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Chapter I

Some basic tools of critical point
theory

1 The deformation theorem

Throughout this section, we will consider a real Banach space X and a function f : X → R of class C1.

(1.1) Definition We say that u ∈ X is a critical point of f , if f ′(u) = 0. We say that c ∈ R is a critical

value of f , if there exists a critical point u of f with f(u) = c. We say that c ∈ R is a regular value of f , if

it is not a critical value of f .

(1.2) Definition Let c ∈ R. We say that (uh) is a Cerami-Palais-Smale sequence at level c ((CPS)c−se-

quence, for short) for f , if f(uh)→ c and (1 + ‖uh‖)f ′(uh)→ 0.

We say that f satisfies the Cerami-Palais-Smale condition at level c (condition (CPS)c, for short), if

every (CPS)c−sequence for f admits a (strongly) convergent subsequence in X.

(1.3) Remark In the classical Palais-Smale condition, one considers sequences with f ′(uh)→ 0 instead of

(1+‖uh‖)f ′(uh)→ 0. This useful variant, which is clearly a weaker condition, was introduced by Cerami [4].

For every b ∈ R ∪ {+∞} and c ∈ R, we set

f b := {u ∈ X : f(u) ≤ b} ,

Kc := {u ∈ X : f(u) = c, f ′(u) = 0} .

(1.4) Definition Given u ∈ X, we say that v ∈ X is a pseudogradient vector for f at u, if ‖v‖ ≤ 2‖f ′(u)‖

and 〈f ′(u), v〉 ≥ ‖f ′(u)‖2.

We say that

V : {u ∈ X : f ′(u) 6= 0} −→ X

is a pseudogradient vector field for f , if V is locally Lipschitz and V (u) is a pseudogradient vector for f at u

for any u in the domain of V .

(1.5) Remark If v is a pseudogradient vector for f at u, we have

‖f ′(u)‖2 ≤ 〈f ′(u), v〉 ≤ ‖f ′(u)‖‖v‖ ,
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2 CHAPTER I. SOME BASIC TOOLS OF CRITICAL POINT THEORY

hence ‖f ′(u)‖ ≤ ‖v‖.

(1.6) Lemma Let Y be a metric space, Z a normed space and for every y ∈ Y let F(y) be a convex subset

of Z. Assume that for every y ∈ Y there exists a neighbourhood U of y such that⋂
ξ∈U

F(ξ) 6= ∅ .

Then there exists a locally Lipschitz map F : Y → Z such that F (y) ∈ F(y) for every y ∈ Y .

Proof. For every y ∈ Y let Uy be an open neighbourhood of y such that⋂
ξ∈Uy

F(ξ) 6= ∅ .

Since {Uy : y ∈ Y } is an open cover of Y and Y is paracompact (see e.g. [8]), there exists a locally finite

open cover {Wj : j ∈ J} of Y refining {Uy : y ∈ Y }. Assume first that Wj 6= Y for any j ∈ J . If we set

ψj(y) = d(y, Y \Wj) , Ψ(y) =
∑
j∈J

ψj(y) ,

then ψj is Lipschitz and Ψ is well defined and locally Lipschitz, as {Wj : j ∈ J} is locally finite. Since

{Wj : j ∈ J} is an open cover, we also have Ψ(y) 6= 0 for every y ∈ Y . Therefore, if we set

ϕj(y) =
ψj(y)
Ψ(y)

,

it turns out that {ϕj : j ∈ J} is a locally Lipschitz partition of unity subordinated to {Wj : j ∈ J}. If there

exists j0 ∈ J with Wj0 = Y , set ϕj0 = 1 and ϕj = 0 for j 6= j0. Then also in this case {ϕj : j ∈ J} is a locally

Lipschitz partition of unity subordinated to {Wj : j ∈ J}.

Since {Wj : j ∈ J} refines {Uy : y ∈ Y }, for every j ∈ J we have⋂
y∈Wj

F(y) 6= ∅ .

