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1 Notations
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1 Notations

If D is a set, Y a normed linear space and

F : D → Y a bounded map, we set

‖F‖∞,D = sup {‖F (u)‖ : u ∈ D}

(we agree that ‖F‖∞,D = 0 if D = ∅).
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If X , Y are finite dimensional normed linear

spaces, A an open subset of X and

F : A→ Y a map of class C1, we set

SF = {u ∈ A : dF (u) is not surjective} ,

where dF (u) : X → Y denotes the differential

of F at u.
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If X , Y are finite dimensional normed linear

spaces, A an open subset of X and

F : A→ Y a map of class C1, we set

SF = {u ∈ A : dF (u) is not surjective} ,

where dF (u) : X → Y denotes the differential

of F at u.

The elements of SF are called singular points or

critical points of F , while SF is the singular set

or critical set of F .
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If Y = R, then u ∈ A is critical if and only if

dF (u) = 0.
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If Y = R, then u ∈ A is critical if and only if

dF (u) = 0.

If X = Y , we also introduce the Jacobian deter-

minant of F at u

JF (u) = det dF (u) .
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If Y = R, then u ∈ A is critical if and only if

dF (u) = 0.

If X = Y , we also introduce the Jacobian deter-

minant of F at u

JF (u) = det dF (u) .

Thus, in the case X = Y , u ∈ A is critical if and

only if JF (u) = 0.
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2 Recalls on finite dimensional degree theory
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2 Recalls on finite dimensional degree theory

See e.g.

K. Deimling, “Nonlinear functional analysis”,

Springer-Verlag, Berlin, 1985.

M. A. Krasnosel′skĭı and P. P. Zabrĕıko,

“Geometrical methods of nonlinear analy-

sis”, Grundlehren der Mathematischen Wis-

senschaften, 263, Springer-Verlag, Berlin, 1984.
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Throughout this section, X will denote a finite di-

mensional normed linear space over R and A a

bounded and open subset of X .
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Throughout this section, X will denote a finite di-

mensional normed linear space over R and A a

bounded and open subset of X .

If F : ∂A→ X is a continuous map and

w ∈ X\F (∂A), then one can define the topological

degree

deg (F,A,w) ∈ Z

which satisfies the following properties:
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(a) if B (w, r) ∩ F (∂A) = ∅ and

G ∈ C(∂A;X) and z ∈ X satisfy

‖G− F‖∞,∂A + ‖z − w‖ < r ,

then z 6∈ G(∂A) and

deg (G,A, z) = deg (F,A,w) ;
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(b) if F ∈ C(A;X) ∩ C1(A;X) and

w ∈ X \F (∂A) satisfies F−1(w)∩SF = ∅, then

F−1(w) is a finite set and

deg (F,A,w) =
∑

u∈F−1(w)

sgn (JF (u))

(we agree that deg (F,A,w) = 0 if F−1(w) = ∅).
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(b) if F ∈ C(A;X) ∩ C1(A;X) and

w ∈ X \F (∂A) satisfies F−1(w)∩SF = ∅, then

F−1(w) is a finite set and

deg (F,A,w) =
∑

u∈F−1(w)

sgn (JF (u))

(we agree that deg (F,A,w) = 0 if F−1(w) = ∅).

Here sgn (s) = s
|s| denotes the sign of s.
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(b) if F ∈ C(A;X) ∩ C1(A;X) and

w ∈ X \F (∂A) satisfies F−1(w)∩SF = ∅, then

F−1(w) is a finite set and

deg (F,A,w) =
∑

u∈F−1(w)

sgn (JF (u))

(we agree that deg (F,A,w) = 0 if F−1(w) = ∅).

Here sgn (s) = s
|s| denotes the sign of s.

