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Chapter 1

Some basic tools of critical point
theory

1 The deformation theorem

Throughout this section, we will consider a real Banach space X and a function f : X — R of class C.

(1.1) Definition We say that u € X is a critical point of f, if f'(u) = 0. We say that ¢ € R is a critical
value of f, if there exists a critical point w of f with f(u) = c¢. We say that ¢ € R is a regular value of f, if

it is not a critical value of f.

(1.2) Definition Let ¢ € R. We say that (up) is a Cerami-Palais-Smale sequence at level ¢ ((CPS).—se-
quence, for short) for f, if f(un) — ¢ and (1 + ||up]|)f/ (un) — 0.
We say that f satisfies the Cerami-Palais-Smale condition at level ¢ (condition (C'PS)., for short), if

every (CPS).—sequence for f admits a (strongly) convergent subsequence in X .

(1.3) Remark In the classical Palais-Smale condition, one considers sequences with f'(up) — 0 instead of
(L4 lunl)) f'(ur) — 0. This useful variant, which is clearly a weaker condition, was introduced by CERAMI [4].
For every b € RU {400} and ¢ € R, we set
JP = {ue X flu) <},
Keim{ueX: f(u) = f'(uw) =0} .

(1.4) Definition Given u € X, we say that v € X is a pseudogradient vector for f at u, if ||v|| < 2| f/(u)]]

and (f'(u),v) = || f'(w)|]*.
We say that
Vi{ueX: f(u) £0} — X

is a pseudogradient vector field for f, if V' is locally Lipschitz and V (u) is a pseudogradient vector for f at u

for any u in the domain of V.

(1.5) Remark Ifwv is a pseudogradient vector for f at u, we have

1F ()1 < (' (), o) < [LF ()l ol

1



2 CHAPTER 1. SOME BASIC TOOLS OF CRITICAL POINT THEORY

hence || f'(uw)[| < lv]-

(1.6) Lemma Let Y be a metric space, Z a normed space and for every y € Y let F(y) be a convexr subset
of Z. Assume that for every y € Y there exists a neighbourhood U of y such that

M F©#0.

£eu

Then there exists a locally Lipschitz map F : Y — Z such that F(y) € F(y) for everyy € Y.

Proof. For every y € Y let U, be an open neighbourhood of y such that

M 7 #0.

¢eu,
Since {Uy : y € Y} is an open cover of Y and Y is paracompact (see e.g. [8]), there exists a locally finite
open cover {W, : j € J} of Y refining {U, : y € Y'}. Assume first that W; # Y for any j € J. If we set
bily) =dy, Y\W;),  P(y) = ¥;(y),
jed
then 1) is Lipschitz and ¥ is well defined and locally Lipschitz, as {W; : j € J} is locally finite. Since
{W;: j € J} is an open cover, we also have ¥(y) # 0 for every y € Y. Therefore, if we set

vi(y) = %((5)) ,

it turns out that {¢; : j € J} is a locally Lipschitz partition of unity subordinated to {W; : j € J}. If there
exists jo € J with W;, =Y, set ¢;, = 1 and ¢; = 0 for j # jo. Then also in this case {¢; : j € J} is a locally
Lipschitz partition of unity subordinated to {W; : j € J}.
Since {W; : j € J} refines {U, : y € Y}, for every j € J we have
() F) #0.
yew,

If for every j € J we choose a z; € | F(y), we can define a locally Lipschitz map F': Y — Z by
yeEW;

Fly)=> ¢jy)z.

jeJ

Given y € Y, there is only a finite number W, ,..., W, of W;’s such that y € W;. Then

F)=) ez, Y eny)=1.
k=1 k=1

For every k = 1,...,n, from y € W, it follows z; € F(y). Since F(y) is convex, we conclude that
F(y)e F(y).m

(1.7) Theorem There exists a pseudogradient vector field for f.

Proof. Let
Y={ueX: f'(u)#0}.
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For every u € Y, denote by V(u) the set of pseudogradient vectors for f at u. It is readily seen that
V(u) is a convex subset of X. Moreover, for every u € Y there exists w € X such that ||w|] < 1 and
(f'(w),w) = S [If'(w)]. Then v = 3 |[f'(w)l|w satisfies [[v]| < 3 [/ (w)]| and (f'(u),v) = 3 |I/'(w)|*. Since [
is of class O, there exists a neighbourhhood U of u such that [[v|| < 2| f/(£)]| and (f'(€),v) > || f'(£)|* for
every & € U, so that

ve (] VE).

£eUu
From Lemma (1.6) we deduce that there exists a locally Lipschitz map V : Y — X with V(u) € V(u) and the

assertion follows. m
Now we can prove the main result of this section.