If for every j ∈ J we choose a zj ∈
⋂

y∈Wj

F(y), we can define a locally Lipschitz map F : Y → Z by

F (y) =
∑
j∈J

ϕj(y) zj .

Given y ∈ Y , there is only a finite number Wj1 , . . . ,Wjn of Wj ’s such that y ∈Wj . Then

F (y) =
n∑
k=1

ϕjk(y) zjk ,
n∑
k=1

ϕjk(y) = 1 .

For every k = 1, . . . , n, from y ∈ Wjk it follows zjk ∈ F(y). Since F(y) is convex, we conclude that

F (y) ∈ F(y).

(1.7) Theorem There exists a pseudogradient vector field for f .

Proof. Let

Y = {u ∈ X : f ′(u) 6= 0} .
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For every u ∈ Y , denote by V(u) the set of pseudogradient vectors for f at u. It is readily seen that

V(u) is a convex subset of X. Moreover, for every u ∈ Y there exists w ∈ X such that ‖w‖ ≤ 1 and

〈f ′(u), w〉 ≥ 4
5 ‖f

′(u)‖. Then v = 5
3 ‖f

′(u)‖w satisfies ‖v‖ ≤ 5
3 ‖f

′(u)‖ and 〈f ′(u), v〉 ≥ 4
3 ‖f

′(u)‖2. Since f

is of class C1, there exists a neighbourhhood U of u such that ‖v‖ < 2 ‖f ′(ξ)‖ and 〈f ′(ξ), v〉 > ‖f ′(ξ)‖2 for

every ξ ∈ U , so that

v ∈
⋂
ξ∈U

V(ξ) .

From Lemma (1.6) we deduce that there exists a locally Lipschitz map V : Y → X with V (u) ∈ V(u) and the

assertion follows.

Now we can prove the main result of this section.

(1.8) Theorem (Deformation Theorem) Let c ∈ R be such that f satisfies (CPS)c. Then, for every

ε > 0, every neighbourhood U of Kc (if Kc = ∅, we allow U = ∅) and every λ > 0, there exist ε ∈]0, ε[ and a

continuous map η : X × [0, 1]→ X such that for every (u, t) ∈ X × [0, 1] we have:

(a) ‖η(u, t)− u‖ ≤ λ(1 + ‖u‖)t;

(b) f(η(u, t)) ≤ f(u);

(c) η(u, t) 6= u =⇒ f(η(u, t)) < f(u);

(d) |f(u)− c| ≥ ε =⇒ η(u, t) = u;

(e) η (fc+ε × {1}) ⊆ fc−ε ∪ U .

Proof. From condition (CPS)c it easily follows that Kc is compact. Therefore there exists % > 0 such that

B3% (Kc) ⊆ U .

We claim there exist ε̂ ∈
]
0, 1

2 ε
[

and σ > 0 such that

c− 2ε̂ ≤ f(u) ≤ c+ 2ε̂, u 6∈ B% (Kc) =⇒ (1 + ‖u‖)‖f ′(u)‖ ≥ σ .(1.9)

Actually, assume for a contradiction that (uh) is a sequence in X with f(uh) → c, uh 6∈ B% (Kc) and

(1 + ‖uh‖)‖f ′(uh)‖ → 0. Then, up to a subsequence, (uh) is convergent to some u with f(u) = c, u 6∈ B% (Kc)

and f ′(u) = 0, which is clearly impossible.

Let χ : X → [0, 1] be a locally Lipschitz function such that(
|f(u)− c| ≥ 2ε̂ or u ∈ B% (Kc)

)
=⇒ χ(u) = 0 ,

(|f(u)− c| ≤ ε̂ and u 6∈ B2% (Kc)) =⇒ χ(u) = 1 ,

let µ > 0 with

expµ− 1 ≤ λ

and let

W (u) =

 σµχ(u)
V (u)
‖V (u)‖2

if |f(u)− c| ≤ 2ε̂ and u 6∈ B% (Kc) ,

0 otherwise ,
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where V is a pseudogradient vector field for f . Then W : X → X is locally Lipschitz. Moreover, if

|f(u)− c| ≤ 2ε̂ and u 6∈ B% (Kc), we deduce from (1.9) and the definition of pseudogradient vector that

‖W (u)‖ ≤ σµ 1
‖V (u)‖

≤ σµ 1
‖f ′(u)‖

≤ µ (1 + ‖u‖) ,

〈f ′(u),W (u)〉 = −σµχ(u)
〈f ′(u), V (u)〉
‖V (u)‖2

≤ −σµχ(u)
‖f ′(u)‖2

‖V (u)‖2
≤ −1

4
σµχ(u) .