From these two facts one can deduce all the prop-

erties of the topological degree.
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Even if F is defined only on ∂A, the degree depends

on A, not only on ∂A.
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For instance, let X = R,

A0=]0, 1[∪ ]2, 3[∪ ]3, 4[ ,

A1=]0, 1[∪ ]1, 2[∪ ]3, 4[ .
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For instance, let X = R,

A0=]0, 1[∪ ]2, 3[∪ ]3, 4[ ,

A1=]0, 1[∪ ]1, 2[∪ ]3, 4[ .

Then A0 and A1 are two bounded and open subsets

of R with ∂A0 = ∂A1 = {0, 1, 2, 3, 4}.
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For instance, let X = R,

A0=]0, 1[∪ ]2, 3[∪ ]3, 4[ ,

A1=]0, 1[∪ ]1, 2[∪ ]3, 4[ .

Then A0 and A1 are two bounded and open subsets

of R with ∂A0 = ∂A1 = {0, 1, 2, 3, 4}.

If we consider w = 3
2 and F (u) = u, then

w ∈ A1 \ A0, so that

deg (F,A0, w) = 0 , deg (F,A1, w) = 1 .
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(2.1) Theorem Let F : ∂A→ X be a contin-

uous map and let w ∈ X.

Then F (u) 6= w for any u ∈ ∂A if and only if

F (u)− w 6= 0 for any u ∈ ∂A, and in this case

deg (F,A,w) = deg (F − w,A, 0) .
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(2.1) Theorem Let F : ∂A→ X be a contin-

uous map and let w ∈ X.

Then F (u) 6= w for any u ∈ ∂A if and only if

F (u)− w 6= 0 for any u ∈ ∂A, and in this case

deg (F,A,w) = deg (F − w,A, 0) .

(2.2) Theorem (Existence criterion) Let

F : A → X be a continuous map and let

w ∈ X \ F (∂A) with deg (F,A,w) 6= 0.

Then w ∈ F (A).
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(2.3) Theorem (Excision-additivity) Let

{Uj : j ∈ J} be a family of pairwise disjoint

open subsets of A, let

F : A \
(⋃
j∈J

Uj

)
→ X

be a continuous map and let

w ∈ X \ F
(
A \

(⋃
j∈J

Uj

))
.
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Then

∂A ⊆ A \
(⋃
j∈J

Uj

)
,

∂Uj ⊆ A \
(⋃
j∈J

Uj

)
for any j ∈ J ,

deg (F,Uj, w) 6= 0 for at most

finitely many j ∈ J ,

deg (F,A,w) =
∑
j∈J

deg (F,Uj, w) .
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(2.4) Theorem (Homotopy invariance) Let

H : ∂A × [0, 1] → X be a continuous map and

let w ∈ X \ H(∂A× [0, 1]).

Then the function

{t 7−→ deg (Ht, A, w)}

is constant on [0, 1]

(we write Ht(u) instead of H(u, t)).
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(2.4) Theorem (Homotopy invariance) Let

H : ∂A × [0, 1] → X be a continuous map and

let w ∈ X \ H(∂A× [0, 1]).

Then the function

{t 7−→ deg (Ht, A, w)}

is constant on [0, 1]

(we write Ht(u) instead of H(u, t)).

A remarkable result of H. Hopf provides a form of

converse.
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(2.5) Theorem (Hopf)

Assume that A and X \ A are both connected.

Let F0, F1 : ∂A → X be two continuous maps

and let w ∈ X \ (F0(∂A) ∪ F1(∂A)) with

deg (F0, A, w) = deg (F1, A, w) .

Then there exists a continuous map

H : ∂A × [0, 1] → X, with w 6∈ H(∂A × [0, 1]),

such that H0(u) = F0(u) and H1(u) = F1(u) for

any u ∈ ∂A.
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(2.6) Definition Let L : X → X be linear.

We say that λ ∈ R is an eigenvalue of L if there

exists u ∈ X \ {0} such that

Lu = λu .
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(2.6) Definition Let L : X → X be linear.

We say that λ ∈ R is an eigenvalue of L if there

exists u ∈ X \ {0} such that

Lu = λu .

