<Z\ (UU])).

jeJ

19



Then
A C A\ (U U]) ,
jed

8UjQZ\(UUj> for any 7 € J,
jeJ
deg (F,Uj,w) # 0 for at most

finitely many 5 € J,
deg (F, A, w) = Z deg (F,Uj,w) .

jed

19



(2.4) Theorem (Homotopy invariance) Let
H : 0A x |0,1] = X be a continuous map and
let we X\ H(OA x [0,1]).

Then the function

{t — deg (Hs, A, w)}

is constant on |0, 1]

(we write Hy(u) instead of H(u,t)).

1 1



(2.4) Theorem (Homotopy invariance) Let
H : 0A x |0,1] = X be a continuous map and

let we X \ H(0A x |0,1)).
Then the function

{t — deg (H, A, w)}
is constant on |0, 1]
(we write Hy(u) instead of H(u,t)).
A remarkable result of H. Hopt provides a form ot

COINverse.

1 1



(2.5) Theorem (Hopf)
Assume that A and X \ A are both connected.

Let Fy, Fy - 0A — X be two continuous maps
and let w € X \ (Fy(0A) U F1(0A)) with

deg (Fy, A, w) = deg (F1, A, w) .
Then there exists a continuous map
H:0A x [0,1] — X, with w € H(OA x [0,1]),
such that Ho(u) = Fy(u) and Hqi(u) = Fi(u) for
any u € 0A.

1



(2.6) Definition Let L : X — X be linear.
We say that A € R 1s an eigenvalue of L if there
exists u € X \ {0} such that

Lu= \u.

12



(2.6) Definition Let L : X — X be linear.
We say that A € R 1s an eigenvalue of L if there
exists u € X \ {0} such that

Lu= \u.

The linear space N (L — M\Id) is said to be the
eigenspace relative to A, while any element of

N (L — MId) \ {0} is said to be an eigenvector

relative to .

12



The integer
dim N (L — Ald)
1s called geometric multiplicity of A and the inte-

ger

lim (dim N ((L — Ald)™))

m—o0

algebraic multiplicity of .

17



The integer
dim N (L — Ald)
is called geometric multiplicity of A and the inte-

ger

Tim (dim A (L — Ald)™))

algebraic multiplicity of .

The limit does exist, as

N ((L = XId)™) CN ((L = AId)™ ),
dim N (L — AId)") < dim N ((L — AId)™)

17



(2.7) Theorem Let L : X — X be linear and
bijective.
Then, for every w € L(A), we have

deg (L, A,w) =sgn (det L) = (—1)",

where m s the sum of the algebraic multiplici-
ties of the eigenvalues \ of L with A < 0

(we agree that m = 0 if there is no eigenvalue

A with A < 0).

1 Q



(2.8) Corollary Let K : X — X be linear
with 1d — K byjective.
Then, for every w € (Id — K)(A), we have

deg (Id T K7 A7 U}) — (_1)7727

where m s the sum of the algebraic multiplici-
ties of the eigenvalues \ of K with A > 1

(we agree that m = 0 if there is no eigenvalue

A with A >1).

10



(2.9) Theorem Let F': 0A — X be a contin-
uous map, L : X — X linear and bijective and
w € X \ (Lo F)(0A).

Then

deg (Lo F, A, w)
= [sgn (det L)] deg (F, A, L™ 'w) .

N



(2.10) Theorem (Reduction) Let

F:0A — X be a continuous map and

w e X\ F(OA).

Assume there exists a linear subspace Y of X

such that w € Y and (Id — F)(0A) C Y.
Then

H(ANY)CYNOA, Foy(ANY) CY,
w¢ Foy(ANY)),
deg (F, A, w) = deg (F

D1

O (ANY) ANY, w) .



3 Linear spaces with scalar product

IS



3 Linear spaces with scalar product

Assume now that X is a finite dimensional linear
space over R endowed with a scalar product ( | ),

while A is again a bounded and open subset of X.

IS



(3.1) Theorem Let0 € A andlet F: 0A — X
be a continuous map with 0 € F(0A). Assume
that

(u|F(u)) >0 for any u € OA .

Then
deg (F, A,0) =1.

1D,



(3.2) Theorem Let F': 0A — X be a continu-
ous map. Assume there exists a linear subspace

Y of X such that

(

su€dA: (u|lF(u)) <0,

\

\

(W|Fu) =0 YoeY

/

|
=

DA



Then

Fu) #0 Yue€ 0A,

H(ANY)C Y NIA,

(PyoF)u) £0 Yucdy(ANY),

deg (F, A,0) = deg ((Py 0 F)| 5, 4y ANY. o) |

Here Py : X — Y 1s the orthogonal projection.

DX



4 A different setting in finite dimension
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4 A different setting in finite dimension

Throughout this section, X will denote a finite di-

mensional normed linear space over R and A a

bounded and open subset of X .
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4 A different setting in finite dimension

Throughout this section, X will denote a finite di-

mensional normed linear space over R and A a

bounded and open subset of X .