(1.8) Theorem (Deformation Theorem) Let ¢ € R be such that f satisfies (CPS).. Then, for every
g > 0, every neighbourhood U of K. (if K. =0, we allow U = 0) and every X > 0, there exist € €]0,2[ and a
continuous map 1 : X x [0,1] — X such that for every (u,t) € X x [0,1] we have:

(@) lIn(u,t) = ull < X1+ [|ul)t;
() f(n(u,t)) < f(u);
(e) n(u,t) #u = f(n(u,1)) < f(u);
(d) [f(u) =] > & = n(u,t) = u;
(e) n(fetex{1}) C feeuU.
Proof. From condition (CPS). it easily follows that K, is compact. Therefore there exists o > 0 such that

Bs, (K.) CU.
We claim there exist € € ]0, %E[ and o > 0 such that

(1.9) c—=2< fu) et 26, ug By (Ke) = (L+[lulllf' ()l = o

Actually, assume for a contradiction that (up) is a sequence in X with f(un) — ¢, un & B, (K.) and
(I +|ur DI f/ (un)|| — 0. Then, up to a subsequence, (uy) is convergent to some u with f(u) = ¢, u & B, (K.)
and f’(u) = 0, which is clearly impossible.

Let x : X — [0,1] be a locally Lipschitz function such that

(|f(u) —c|>2¢orueB, (KC)> = x(u) =0,

(If(u) —c| <€ and u & By (Kc)) = x(u) =1,

let > 0 with
expu—1< A
and let V(u)
U
opux(u) ————= if [f(u) — ] <2¢ and u € B, (K,),

0 otherwise,
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where V' is a pseudogradient vector field for f. Then W : X — X is locally Lipschitz. Moreover, if
|f(u) — ] <2¢ and u & B, (K.), we deduce from (1.9) and the definition of pseudogradient vector that

W)l <o p (L ull),

1
||v< = T =

, @) PP 1
{(f'(w), W(u)) = —opux(u) V@ S () e = g o)
It follows
(1.10) Vue X o [W(u)ll < p(L+ull),
(1.11) Vue X : (f (u), W(u)) < —iaux(u).

Therefore the Cauchy problem

1) = W (1)

n(u,0) =u
defines a continuous map 7 : X x R — X such that n(u,t) = u whenever |f(u) — ¢| > 2€, whence assertion
(d). From (1.11) also (b) and (c) easily follow.

By (1.10) we have

In(u,t) —ul| < /OIIW(n(um))Hdrg

< [ (It <
0
t
< [t~ ulldr (L e,
0
hence
[t = wltr < FEI o 1) - 1+

If 0 <t <1, it follows
In(u,t) = ull < (14 [lufl) (exp(ut) = 1) < (1 + [[ul]) (expp — 1)t < (1 + [Jul)At
whence assertion (a). Since n(u,t2) = n(n(u,t1),t2 — t1), we also have
0<ty <tp <1 = [In(u, t2) = nu, t1) [ < A+ [In(u, t2)[)(t2 — 1)
Finally, to prove assertion (e), consider R > 0 such that By, (K.) € Bg (0) and € €]0, €] such that
8 <ou, 8A1+ R)e <opup.

Let u € f¢¢ and assume, for a contradiction, that f(n(u,1)) > ¢ —e and n(u,1) € U. First of all, we have
c—e < f(n(u,t)) < c+e for every t € [0, 1]. Moreover, it is not possible to have n({u} x [0, 1]) NBa, (K.) = 0,

for otherwise from (1.11) it would follow

2 > f(u) — fl(u 1) > Jon.
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Therefore there exist 0 < t; < to < 1 such that
d(n(u7t1)7KC) = 2@7 d(n(ua t2)aKC) = 3@7

Yt €]t1, 2] 20 < d(n(u,t), K.) < 30.

We have

% > (1)) ~ F(n(u,t2)) > § oplts — 1)
hence
0 < |In(u, t2) = n(u, t)|| < A1+ [[n(u, t)[)(t2 — t1) <A1+ R)S—Z

and a contradiction follows. m
We end this section by providing a useful criterion for the verification of condition (CPS)..

(1.12) Definition LetY,Z be two normed spaces. A map F :Y — Z is said to be completely continuous,
if
(a) F is continuous;

(b) for every bounded sequence (up) in'Y, (F(up)) admits a (strongly) convergent subsequence in Z.

(1.13) Theorem Assume that
F'(w) = Lu— F(u)

where L : X — X™* is linear, continuous, with closed range and finite dimensional null space and F : X — X*
is completely continuous.

Then for every c € R the following assertions are equivalent:
(a) f satisfies condition (CPS).;

(b) every (CPS).—sequence for f is bounded in X.

Proof.

(a) = (b) If (up,) is an unbounded (C'PS).—sequence for f, there exists a subsequence (uy, ) with |Jup, || — co.
Then (up,) is a (CPS).—sequence which cannot admit any convergent subsequence.