The linear space N (L− λId) is said to be the

eigenspace relative to λ, while any element of

N (L− λId) \ {0} is said to be an eigenvector

relative to λ.
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The integer

dimN (L− λId)

is called geometric multiplicity of λ and the inte-

ger

lim
m→∞

(dimN ((L− λId)m))

algebraic multiplicity of λ.
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The integer

dimN (L− λId)

is called geometric multiplicity of λ and the inte-

ger

lim
m→∞

(dimN ((L− λId)m))

algebraic multiplicity of λ.

The limit does exist, as

N ((L− λId)m) ⊆ N
(
(L− λId)m+1

)
,

dimN ((L− λId)m) ≤ dimN
(
(L− λId)m+1

)
.
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(2.7) Theorem Let L : X → X be linear and

bijective.

Then, for every w ∈ L(A), we have

deg (L,A,w) = sgn (detL) = (−1)m ,

where m is the sum of the algebraic multiplici-

ties of the eigenvalues λ of L with λ < 0

(we agree that m = 0 if there is no eigenvalue

λ with λ < 0).
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(2.8) Corollary Let K : X → X be linear

with Id−K bijective.

Then, for every w ∈ (Id−K)(A), we have

deg (Id−K,A,w) = (−1)m ,

where m is the sum of the algebraic multiplici-

ties of the eigenvalues λ of K with λ > 1

(we agree that m = 0 if there is no eigenvalue

λ with λ > 1).
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(2.9) Theorem Let F : ∂A→ X be a contin-

uous map, L : X → X linear and bijective and

w ∈ X \ (L ◦ F )(∂A).

Then

deg (L ◦ F,A,w)

= [sgn (detL)] deg
(
F,A, L−1w

)
.
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(2.10) Theorem (Reduction) Let

F : ∂A→ X be a continuous map and

w ∈ X \ F (∂A).

Assume there exists a linear subspace Y of X

such that w ∈ Y and (Id− F )(∂A) ⊆ Y .

Then

∂Y (A ∩ Y ) ⊆ Y ∩ ∂A , F (∂Y (A ∩ Y )) ⊆ Y ,

w 6∈ F (∂Y (A ∩ Y )) ,

deg (F,A,w) = deg
(
F
∣∣
∂Y (A∩Y )

, A ∩ Y,w
)
.
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3 Linear spaces with scalar product

22



3 Linear spaces with scalar product

Assume now that X is a finite dimensional linear

space over R endowed with a scalar product ( | ),

while A is again a bounded and open subset of X .
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(3.1) Theorem Let 0 ∈ A and let F : ∂A→ X

be a continuous map with 0 6∈ F (∂A). Assume

that

(u|F (u)) ≥ 0 for any u ∈ ∂A .

Then

deg (F,A, 0) = 1 .
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(3.2) Theorem Let F : ∂A→ X be a continu-

ous map. Assume there exists a linear subspace

Y of X such that{
u ∈ ∂A : (u|F (u)) ≤ 0 ,

(v|F (u)) = 0 ∀v ∈ Y
}

= ∅ .
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Then

F (u) 6= 0 ∀u ∈ ∂A ,

∂Y (A ∩ Y ) ⊆ Y ∩ ∂A ,

(PY ◦ F )(u) 6= 0 ∀u ∈ ∂Y (A ∩ Y ) ,

deg (F,A, 0) = deg
(

(PY ◦ F )
∣∣
∂Y (A∩Y )

, A ∩ Y, 0
)
.

Here PY : X → Y is the orthogonal projection.
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4 A different setting in finite dimension
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4 A different setting in finite dimension

Throughout this section, X will denote a finite di-

mensional normed linear space over R and A a

bounded and open subset of X .
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4 A different setting in finite dimension

Throughout this section, X will denote a finite di-

mensional normed linear space over R and A a

bounded and open subset of X .