It follows

∀u ∈ X : ‖W (u)‖ ≤ µ(1 + ‖u‖) ,(1.10)

∀u ∈ X : 〈f ′(u),W (u)〉 ≤ −1
4
σµχ(u) .(1.11)

Therefore the Cauchy problem 
∂η

∂t
(u, t) = W (η(u, t))

η(u, 0) = u

defines a continuous map η : X × R → X such that η(u, t) = u whenever |f(u) − c| ≥ 2ε̂, whence assertion

(d). From (1.11) also (b) and (c) easily follow.

By (1.10) we have

‖η(u, t)− u‖ ≤
∫ t

0

‖W (η(u, τ))‖ dτ ≤

≤ µ

∫ t

0

(1 + ‖η(u, τ)‖) dτ ≤

≤ µ

∫ t

0

‖η(u, τ)− u‖ dτ + µ(1 + ‖u‖)t ,

hence ∫ t

0

‖η(u, τ)− u‖ dτ ≤ 1 + ‖u‖
µ

(exp(µt)− 1)− (1 + ‖u‖)t .

If 0 ≤ t ≤ 1, it follows

‖η(u, t)− u‖ ≤ (1 + ‖u‖) (exp(µt)− 1) ≤ (1 + ‖u‖) (expµ− 1) t ≤ (1 + ‖u‖)λt ,

whence assertion (a). Since η(u, t2) = η(η(u, t1), t2 − t1), we also have

0 ≤ t1 ≤ t2 ≤ 1 =⇒ ‖η(u, t2)− η(u, t1)‖ ≤ λ(1 + ‖η(u, t1)‖)(t2 − t1) .

Finally, to prove assertion (e), consider R > 0 such that B2% (Kc) ⊆ BR (0) and ε ∈]0, ε̂] such that

8ε ≤ σµ , 8λ(1 +R)ε ≤ σµ% .

Let u ∈ fc+ε and assume, for a contradiction, that f(η(u, 1)) > c − ε and η(u, 1) 6∈ U . First of all, we have

c−ε < f(η(u, t)) ≤ c+ε for every t ∈ [0, 1]. Moreover, it is not possible to have η({u}× [0, 1])∩B2% (Kc) = ∅,

for otherwise from (1.11) it would follow

2ε > f(u)− f(η(u, 1)) ≥ 1
4
σµ .
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Therefore there exist 0 ≤ t1 < t2 ≤ 1 such that

d(η(u, t1),Kc) = 2% , d(η(u, t2),Kc) = 3% ,

∀t ∈]t1, t2[: 2% < d(η(u, t),Kc) < 3% .

We have

2ε > f(η(u, t1))− f(η(u, t2)) ≥ 1
4
σµ(t2 − t1) ,

hence

% ≤ ‖η(u, t2)− η(u, t1)‖ ≤ λ(1 + ‖η(u, t1)‖)(t2 − t1) < λ(1 +R)
8ε
σµ

and a contradiction follows.

We end this section by providing a useful criterion for the verification of condition (CPS)c.

(1.12) Definition Let Y,Z be two normed spaces. A map F : Y → Z is said to be completely continuous,

if

(a) F is continuous;

(b) for every bounded sequence (uh) in Y , (F (uh)) admits a (strongly) convergent subsequence in Z.

(1.13) Theorem Assume that

f ′(u) = Lu− F (u)

where L : X → X∗ is linear, continuous, with closed range and finite dimensional null space and F : X → X∗

is completely continuous.