We aim to consider a continuous map

F:0A— X"and w e X'\ F(0OA).

R



(4.1) Proposition The following facts hold:

(a) there exists a linear and bijective map

J X — X' such that

(Ju,u) >0 Vu e X ;

' Y4



(4.1) Proposition The following facts hold:

(a) there exists a linear and bijective map

J X — X' such that
(Ju,u) >0 Vu e X ;

(b)if I 0A — X' is a continuous map,
w e X'\ F(0A) and Jy, J5 are as in (a), then
deg (Jfl o F, A, Jl_lw)
= deg (J2_1 o I A, Jz_lw) .

' Y4



(4.2) Definition If F': 0A — X' is a contin-
uous map and w € X'\ F(0A), we set

deg (F, A, w) = deg (J_1 oF A, J_lw) ,

where J : X — X' is any linear and bijective

map such that
(Ju,u) >0 Vu e X .

DQ



(4.3) Theorem Let F': 0A — X' be a contin-
wous map and let w € X'.

Then F(u) # w for any u € 0A if and only if
F(u) —w #0 for any u € OA, and in this case

deg (F, A, w) = deg (F' — w, A,0) .

DN



(4.3) Theorem Let F': 0A — X' be a contin-
wous map and let w € X'.

Then F(u) # w for any u € 0A if and only if
F(u) —w #0 for any u € OA, and in this case

deg (F, A, w) = deg (F' — w, A,0) .

(4.4) Theorem (Existence criterion) Let

F : A — X' be a continuous map and let
w € X'\ F(OA) with deg (F, A, w) # 0.
Then w € F(A).

DN



(4.5) Theorem (Excision-additivity) Let
{U;: 7€ J} be a family of pairwise disjoint
open subsets of A, let

F:Z\(UU]) — X'

jed
be a continuous map and let

weX'\F(Z\ <UU]->>.

jeJ

N



Then
A C A\ (U U]) ,
jed

8UjQZ\(UUj> for any 7 € J,
jeJ
deg (F,Uj,w) # 0 for at most

finitely many 5 € J,
deg (F, A, w) = Z deg (F,Uj,w) .

jed

921



(4.6) Theorem (Homotopy invariance) Let
H : 0A x |0,1] = X' be a continuous map and
let we X'\ H(OA x [0,1)).

Then the function

{t — deg (Hs, A, w)}

is constant on [0, 1].

O



(4.7) Theorem (Hopf)
Assume that A and X \ A are both connected.

Let Fy, I} - 0A — X' be two continuous maps
and let w € X'\ (Fy(0A) U F1(OA)) with

deg (Fy, A, w) = deg (F1, A,w) .
Then there exists a continuous map
H:0A x [0,1] — X', with w & H(OA x [0,1]),
such that Ho(u) = Fy(u) and Hqi(u) = Fi(u) for
any u € 0A.

D



(4.8) Theorem Let F': 0A — X' be a contin-

wous map, L : X' — X' linear and bijective and
w € X'\ (Lo F)(0A).
Then
deg (Lo F, A, w)
= [sgn (det L)] deg (F, A, L™ 'w) .

A1



(4.9) Theorem Let 0 € A and let
F : 0A — X' be a continuous map with
0 & F(OA). Assume that

(F(u),u) >0 for any u € 0A.

Then
deg (F, A,0) =1.

A



(4.10) Theorem Let ' : 0A — X' be a con-

tinuous map. Assume there exists a linear sub-

space Y of X such that

(

cu € 0A: (F(u),u) <0,

\\
\

(F(u),v) =0 YveY,

/

|
=

AR



Then

F(u) #0 VYu € 0A,
ay(AﬂY) CY NOA,
(i' o F)(u) #0 Yuedy(ANY),

deg (F, A,0) = deg ((i’ ANY, 0) |

© F)|aY(AmY)’

Here 7 : Y — X 1s the inclusion map and
i+ X' — Y’ the dual map to 7, so that

(i'w,v) = (w,iv) YweX,VWweY.

> Lavd



(4.11) Theorem Let L,J : X — X' be linear
and bijective with

(Ju,uy >0 Vu e X.
Then, for every w € L(A), we have

deg (L, A,w) = (—1)",
where m s the sum of the algebraic multiplici-
ties of the eigenvalues A of (J 1o L) with A < 0

(we agree that m = 0 if there s no eigenvalue

\ with A < 0).

20



(4.12) Definition Let L, K : X — X' be two
linear maps. We say that A € R s an eigenvalue

of (L, K) if there exists u € X \ {0} such that

Lu= ) Ku.

20



(4.12) Definition Let L, K : X — X' be two
linear maps. We say that A € R s an eigenvalue

of (L, K) if there exists u € X \ {0} such that
Lu = AKu.

The linear space N (L — AK) is said to be the
eigenspace relative to A, while any element of

N (L —MK) \ {0} is said to be an eigenvector

relative to .

20



The integer
dim N (L — AK)

1s called geometric multiplicity of .