We aim to consider a continuous map

F : ∂A→ X ′ and w ∈ X ′ \ F (∂A).
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(4.1) Proposition The following facts hold:

(a) there exists a linear and bijective map

J : X → X ′ such that

〈Ju, u〉 ≥ 0 ∀u ∈ X ;
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(4.1) Proposition The following facts hold:

(a) there exists a linear and bijective map

J : X → X ′ such that

〈Ju, u〉 ≥ 0 ∀u ∈ X ;

(b) if F : ∂A→ X ′ is a continuous map,

w ∈ X ′ \ F (∂A) and J1, J2 are as in (a), then

deg
(
J−1

1 ◦ F,A, J−1
1 w

)
= deg

(
J−1

2 ◦ F,A, J−1
2 w

)
.
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(4.2) Definition If F : ∂A → X ′ is a contin-

uous map and w ∈ X ′ \ F (∂A), we set

deg (F,A,w) = deg
(
J−1 ◦ F,A, J−1w

)
,

where J : X → X ′ is any linear and bijective

map such that

〈Ju, u〉 ≥ 0 ∀u ∈ X .
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(4.3) Theorem Let F : ∂A→ X ′ be a contin-

uous map and let w ∈ X ′.

Then F (u) 6= w for any u ∈ ∂A if and only if

F (u)− w 6= 0 for any u ∈ ∂A, and in this case

deg (F,A,w) = deg (F − w,A, 0) .
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(4.3) Theorem Let F : ∂A→ X ′ be a contin-

uous map and let w ∈ X ′.

Then F (u) 6= w for any u ∈ ∂A if and only if

F (u)− w 6= 0 for any u ∈ ∂A, and in this case

deg (F,A,w) = deg (F − w,A, 0) .

(4.4) Theorem (Existence criterion) Let

F : A → X ′ be a continuous map and let

w ∈ X ′ \ F (∂A) with deg (F,A,w) 6= 0.

Then w ∈ F (A).
29



(4.5) Theorem (Excision-additivity) Let

{Uj : j ∈ J} be a family of pairwise disjoint

open subsets of A, let

F : A \
(⋃
j∈J

Uj

)
→ X ′

be a continuous map and let

w ∈ X ′ \ F
(
A \

(⋃
j∈J

Uj

))
.
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Then

∂A ⊆ A \
(⋃
j∈J

Uj

)
,

∂Uj ⊆ A \
(⋃
j∈J

Uj

)
for any j ∈ J ,

deg (F,Uj, w) 6= 0 for at most

finitely many j ∈ J ,

deg (F,A,w) =
∑
j∈J

deg (F,Uj, w) .
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(4.6) Theorem (Homotopy invariance) Let

H : ∂A × [0, 1] → X ′ be a continuous map and

let w ∈ X ′ \ H(∂A× [0, 1]).

Then the function

{t 7−→ deg (Ht, A, w)}

is constant on [0, 1].
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(4.7) Theorem (Hopf)

Assume that A and X \ A are both connected.

Let F0, F1 : ∂A → X ′ be two continuous maps

and let w ∈ X ′ \ (F0(∂A) ∪ F1(∂A)) with

deg (F0, A, w) = deg (F1, A, w) .

Then there exists a continuous map

H : ∂A × [0, 1] → X ′, with w 6∈ H(∂A × [0, 1]),

such that H0(u) = F0(u) and H1(u) = F1(u) for

any u ∈ ∂A.
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(4.8) Theorem Let F : ∂A→ X ′ be a contin-

uous map, L : X ′→ X ′ linear and bijective and

w ∈ X ′ \ (L ◦ F )(∂A).

Then

deg (L ◦ F,A,w)

= [sgn (detL)] deg
(
F,A, L−1w

)
.
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(4.9) Theorem Let 0 ∈ A and let

F : ∂A → X ′ be a continuous map with

0 6∈ F (∂A). Assume that

〈F (u), u〉 ≥ 0 for any u ∈ ∂A .