Then for every c ∈ R the following assertions are equivalent:

(a) f satisfies condition (CPS)c;

(b) every (CPS)c−sequence for f is bounded in X.

Proof.

(a) =⇒ (b) If (uh) is an unbounded (CPS)c−sequence for f , there exists a subsequence (uhk) with ‖uhk‖→∞.

Then (uhk) is a (CPS)c−sequence which cannot admit any convergent subsequence.

(b) =⇒ (a) Let (uh) be a (CPS)c−sequence for f . In particular, we have f ′(uh) → 0 in X∗. Since (uh) is

bounded in X, up to a subsequence (F (uh)) is convergent in X∗. Consequently, also (Luh) is convergent in

X∗. Let Y be a closed subspace of X with X = N (L) ⊕ Y and let P0 : X → N (L), P1 : X → Y be the

projections associated with the direct decomposition. Of course, we have LP1uh = Luh. Since L : Y → R (L)

is bijective and R (L) is closed, from the Open Mapping Theorem we deduce that (P1uh) is convergent in Y ,

hence in X. On the other hand, up to a subsequence also (P0uh) is convergent, as N (L) is finite dimensional.

Then the assertion follows.
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2 Mountain pass theorems

Throughout this section, we will consider again a real Banach space X and a function f : X → R of class C1.

(2.1) Definition Let A,B ⊆ X. We say that B links A, if B ∩A = ∅ and B is not contractible in X \A.

(2.2) Remark Of course any B ⊆ X is contractible in X.

The next result is a general mountain pass theorem which will be specialized in some corollaries later.

Our kind of approach is taken from [5, 11]. We want also to recall that the possibility to consider also the

large inequality in the sup− inf −estimate involving B and A is due to [7].

(2.3) Theorem Let A be a nonempty closed subset of X, B a nonempty subset of X and let CB be the

family of all contractions of B in X. Assume that B links A, that

sup
B
f ≤ inf

A
f ,

c := inf
H∈CB

sup
B×[0,1]

f ◦ H < +∞

and that f satisfies (CPS)c.

Then c ≥ inf
A
f and c is a critical value of f . Moreover, if c = inf

A
f , there exists a critical point u of f

with f(u) = c and u ∈ A.

Proof. Since B links A, we have H(B × [0, 1]) ∩A 6= ∅ for every H ∈ CB . It follows c ≥ inf
A
f .

Now, consider first the case c = inf
A
f and assume, for a contradiction, that Kc ∩ A = ∅. Let U be a

neighbourhood of Kc with U ∩A = ∅ and let ε > 0 and η : X× [0, 1]→ X be as in the Deformation Theorem.

Let also H ∈ CB be such that f(H(u, t)) ≤ c+ ε for every (u, t) ∈ B × [0, 1]. If we define K : B × [0, 1]→ X

by

K(u, t) =

{
η(u, 2t) if 0 ≤ t ≤ 1

2 ,

η(H(u, 2t− 1), 1) if 1
2 ≤ t ≤ 1 ,

it is readily seen that K ∈ CB . For every u ∈ B we have either η(u, 2t) = u or f(η(u, 2t)) < f(u) ≤ inf
A
f . In

both cases it follows η(u, 2t) 6∈ A. On the other hand

η(H(u, 2t− 1), 1) ⊆ fc−ε ∪ U

and (fc−ε ∪U)∩A = ∅. Therefore K is a contraction of B in X \A and this contradicts the assumption that

B links A.

Finally, consider the case c > inf
A
f and assume, for a contradiction, that Kc = ∅. Let U = ∅ and let ε > 0

and η : X × [0, 1]→ X be as in the Deformation Theorem. Let also H ∈ CB be such that f(H(u, t)) ≤ c+ ε

for every (u, t) ∈ B × [0, 1]. If we define K : B × [0, 1]→ X by

K(u, t) =

{
η(u, 2t) if 0 ≤ t ≤ 1

2 ,

η(H(u, 2t− 1), 1) if 1
2 ≤ t ≤ 1 ,

we have again K ∈ CB . On the other hand, for every u ∈ B we have

f(η(u, 2t)) ≤ f(u) ≤ sup
B
f ,
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f(η(H(u, 2t− 1), 1)) ≤ c− ε .