(b) = (a) Let (up) be a (CPS).—sequence for f. In particular, we have f’'(up) — 0 in X*. Since (up) is
bounded in X, up to a subsequence (F(up)) is convergent in X*. Consequently, also (Luy,) is convergent in
X*. Let Y be a closed subspace of X with X = N (L)®Y and let Py : X — N (L), P, : X — Y be the
projections associated with the direct decomposition. Of course, we have LPyuj, = Luy. Since L : Y — R (L)
is bijective and R (L) is closed, from the Open Mapping Theorem we deduce that (Pyup) is convergent in Y,
hence in X. On the other hand, up to a subsequence also (Pyuy,) is convergent, as N (L) is finite dimensional.

Then the assertion follows. m



6 CHAPTER 1. SOME BASIC TOOLS OF CRITICAL POINT THEORY

2 Mountain pass theorems

Throughout this section, we will consider again a real Banach space X and a function f : X — R of class C.

(2.1) Definition Let A,B C X. We say that B links A, if BN A =0 and B is not contractible in X \ A.

(2.2) Remark Of course any B C X is contractible in X .

The next result is a general mountain pass theorem which will be specialized in some corollaries later.
Our kind of approach is taken from [5, 11]. We want also to recall that the possibility to consider also the

large inequality in the sup — inf —estimate involving B and A is due to [7].

(2.3) Theorem Let A be a nonempty closed subset of X, B a nonempty subset of X and let Cp be the
family of all contractions of B in X. Assume that B links A, that

sup f <inf f,
B A
c:= inf sup foH <+o0
HeCr Bx[0,1]
and that f satisfies (CPS)e.
Then ¢ > i%ff and ¢ is a critical value of f. Moreover, if ¢ = iI};f f, there exists a critical point u of f

with f(u) =c¢ and u € A.

Proof. Since B links A, we have H(B x [0,1]) N A # (0 for every H € Cp. It follows ¢ > i%ff.

Now, consider first the case ¢ = iI}‘f f and assume, for a contradiction, that K. N A = @. Let U be a
neighbourhood of K, with UNA =( and let ¢ > 0 and 77 : X x [0,1] — X be as in the Deformation Theorem.
Let also H € Cp be such that f(H(u,t)) < ¢+ ¢ for every (u,t) € B x [0,1]. If we define K : B x [0,1] - X
by

K(u’t):{ n(u, 2t) ifo<t<s,
n(H(u,2t —1),1) if 3 <t <1,
it is readily seen that K € Cp. For every u € B we have either n(u,2t) = u or f(n(u,2t)) < f(u) < igf f-In
both cases it follows n(u,2t) € A. On the other hand

n(H(u,2t —1),1) C f7°UU

and (f¢~*UU)N A = (). Therefore K is a contraction of B in X \ A and this contradicts the assumption that
B links A.

Finally, consider the case ¢ > igf f and assume, for a contradiction, that K, = ). Let U = ) and let £ > 0
and 7 : X x [0,1] — X be as in the Deformation Theorem. Let also H € Cp be such that f(H(u,t)) <c+e
for every (u,t) € B x [0,1]. If we define K : B x [0,1] — X by

n(u, 2t ifo<t<?i,
K(u,t) = (1, 22) 2
n(H(u,2t —1),1) if § <t <1,

we have again IC € Cg. On the other hand, for every u € B we have

f(n(u,2t)) < fu) < s%pﬂ
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Ffn(H(u,2t —1),1)) <c—e.

Since sup f < ¢, this contradicts the definition of c. m
B

(2.4) Corollary Let A be a nonempty closed subset of X, B a nonempty subset of X and let Cg be the
family of all contractions of B in X. Assume that B links A, that

<
s%pf_erlff

and that

c:= inf sup foH < +o0.
HeCr Bx0,1]

Then ¢ > ir)‘ff and there exists a (CPS).—sequence (up) for f.

Proof. As before, one easily verifies that ¢ > irjf f. Now assume, for a contradiction, that there are no

(CPS).—sequences for f. Then there exists o > 0 such that

(2.5) c—o< f(u)<cto = (1+|[ullf (W] =0,

Therefore condition (C'PS). holds and from Theorem (2.3) we deduce that ¢ is a critical value of f. This
contradicts (2.5). m

The first particular case we consider is the classical mountain pass theorem of Ambrosetti-Rabinowitz

(see [1, 10)).

(2.6) Corollary (Mountain Pass Theorem) Assume there exist uy € X and r > 0 such that ||uq| > r

and
max{f(0), f(u1)} <inf {f(u): [Jul| =7} .