Then

deg (F,A, 0) = 1 .
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(4.10) Theorem Let F : ∂A → X ′ be a con-

tinuous map. Assume there exists a linear sub-

space Y of X such that{
u ∈ ∂A : 〈F (u), u〉 ≤ 0 ,

〈F (u), v〉 = 0 ∀v ∈ Y
}

= ∅ .
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Then

F (u) 6= 0 ∀u ∈ ∂A ,

∂Y (A ∩ Y ) ⊆ Y ∩ ∂A ,

(i′ ◦ F )(u) 6= 0 ∀u ∈ ∂Y (A ∩ Y ) ,

deg (F,A, 0) = deg
(

(i′ ◦ F )
∣∣
∂Y (A∩Y )

, A ∩ Y, 0
)
.

Here i : Y → X is the inclusion map and

i′ : X ′→ Y ′ the dual map to i, so that

〈i′w, v〉 = 〈w, iv〉 ∀w ∈ X ′ , ∀v ∈ Y .
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(4.11) Theorem Let L, J : X → X ′ be linear

and bijective with

〈Ju, u〉 ≥ 0 ∀u ∈ X .

Then, for every w ∈ L(A), we have

deg (L,A,w) = (−1)m ,

where m is the sum of the algebraic multiplici-

ties of the eigenvalues λ of (J−1 ◦L) with λ < 0

(we agree that m = 0 if there is no eigenvalue

λ with λ < 0).
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(4.12) Definition Let L,K : X → X ′ be two

linear maps. We say that λ ∈ R is an eigenvalue

of (L,K) if there exists u ∈ X \ {0} such that

Lu = λKu .
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(4.12) Definition Let L,K : X → X ′ be two

linear maps. We say that λ ∈ R is an eigenvalue

of (L,K) if there exists u ∈ X \ {0} such that

Lu = λKu .

The linear space N (L− λK) is said to be the

eigenspace relative to λ, while any element of

N (L− λK) \ {0} is said to be an eigenvector

relative to λ.
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The integer

dimN (L− λK)

is called geometric multiplicity of λ.
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(4.13) Proposition Assume that

〈Ku, u〉 ≥ 0 ∀u ∈ X

and that there exists λ ∈ R such that

〈(L + λK)u, u〉 > 0 ∀u ∈ X \ {0} . (4.14)
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(4.13) Proposition Assume that

〈Ku, u〉 ≥ 0 ∀u ∈ X

and that there exists λ ∈ R such that

〈(L + λK)u, u〉 > 0 ∀u ∈ X \ {0} . (4.14)

Then the following facts hold:

(a) (L + λK) is bijective and any eigenvalue λ

of (L,K) satisfies λ > −λ;

41



(b) for every λ > −λ, we have

N (L− λK)

= N
(

(L + λK)−1 ◦K − 1

λ + λ
Id

)
;

in particular, λ is an eigenvalue of (L,K) if

and only if 1
λ+λ

is an eigenvalue of

(L+λK)−1 ◦K and the geometric multiplicity

is the same;
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(c) if also λ̂ ∈ R satisfies (4.14), then the alge-

braic multiplicity of 1
λ+λ

as an eigenvalue of

(L + λK)−1 ◦ K is equal to that of 1

λ+λ̂
as an

eigenvalue of (L + λ̂K)−1 ◦K.
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(4.15) Definition Assume that

〈Ku, u〉 ≥ 0 ∀u ∈ X ,

〈(L + µK)u, u〉 > 0 ∀u ∈ X \ {0} ,

for some µ ∈ R.
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(4.15) Definition Assume that

〈Ku, u〉 ≥ 0 ∀u ∈ X ,

〈(L + µK)u, u〉 > 0 ∀u ∈ X \ {0} ,

for some µ ∈ R.