Since sup
B
f < c, this contradicts the definition of c.

(2.4) Corollary Let A be a nonempty closed subset of X, B a nonempty subset of X and let CB be the

family of all contractions of B in X. Assume that B links A, that

sup
B
f ≤ inf

A
f

and that

c := inf
H∈CB

sup
B×[0,1]

f ◦ H < +∞ .

Then c ≥ inf
A
f and there exists a (CPS)c−sequence (uh) for f .

Proof. As before, one easily verifies that c ≥ inf
A
f . Now assume, for a contradiction, that there are no

(CPS)c−sequences for f . Then there exists σ > 0 such that

c− σ ≤ f(u) ≤ c+ σ =⇒ (1 + ‖u‖)‖f ′(u)‖ ≥ σ, .(2.5)

Therefore condition (CPS)c holds and from Theorem (2.3) we deduce that c is a critical value of f . This

contradicts (2.5).

The first particular case we consider is the classical mountain pass theorem of Ambrosetti-Rabinowitz

(see [1, 10]).

(2.6) Corollary (Mountain Pass Theorem) Assume there exist u1 ∈ X and r > 0 such that ‖u1‖ > r

and

max{f(0), f(u1)} ≤ inf {f(u) : ‖u‖ = r} .

Set

Γ = {γ ∈ C([0, 1];X) : γ(0) = 0, γ(1) = u1} ,

c = inf
γ∈Γ

max
t∈[0,1]

f(γ(t))

and suppose that f satisfies (CPS)c.

Then c ≥ inf {f(u) : ‖u‖ = r} and c is a critical value of f . Moreover, if c = inf {f(u) : ‖u‖ = r}, there

exists a critical point u of f with f(u) = c and ‖u‖ = r.

Proof. Set A = {u ∈ X : ‖u‖ = r} and B = {0, u1}. It is evident that B links A and that c < +∞. If γ ∈ Γ,

then

H(u, t) =

{
γ(t) if u = 0

u1 if u = u1

is clearly a contraction of B in X. Therefore

c ≥ inf
H∈CB

sup
B×[0,1]

f ◦ H .
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Conversely, if H is a contraction of B in X, then

γ(t) =

{
H(0, 2t) if 0 ≤ t ≤ 1

2

H(u1, 2− 2t) if 1
2 ≤ t ≤ 1

belongs to Γ, whence

c ≤ inf
H∈CB

sup
B×[0,1]

f ◦ H .

From Theorem (2.3) the assertion follows.

(2.7) Lemma Let Y be a finite dimensional normed space, U a bounded open subset of Y and y0 ∈ U .

Then ∂U is not contractible in Y \ {y0}.

Proof. Assume, for a contradiction, that H : ∂U × [0, 1]→ Y \ {y0} is a contraction of ∂U in Y \ {y0} to some

point y1. If F : U → Y is the map with constant value y1, by well known properties of Brouwer’s degree (see

e.g. [6, 12]), we have

1 = deg (Id, U, y0) = deg (F,U, y0) = 0 ,

which is clearly absurd.

Now we come to the saddle theorem of Rabinowitz (see [10]).

(2.8) Corollary (Saddle Theorem) Assume that

(a) X = X− ⊕X+, where dimX− <∞ and X+ is closed in X;

(b) there exists R > 0 such that

max {f(u) : u ∈ X−, ‖u‖ = R} ≤ inf {f(u) : u ∈ X+} ;

(c) f satisfies (CPS)c, where

c = inf
ϕ∈Φ

max
u∈D

f(ϕ(u)) ,

D = {u ∈ X− : ‖u‖ ≤ R} ,

Φ = {ϕ ∈ C(D;X) : ϕ(u) = u whenever ‖u‖ = R} .