Set
['={yeC([0,1;X): v(0) =0,v(1) = w1 },

= inf t
¢=inf max (1)

and suppose that f satisfies (CPS)..
Then ¢ > inf {f(u) : ||u|| =7} and c is a critical value of f. Moreover, if c =inf {f(u) : ||u|| =1}, there

exists a critical point u of f with f(u) = c and ||ul| = 7.
Proof. Set A={ue€ X : ||ul| =r} and B ={0,u;}. It is evident that B links A and that ¢ < 4o00. If y € T,

then
v(t) fu=0
H(u,t) =
Uy if u=wuy

is clearly a contraction of B in X. Therefore

¢> inf sup foH.
HECB Bx0,1]
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Conversely, if H is a contraction of B in X, then

{H(O,2t) if0<t<
V() =

1
2
H(up,2-2t) if+<t<1

belongs to I', whence

c< inf sup foH.
HECE Bx[0,1]

From Theorem (2.3) the assertion follows. m

(2.7) Lemma LetY be a finite dimensional normed space, U a bounded open subset of Y and yo € U.
Then OU is not contractible in Y \ {yo}.

Proof. Assume, for a contradiction, that H : OU x [0,1] — Y \ {yo} is a contraction of U in Y\ {yo} to some
point y;. If F: U — Y is the map with constant value y;, by well known properties of Brouwer’s degree (see

e.g. [6, 12]), we have
1 =deg (Id7 U, yO) = deg (F7 U, yO) =0,

which is clearly absurd. m
Now we come to the saddle theorem of Rabinowitz (see [10]).
(2.8) Corollary (Saddle Theorem) Assume that
(a) X =X_@ X, where dim X_ < 0o and X4 is closed in X;

(b) there exists R > 0 such that
max {f(u): ue X_, |Jul| =R} <inf{f(u): ue X;};

(¢) f satisfies (CPS)., where

¢= inf max flp(u)),

D={ue X_: ||u| <R},

O ={peC(D;X): ¢o(u) =u whenever |u|| = R} .

Then ¢ > glf f and c is a critical value of f. Moreover, if ¢ = %11“ f, there exists a critical point u of f
+

N
with f(u) =c and u € X4.

Proof. Set A = X, and
B={ueX_: |u|=R}.

Since D is compact, it is evident that ¢ < +oo. Moreover, if H is a contraction of B in X \ X, and

P_: X — X_ is the projection associated with the direct decomposition, then
K(u,t) = P_H(u,t)

is a contraction of B in X_ \ {0}. Since this contradicts Lemma (2.7), it follows that B links A.
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If ¢ € @, then
H(u,t) = ¢((1 = t)u)

is a contraction of B in X. Therefore

c> inf sup foH.
HeCB Bx[0,1]

Conversely, if H is a contraction of B in X to some point u1, we can define a continuous map
Y (Bx[0,1)U(Dx{1}) = X

by
H(u,t) if (u,t) € B x[0,1],
P(u,t) = .
U if (u,t) € D x {1}.
There exists a homeomorphism

F:D— (Bx[0,1)U (D x {1})

with F(B) = B x {0}. Then we have that ¢ o F' € ®, whence

c< inf sup foH.
HECE Bx[0,1]

From Theorem (2.3) the assertion follows. m

Finally, we derive the linking theorem of Benci-Rabinowitz (see [10] and [2] for the corresponding version

in the strongly indefinite case).

(2.9) Corollary (Linking Theorem) Assume that
(a) X =X_@ X, where dim X_ < co and X4 is closed in X;
(b) there exist 0 <r < R and v € X1 with ||v|| =1 such that
max {f(u): uw € B} <inf{f(u): ue S},
where B is the boundary of
D={u+tv:ueX_,t>0, ||lu+tv] <R}

n X_ ®Rv and
S={ue Xy |ull =1}

(¢) f satisfies (CPS)., where

— inf
¢= Inf max fle(w),

O ={peC(D;X): ¢o(u) =u whenever u € B} .

Then ¢ > irslf f and c is a critical value of f. Moreover, if ¢ = igf f, there exists a critical point u of f

with f(u) =c andu € S.
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Proof. Since D is compact, it is evident that ¢ < +oo. If H is a contraction of B in X \ S, consider the

projections Py : X — X4 associated with the direct decomposition. Then
K(u,t) = P-H(u,t) + [|PrH(u, t)|v

is a contraction of B in (X_ @ Rv) \ {rv}. Since this contradicts Lemma (2.7), it follows that B links A.

Now, the same argument used in the proof of the Saddle Theorem shows that

c= inf sup foH.
HeCr Bx|[0,1]

From Theorem (2.3) the assertion follows. m

3 Nemytskij operator

Throughout this section, E will denote a measurable subset of R™ and || ||, the usual norm of L? (1 < p < 00).

(3.1) Definition We say that g : E x RN — R* s a Carathéodory function, if
(a) for every s € RY the function {z — g(x,s)} is measurable on E;
(b) for a.e. z € E the function {s — g(z,s)} is continuous on RV.