If λ is an eigenvalue of (L,K), the algebraic

multiplicity of λ is defined as the algebraic multi-

plicity of 1
λ+λ

as an eigenvalue of (L+λK)−1◦K,

where λ is any real number satisfying

〈(L + λK)u, u〉 > 0 ∀u ∈ X \ {0} .
44



(4.16) Theorem Let L,K : X → X ′ be two

linear maps such that L is bijective and

〈Ku, u〉 ≥ 0 ∀u ∈ X .

Assume there exists λ ∈ R such that

〈(L + λK)u, u〉 > 0 ∀u ∈ X \ {0} .

Then, for every w ∈ L(A), we have

deg (L,A,w) = (−1)m ,

where m is the sum of the algebraic multiplici-

ties of the eigenvalues λ of (L,K) with λ < 0.
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(4.17) Theorem Let 0 ∈ A and let

L,K : X → X ′ be two linear maps such that

〈Ku, u〉 ≥ 0 ∀u ∈ X .

Assume there exists λ ∈ R such that

〈(L + λK)u, u〉 > 0 ∀u ∈ X \ {0}

and let µ be an eigenvalue of (L,K) of odd al-

gebraic multiplicity.

46



Then we have

lim
λ→µ−

deg (L− λK,A, 0)

6= lim
λ→µ+

deg (L− λK,A, 0) .
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5 Infinite dimensional spaces
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5 Infinite dimensional spaces

See e.g.

H. Brezis, “Functional analysis, Sobolev spaces

and partial differential equations”, Universitext,

Springer, New York, 2011.
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(5.1) Theorem Let X be a normed space, E

a bounded subset of X and u ∈ X belonging to

the weak closure of E.
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(5.1) Theorem Let X be a normed space, E

a bounded subset of X and u ∈ X belonging to

the weak closure of E.

Then there exists a separable and closed linear

subspace X0 of X such that u ∈ X0 and u be-

longs to the weak closure of E ∩X0 in X0.

49



(5.2) Theorem Let X be a reflexive Banach

space, E a bounded subset of X and u ∈ X

belonging to the weak closure of E.
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(5.2) Theorem Let X be a reflexive Banach

space, E a bounded subset of X and u ∈ X

belonging to the weak closure of E.

Then there exists a sequence (uk) in E weakly

convergent to u.

50



6 Maps of class (S)+
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6 Maps of class (S)+

In the following, X will denote a reflexive Banach

space over R.
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6 Maps of class (S)+

In the following, X will denote a reflexive Banach

space over R.

(6.1) Definition A map F : D → X ′, with

D ⊆ X, is said to be demicontinuous if, for ev-

ery sequence (uk) convergent to some u in D,

we have

lim
k
〈F (uk), v〉 = 〈F (u), v〉 ∀v ∈ X .
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(6.2) Definition A map F : D → X ′, with

D ⊆ X, is said to be of class (S)+ if, for every

sequence (uk) in D weakly convergent to some

u in X with

lim sup
k
〈F (uk), uk − u〉 ≤ 0 ,

it holds ‖uk − u‖ → 0.

52



(6.3) Definition A map F : D → X ′, with

D ⊆ X, is said to be completely continuous if it

is continuous and, for every bounded sequence

(uk) in D, the sequence (F (uk)) admits a con-

vergent subsequence in X ′.

53



(6.4) Proposition The following facts hold:

(a) if F1 : D1 → X ′ and F2 : D2 → X ′ are of

class (S)+, then (F1 + F2) : D1 ∩ D2 → X ′ is

of class (S)+;

(b) if F : D → X ′ is of class (S)+ and t > 0,

then tF : D → X ′ is of class (S)+;

(c) if F1 : D1 → X ′ is of class (S)+, and

F2 : D2 → X ′ is completely continuous, then

(F1 + F2) : D1 ∩D2→ X ′ is of class (S)+;
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(d) if F : D → X ′ is of class (S)+ and w ∈ X ′,

then (F + w) : D → X ′ is of class (S)+.

55