AN



(4.13) Proposition Assume that
(Ku,u) >0 Vu € X
and that there exists A € R such that

(L+XK)u,u) >0  Vue X\ {0}. (4.14)

11



(4.13) Proposition Assume that
(Ku,u) >0 Vu € X
and that there exists A\ € R such that
(L+XK)u,u) >0  Vue X\ {0}. (4.14)
Then the following facts hold:

(a) (L + \K) is bijective and any eigenvalue \

of (L, K) satisfies A > —\;

11



(b) for every A > — X, we have
N (L — \K)
— 1
N((L+)\K)1OK _Id> ;
A+ A

in particular, A is an eigenvalue of (L, K) if

and only zfﬁlX 1s an eigenvalue of
(L+M\K) 'o K and the geometric multiplicity

1S the same;

N9



(¢)if also A € R satisfies (|.11), then the alge-
braic multiplicity of le
(L + \K) ' o K is equal to that of — as an

) A+
eigenvalue of (L +AK) 1o K.

as an eigenvalue of

A9



(4.15) Definition Assume that

(Ku,u) >0 Vu e X,
(L + pK)u,u) >0 Vu e X \ {0},

for some 1 € R.

A AN



(4.15) Definition Assume that

(Ku,u) >0 Vu e X,

(L4 pK)u,u)y >0 Vu e X \ {0},
for some 1 € R.
If X is an eigenvalue of (L, K), the algebraic
multiplicity of A is defined as the algebraic multi-
plicity ()fﬁlX as an eigenvalue of (L+MK) oK,
where A 1s any real number satisfying

(L + MK)u,u) >0 Vu e X \ {0}.

A AN



(4.16) Theorem Let L, K : X — X' be two

linear maps such that L 1is bijective and
(Ku,u) >0 Vu e X.
Assume there exists A € R such that
(L + MK)u,u) >0 Vu e X \ {0}.
Then, for every w € L(A), we have
deg (L, A, w) = (=1)",
where m 1s the sum of the algebraic multiplici-

ties of the eigenvalues \ of (L, K) with A < 0.



(4.17) Theorem Let 0 € A and let
L, K : X — X' be two linear maps such that

(Ku,u) >0 Vu € X .
Assume there exists A € R such that
(L+XK)u,u) >0  Yue X\ {0}

and let p be an eigenvalue of (L, K) of odd al-

gebraic multiplicity.

NR



Then we have

lim deg (L — AK, A, 0)
A=~
# lim deg (L — A\K, A,0) .

A=t

N7



5 Infinite dimensional spaces
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5 Infinite dimensional spaces

See e.g.

H.

BREZIS, “Functional analysis, Sobolev spaces

and partial differential equations”, Universitext,

Springer, New York, 2011.

A Q



(5.1) Theorem Let X be a normed space, E
a bounded subset of X and u € X belonging to

the weak closure of E.

A0



(5.1) Theorem Let X be a normed space, E
a bounded subset of X and u € X belonging to

the weak closure of E.

Then there exists a separable and closed linear
subspace Xy of X such that u € Xy and u be-
longs to the weak closure of E2 M Xy in Xp.

A0



(5.2) Theorem Let X be a reflexive Banach
space, B a bounded subset of X and uw € X

belonging to the weak closure of L.

=N



(5.2) Theorem Let X be a reflexive Banach
space, B a bounded subset of X and uw € X
belonging to the weak closure of E.

Then there exists a sequence (uy) in E weakly

convergent to u.

=N



6 Maps of class (5),
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6 Maps of class (5),

In the following, X will denote a reflexive Banach

space over R.

[ |



6 Maps of class (5),

In the following, X will denote a reflexive Banach

space over R.

(6.1) Definition A map F : D — X', with
D C X, 1s said to be demicontinuous if, for ev-
ery sequence (u) convergent to some w in D,

we have
1i]£n (F(ug),v) = (F(u),v) Vv e X.

=1



(6.2) Definition A map F : D — X', with
D C X, is said to be of class (S). if, for every

sequence (ug) tn D weakly convergent to some

u 1 X with
lim sup (F'(ug), up —u) <0,
k
it holds ||up — ul| — 0.

D)



(6.3) Definition A map F : D — X', with
D C X, s said to be completely continuous if it
15 continuous and, for every bounded sequence
(ug) tn D, the sequence (F'(ug)) admits a con-

vergent subsequence in X'.

D)



(6.4) Proposition The following facts hold:

(a)if I - Dy — X" and Fy, . Dy — X' are of
class (S)., then (Fy + F5) : D1 Dy — X' is
of class (5)4;

(b)if F : D — X" is of class (S)y and t > 0,
then tF : D — X' is of class (S).;

(c)if F1 : D1 — X' is of class (S),, and
Fy : Dy — X' is completely continuous, then
(F1 4+ F5) - DN Dy — X' is of class (S)4;

= A



(d)if FF: D — X' is of class (S); and w € X',
then (F' 4+ w) : D — X' is of class (5)-.

g