Ifu: E —RY is a function, we denote by g(x,u) the function

E — RF
z — g(z,u(@)

(3.2) Theorem Let g: E x RN — R* be a Carathéodory function.
Then for every measurable function u : E — RN we have that g(x,u) : E — R* is measurable. Moreover,

if u,v agree a.e. in E, then also g(x,u) and g(x,v) agree a.e. in E.

Proof. Let u: E — RY be a simple function, namely a measurable function with a finite number of values.

If u(E) = {s1,... ,8m}, set B, =u"1(sp). Then {F1,...,E,,} is a measurable partition of E and we have
Vo € B g(wu(z)) =Y xp, (@) g (z,51) -
h=1

Therefore g(x,u) is measurable.
Let now u : E — RY be a measurable function. It is well known that there exists a sequence (uy) of

simple functions pointwise convergent to u. Then we have
h;an g(x,up) = g(z,u) a.e. in F,

whence the measurability of g(z,u).

It is evident that, if u,v agree a.e. in E, then also g(x,u) and g(z,v) agree a.e. in E. ®
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(3.3) Theorem Let g: E x RN — R¥ be a Carathéodory function and let p,q € [1,00[. Assume there erist
a € LI(E) and b € R such that
lg(z, s)| < a(x) + bls|4

for a.e. x € E and every s € RV.
Then for every u € LP(E;RY) we have g(x,u) € LY(E;R*) and the map

LP(E;RYN) — LI(E;RF)
u — g(z,u)

15 continuous.

Proof. For any u € LP(E;RY) we have
p\ 4
9@, )| < (a() +blul )" < 297 (a(2)? + *Jul?) .

Combining this fact with Theorem (3.2), we deduce that g(x,u) € LI(E;R¥).
Now, let (uz) be a sequence convergent to some u in LP(E;RY). Up to a subsequence, (uy,) is convergent

a.e. to u and there exists w € LP(E) such that
lup| <w  ae. inE
(see e.g. [3, Theorem IV.9]). Therefore we have

li}an g(z,up) = g(x,u) a.e. in F,

l9(z,un) — g(a,w)[? < 297 (|g(@,un)|? + |g(z,w)|) <
< 4771 (2a(2)? + b|up P + bulP) <
< 4971 (2a(x)? + bTwP 4 b?|ulP) a.e. in E.

From Lebesgue’s Theorem we deduce that (g(z,us)) is convergent to g(x,u) in LI(E;R¥). m

(3.4) Theorem Let g: E x RN — R¥ be a Carathéodory function and let g € [1,00[. Assume that for every
M > 0 there exists ap € L1(E) such that

l9(z,5)| < an(x)
for a.e. x € E and every s € RN with |s| < M.
Then for every u € L>®(E;RYN) we have g(z,u) € LI(E;R¥) and the map

L¥(E;RN) — Li(E;RF)
u — g(x,u)

s continuous.

Proof. If u € L®(E;RY) and M = ||u|| 0, we have |g(x,u)| < apr(z) a.e. Taking into account Theorem (3.2),
we easily deduce that g(z,u) € LY(E;RF).
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If (up) is a sequence convergent to some u in L>(E;RY), there exists M > 0 such that ||up||c < M for

every h. It follows that (g(z,uy)) is convergent to g(x,u) a.e. and
l9(z, un) — gz, u)| < 2%ap(x)7.

From Lebesgue’s Theorem we deduce that (g(x,uy)) is convergent to g(z,u) in LI(E;R*). m

(3.5) Definition The map
LP(E;RY) — LI(E;RY)
u —  glz,u)

is called Nemytskij operator or superposition operator associated with g.

(3.6) Definition We say that G : E x RN — R¥ is a C''—Carathéodory function, if
(a) for every s € RY the function {x — G(x,s)} is measurable on E;

(b) for a.e. x € E the function {s — G(x,s)} is of class C' on RV

(3.7) Proposition Let g: E x R — R* be a Carathéodory function and set G(z,s) = [; g(x,t)dt.
Then G : E x R — RF is a C'— Carathéodory function with G(z,0) = 0.

Proof. Tt is evident that {s — G(x,s)} is of class C* for a.e. x € E. Moreover, for every s € R we have

k

G(z,s) = lilgn (Z %g (x,hZ)) a.e. in F.

Therefore {x — G(x, s)} is measurable for every s € R. m

(3.8) Theorem Let G : E x RN — R* be a C'— Carathéodory function, let 1 < q < p < oo, let r > 1 be

such that
1

1

1
r p g
and set g(x,s) = DsG(z,s). Assume that G(x,0) € LI(E) and that there exist a € L™ (E) and b € R such that

(3.9) lg(z,s)| < a(x) + b|s|a

for a.e. x € E and every s € RV.
Then g: ExRYN — RN* s o Carathéodory function, we have G(z,u) € L1(E;R¥) for everyu € LP(E;RY)

and the Nemytskij operator
G: LP(E;RN) — LIY(E;RF)
u —  G(z,u)

associated with G is of class C'. Moreover we have

Vu,v € LP(E;RN) : G (u)v = g(z,u)v.
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Proof. Tt is evident that {s — g(z,s)} is continuous for a.e. x € E. Moreover, for every s,o € RY we have

1
g(x, s)o = lillcn k <G <J:, s+ EU) - G(z, s)) a.e. in E.