Then c ≥ inf
X+

f and c is a critical value of f . Moreover, if c = inf
X+

f , there exists a critical point u of f

with f(u) = c and u ∈ X+.

Proof. Set A = X+ and

B = {u ∈ X− : ‖u‖ = R} .

Since D is compact, it is evident that c < +∞. Moreover, if H is a contraction of B in X \ X+ and

P− : X → X− is the projection associated with the direct decomposition, then

K(u, t) = P−H(u, t)

is a contraction of B in X− \ {0}. Since this contradicts Lemma (2.7), it follows that B links A.
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If ϕ ∈ Φ, then

H(u, t) = ϕ((1− t)u)

is a contraction of B in X. Therefore

c ≥ inf
H∈CB

sup
B×[0,1]

f ◦ H .

Conversely, if H is a contraction of B in X to some point u1, we can define a continuous map

ψ : (B × [0, 1]) ∪ (D × {1})→ X

by

ψ(u, t) =

{
H(u, t) if (u, t) ∈ B × [0, 1] ,

u1 if (u, t) ∈ D × {1} .

There exists a homeomorphism

F : D → (B × [0, 1]) ∪ (D × {1})

with F (B) = B × {0}. Then we have that ψ ◦ F ∈ Φ, whence

c ≤ inf
H∈CB

sup
B×[0,1]

f ◦ H .

From Theorem (2.3) the assertion follows.

Finally, we derive the linking theorem of Benci-Rabinowitz (see [10] and [2] for the corresponding version

in the strongly indefinite case).

(2.9) Corollary (Linking Theorem) Assume that

(a) X = X− ⊕X+, where dimX− <∞ and X+ is closed in X;

(b) there exist 0 < r < R and v ∈ X+ with ‖v‖ = 1 such that

max {f(u) : u ∈ B} ≤ inf {f(u) : u ∈ S} ,

where B is the boundary of

D := {u+ tv : u ∈ X−, t ≥ 0, ‖u+ tv‖ ≤ R}

in X− ⊕ Rv and

S = {u ∈ X+ : ‖u‖ = r} ;

(c) f satisfies (CPS)c, where

c = inf
ϕ∈Φ

max
u∈D

f(ϕ(u)) ,

Φ = {ϕ ∈ C(D;X) : ϕ(u) = u whenever u ∈ B} .

Then c ≥ inf
S
f and c is a critical value of f . Moreover, if c = inf

S
f , there exists a critical point u of f

with f(u) = c and u ∈ S.



10 CHAPTER I. SOME BASIC TOOLS OF CRITICAL POINT THEORY

Proof. Since D is compact, it is evident that c < +∞. If H is a contraction of B in X \ S, consider the

projections P± : X → X± associated with the direct decomposition. Then

K(u, t) = P−H(u, t) + ‖P+H(u, t)‖v

is a contraction of B in (X− ⊕ Rv) \ {rv}. Since this contradicts Lemma (2.7), it follows that B links A.

Now, the same argument used in the proof of the Saddle Theorem shows that

c = inf
H∈CB

sup
B×[0,1]

f ◦ H .

From Theorem (2.3) the assertion follows.

3 Nemytskij operator

Throughout this section, E will denote a measurable subset of Rn and ‖ ‖p the usual norm of Lp (1 ≤ p ≤ ∞).

(3.1) Definition We say that g : E × RN → R
k is a Carathéodory function, if

(a) for every s ∈ RN the function {x 7−→ g(x, s)} is measurable on E;

(b) for a.e. x ∈ E the function {s 7−→ g(x, s)} is continuous on RN .

If u : E → R
N is a function, we denote by g(x, u) the function

E −→ R
k

x 7−→ g(x, u(x)) .

(3.2) Theorem Let g : E × RN → R
k be a Carathéodory function.

Then for every measurable function u : E → R
N we have that g(x, u) : E → R

k is measurable. Moreover,

if u, v agree a.e. in E, then also g(x, u) and g(x, v) agree a.e. in E.

Proof. Let u : E → R
N be a simple function, namely a measurable function with a finite number of values.