Therefore {x — g(x,s)} is measurable for every s € R.

Since ﬁ = 7, from (3.9) and Young’s inequality we deduce that

p—q B v
Gz, )] < |G(x,0)] + a(x)]s |+f| |7 < |G, 0)| + —— 5 @) ] 4 Ts] =

= |G(x,0)

—q
’ a(z)’ 1er)ll

Since av € LI(E), from Theorem (3.3) it follows that the Nemytskij operator

G: LP(E;RY) — LI(E;RF)
u —  G(z,u)

is well defined and continuous. Since Q 1 = B also the Nemytskij operator

LP(E;RN) — L"(E;RNF)
u —  g(z,u)
is well defined and continuous.
Now let v € LP(E;RY). By Hélder’s inequality it is readily seen that the map
LP(E;RYN) — LI(E;RF)
v —  g(z,u)v
is well defined, linear and continuous. Let (v,) be a sequence convergent to 0 in LP(E;RY). Up to a
subsequence, (vp) is convergent to 0 also a.e. and there exists w € LP(FE) such that |vp| < w a.e. Set

and define

— Vh
2y = —Yh_
h = Tonlls

G(z,u+vp) — G(z,u) — g(x,u)vy
ap = |Uh|
0 where vy (z) = 0.

where vy (z) # 0,

Then («y,) is convergent to 0 a.e. and, by Lagrange’s Inequality, we have

lan|” < gz, u+Dnon) — gz, u)]" <

A

(a + b|u + ﬁhvh|

s

(a+b(ul + [w) ¥ +a+bful?)"

IN

where 0 < 995, < 1. Therefore (,) is convergent to 0 also in L"(E;R¥). From Holder’s inequality it follows

J

G(z,u+vy) — G(z,u) — gz, u)vy |

dx
lvnllp

[ lanltzalr o <
E

lanllFlznllf = [lanll?,

IN

hence
G(z,u+vy) — G(z,u) — g(x,u)vy |*

dr=0.

lvnlls

Therefore G is Fréchet differentiable at u and G'(u)v = g(x, u)v.
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Finally, for every uy,us,v € LP(E;R"Y) we have

19" (ur)v = G (u2)vllg = llg(x, ur)v — g(z, u2)vllq < llg(x, u1) — g, uz)llllvllp ,

hence
1G" (u1) — G (w2l c(zw;ay < g, ur) — g2, uz)|lr -

Therefore G is of class Cl. m

(3.10) Theorem Let G : E x RN — RF be a C'—Carathéodory function, let 1 < q¢ < oo and set
g(z,8) = D,G(x,s). Assume that G(x,0) € L1(E;R*) and that for every M > 0 there exists ayy € LY(E)
such that

lg(z,5)| < an(x)
for a.e. * € E and every s € RN with |s| < M.

Then g: ExRYN — RN* js q Carathéodory function, we have G(z,u) € L1(E;R¥) for every ue L= (E;RY)

and the Nemytskij operator
G: L®(E;RN) — LI(E;R¥)
u —  G(z,u)

associated with G is of class C*. Moreover we have

Vu,v € L®(E;RY) : G'(u)v = g(x,u)v.

Proof. As before, we have that g is a Carathéodory function. Moreover,
G, 5)| < [G(x,0)] + ar(2)s] < [G(x,0)] + Ma ()

for a.e. * € E and every s € RV with |s| < M. From Theorem (3.4) it follows that the Nemytskij operators

G: L®(E;RN) — LI(E;R¥)
u —  G(z,u)
and
L=(E;RN) — LI(E;RNF)
u — g(z,u)
are well defined and continuous. Then it is possible to argue, with minor variants, as in the proof of Theo-

rem (3.8).m

Let now Q be an open subset of R™.

(3.11) Theorem The following facts hold:

np
P

(a) if 1 < p <mn, then we have Wy P(Q; RN) C L7=7 (Q;RN) and there exists c(n,p) > 0 such that

Yu € Wy P (RN : [lu

e < C(nap) HVUHP’
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(b) if n < p < oo, then we have Wy P (S RN) C L® (4 RN) and there exists ¢(n,p) > 0 such that

Vu € Wy (G RY) : Jlulloo < c(n,p) (IVullh+ ullp)” .

(¢) ifa,b € R and 1 < p < oo, then we have WP (Ja,b; RY) C L*°(Ja,b[; RY) and there exists c(a,b) > 0
such that
1
Vu e WH(Ja, b RY) + Julloo < cla,b) ([[u'll} + Jullf)® -

Proof. See for instance [3, Theorems IX.9, IX.12 and VIIL.7]. m

(3.12) Theorem Let 1 < p < oco. Then every bounded sequence (up) in WHP(Q;RY) admits a subsequence

convergent a.e. to some u € LP(Q;RY).

Proof. If Q is an open ball, the Rellich-Kondrachov Theorem (see e.g. [3, Theorem IX.16]) implies that
there exists a subsequence (up, ) strongly convergent in LP(£2; RY) to some u. Then a further subsequence is
convergent to u a.e.

Since any open subset of R™ is a countable union of open balls, also in the general case we may find a

subsequence convergent a.e. to some u. From Fatou’s Lemma it is easy to deduce that v € LP(;RY). m

(3.13) Theorem Let1 <p < n, let X be a subspace of WP(Q; RYN) continuously imbedded in L% (RN,
let G : QxRN — R be a O — Carathéodory function and set g(z, s) = V,G(z,s). Assume that G(z,0) € L*(Q)
and that there exist a € L7100 (Q) and b € R such that

lg9(x,5)| < a(w) + bls|>=5 "
for a.e. x € Q and every s € RV,

Then for every u € X we have G(z,u) € L'(Q) and the functional

FioX — R
u — o G(z,u)dx

is of class C*. Moreover we have

Vu,v € X : f’(u)vz/ g(z,u) - vdr.
)

Proof. Since
nlp-Y+p n-p
np np
it follows from Theorem (3.8) that the Nemytskij operator

=1

)

np
—-P

G: Li7(Q;RY) — LYQ)

u —  G(z,u)

is of class C! with G’ (u)v = g(z,u) - v.
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On the other hand X is continuously included in L7-7 (Q;RY) and {w — [, wdz} is a continuous and

linear functional on L'(£2). Then the assertion easily follows. m

(3.14) Definition Let 1 < p < n. We say that a Carathéodory function g : Q x RN — RF has subcritical
growth with respect to WHP(Q; RY), if for every e > 0 there erists a. € LG 75 (Q) such that

l9(,9)| < ac(x) +els|75 !
for a.e. x € Q and every s € RN
(3.15) Remark If Q has finite measure and
lg(x, s)| < alx) + bls|?
with a € L7 0¥ (), beRand0 < g < n"—_’;} —1, then g has subcritical growth with respect to WP(Q; RV).

Proof. Let rq = ”—pp — 1. From Young’s inequality we deduce that

n—

1 /b\" 1 s
< — e 5" n_p—l
o)l <a@)+ % (5) 4100
for every § > 0. Since the constant % (%)T belongs to LG5 (©) and 0" can be made arbitrarily small,

the assertion follows. m

(3.16) Theorem Let1 < p <n, let X be a subspace of W P(Q; RYN) continuously imbedded in L= (RN,
let G : QxRN — R be a C'— Carathéodory function and set g(x,s) = V,G(x,s). Assume that G(z,0) € L'(Q)
and that g has subcritical growth with respect to WP (§; RY).

Then the functional
R

f: X —
u — o G(z,u)dx

is of class C' with

Vu,v € X : f’(u)v:/ g(z,u) -vdx
Q

and the derivative f': X — X* is completely continuous.

Proof. Since g has subcritical growth, it follows from Theorem (3.13) that f is well defined and of class C*
with
Vu,v € X & fl(u)v = / g(z,u) - vdx.
Q
For every ui,us,v € X, Holder’s inequality yields,

| (ur)v = f(u2)v| =

<

/ (9(z,u1) — g(z,uz)) - vdx
Q

< gz, ua) = g(@,ug)ll 2o _lvl| 22, <
1
< cllg(@,ur) — g, u2)ll 22 (IVVI} +[lv]I5)™ -

n(p—1)+p
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Therefore it is sufficient to prove assertion (b) of Definition (1.12) for the map

X — Lo (RN)
U 9(x, u) '

Without loss of generality, we can suppose N = 1. Let us treat first of all the case in which
lg(z, s)| < a(x)

with a € L7~ 07r (©). Let (up) be a bounded sequence in X. By Theorem (3.12), up to a subsequence (up)

is convergent a.e. to some u € LP(Q). Since

‘g(xauh) - g(:z:,u)| < 2a(:c) )

from Lebesgue’s Theorem we deduce that (g(z,up)) is strongly convergent to g(z,u) in L 0Fp Q).

In the general case, set for any € > 0

g:(x, s) = min {max {g(z, s), —a-(z)},a-(z)} .

Since |ge(z, s)| < ae(z), the map
X — Lo 0w (Q)
u ge(z,u)

satisfies condition (b) of Definition (1.12) by the previous step. On the other hand, we have
_np__
‘gg(.’L‘,S) - g(x,s)\ < ‘{3-|‘9|717;7 ! )
hence, for every u € X,

e g _np_ _ —n__1
lge(z,u) = gz, w)l| ome o < efjull’ag’ < ecm=r LIvalp + Julp)

n(p—1)+p

We deduce that

lim ||ge (2, u) — g(z, u)||
e—0

np
n(p—1)+p
uniformly on bounded subsets of X and the assertion follows from well known properties of completely

continuous operators (see e.g. [9, Proposition II11.5.4]). m

(8.17) Theorem Letn < p < oo, let X be a subspace of WP (;RN) continuously imbedded in L>(Q; RY),
let G : QxRN — R be a C'— Carathéodory function and set g(x,s) = VsG(x,s). Assume that G(z,0) € L*(Q)
and that for every M > 0 there exists ayr € L*(Q) such that

l9(x, 8)| < an(z)

for a.e. x € Q and every s € RN with |s| < M.
Then for every u € X we have G(x,u) € L*(Q) and the functional

f: X — R
u —  [o G(z,u)dx
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is of class C*. Moreover we have
Vu,v € X & f'(u)v = / g(z,u) -vdx
Q

and the derivative ' : X — X* is completely continuous.

Proof. From Theorem (3.10) we deduce that the Nemytskij operator
G: L®(RN) —  LYQ
u —  G(z,u)
is of class C! with G'(u)v = g(x,u) - v.
On the other hand, X is continuously included in L (£2;RY) and {w — fQ wdm} is a continuous and
linear functional on L' (). Then it is easy to show that f is of class C* with f'(uw)v = [, g(z,u) - vdz.
For every uy,uq,v € X, Holder’s inequality yields,

[ (ua)v = f'(uz)v]

/Q (9(z, u) — g(z, un)) - vda| <
g, u1) — g(z, u) 1 [o]loe <

< cllg(z,u1) — g(@,u2)ll (IVoll} + vl5) ™ -

IN

S

Therefore it is sufficient to show that the map

X — Ll(Q;RN)
u —  g(z,u)

satisfies condition (b) of Definition (1.12).
Let (up) be a bounded sequence in X and let M > 0 be such that ||up|lcc < M. By Theorem (3.12), up
to a subsequence (uy) is convergent a.e. to some u € LP(£;RY). Since

l9(z, un) — g(x, u)| < 2anm(2),

from Lebesgue’s Theorem we deduce that (g(z,u)) is strongly convergent to g(z,u) in L'(Q; RY). m

(3.18) Corollary Let Q be bounded, let G: QxRN — R be a C*— Carathéodory function with G(z,0) € L*(Q)
and assume that g := VG(z,s) has subcritical growth with respect to W2(Q; RN).
Then the functional f : W01’2(Q) — R defined by

f(u):%/Q|Vu|2dm—/QG(x,u)dx

is of class C* with

Yu,v € Wy (Q) : f/(u)v = Vu~Vvdx—/ g(x,u) - vdx
Q o
and the derivative f': Wy > (4 RY) — W=L2(Q; RN) has the form required in Theorem (1.13).

Proof. Define f; : W&’Q(Q;RN) — R by

fl(u):—/Q é(m,u)dx,
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where G(z,s) = G(z,s) + 3 |s|?. Taking into account Remark (3.15), it is easy to see that also § := V.G has
subcritical growth with respect to W12(Q;RY). From Theorem (3.16) it follows that f; is well defined, of
class C! with fll completely continuous.

Since
1

fw) =5 [ (9P +1uf?) do = Ao,

we have f'(u) = Lu — fi’(u), where L : W2 (€ RY) — W~12(Q;RN) is an isomorphism, and the assertion

followsm

(3.19) Corollary Let
X={ueW"2(|-ma[RY): u(—7)=u(r)}

let G ;] — m,w[xRY — R be a C'—Carathéodory function and set g(x,s) = V,G(x,s). Assume that
G(x,0) € L*(] — 7, 7[) and that for every M > 0 there exists apr € LY(] — m,7[) such that

l9(, 8)| < an(z)

for a.e. x €] — m, 7| and every s € RN with |s| < M.
Then X is a closed subspace of W2(] — m, w[; RN), the functional f : X — R defined by
1 ™ /9 T
flu) = 5 |u'|* dx — G(z,u)dx
is of class C' with

Yu,v € X : f'(u)v:/ u’-v'dx—/ g(z,u) - vdz

—T —T

and the derwative f' : X — X* has the form required in Theorem (1.13).
Proof. Tt is well known that W12(] — mr, 7[;RY) is continuously imbedded in C([—,7];RY) (see e.g. [3]).
Therefore X is well defined and is in fact a closed linear subspace of W12(] — 7, n[; RY).

If we define again f; : X — R by

fi(u) = — i é(a:,u) dz ,

—T

where G(z,s) = G(z,s) + 1 |s[?, we deduce now from Theorem (3.17) that (f1)’ : X — X* is completely

continuous. Then the assertion easily follows. m
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