If u(E) = {s1, . . . , sm}, set Eh = u−1(sh). Then {E1, . . . , Em} is a measurable partition of E and we have

∀x ∈ E : g(x, u(x)) =
m∑
h=1

χEh(x) g (x, sh) .

Therefore g(x, u) is measurable.

Let now u : E → R
N be a measurable function. It is well known that there exists a sequence (uh) of

simple functions pointwise convergent to u. Then we have

lim
h
g(x, uh) = g(x, u) a.e. in E,

whence the measurability of g(x, u).

It is evident that, if u, v agree a.e. in E, then also g(x, u) and g(x, v) agree a.e. in E.
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(3.3) Theorem Let g : E × RN → R
k be a Carathéodory function and let p, q ∈ [1,∞[. Assume there exist

a ∈ Lq(E) and b ∈ R such that

|g(x, s)| ≤ a(x) + b|s|
p
q

for a.e. x ∈ E and every s ∈ RN .

Then for every u ∈ Lp(E;RN ) we have g(x, u) ∈ Lq(E;Rk) and the map

Lp(E;RN ) −→ Lq(E;Rk)
u 7−→ g(x, u)

is continuous.

Proof. For any u ∈ Lp(E;RN ) we have

|g(x, u)|q ≤
(
a(x) + b|u|

p
q

)q
≤ 2q−1 (a(x)q + bq|u|p) .

Combining this fact with Theorem (3.2), we deduce that g(x, u) ∈ Lq(E;Rk).

Now, let (uh) be a sequence convergent to some u in Lp(E;RN ). Up to a subsequence, (uh) is convergent

a.e. to u and there exists w ∈ Lp(E) such that

|uh| ≤ w a.e. in E

(see e.g. [3, Theorem IV.9]). Therefore we have

lim
h
g(x, uh) = g(x, u) a.e. in E,

|g(x, uh)− g(x, u)|q ≤ 2q−1(|g(x, uh)|q + |g(x, u)|q) ≤

≤ 4q−1 (2a(x)q + bq|uh|p + bq|u|p) ≤

≤ 4q−1 (2a(x)q + bqwp + bq|u|p) a.e. in E.

From Lebesgue’s Theorem we deduce that (g(x, uh)) is convergent to g(x, u) in Lq(E;Rk).

(3.4) Theorem Let g : E×RN → R
k be a Carathéodory function and let q ∈ [1,∞[. Assume that for every

M > 0 there exists aM ∈ Lq(E) such that

|g(x, s)| ≤ aM (x)

for a.e. x ∈ E and every s ∈ RN with |s| ≤M .

Then for every u ∈ L∞(E;RN ) we have g(x, u) ∈ Lq(E;Rk) and the map

L∞(E;RN ) −→ Lq(E;Rk)
u 7−→ g(x, u)

is continuous.

Proof. If u ∈ L∞(E;RN ) and M = ‖u‖∞, we have |g(x, u)| ≤ aM (x) a.e. Taking into account Theorem (3.2),

we easily deduce that g(x, u) ∈ Lq(E;Rk).
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If (uh) is a sequence convergent to some u in L∞(E;RN ), there exists M > 0 such that ‖uh‖∞ ≤M for

every h. It follows that (g(x, uh)) is convergent to g(x, u) a.e. and

|g(x, uh)− g(x, u)|q ≤ 2qaM (x)q .

From Lebesgue’s Theorem we deduce that (g(x, uh)) is convergent to g(x, u) in Lq(E;Rk).

(3.5) Definition The map
Lp(E;RN ) −→ Lq(E;Rk)

u 7−→ g(x, u)

is called Nemytskij operator or superposition operator associated with g.

(3.6) Definition We say that G : E × RN → R
k is a C1−Carathéodory function, if

(a) for every s ∈ RN the function {x 7−→ G(x, s)} is measurable on E;

(b) for a.e. x ∈ E the function {s 7−→ G(x, s)} is of class C1 on RN .

(3.7) Proposition Let g : E × R→ R
k be a Carathéodory function and set G(x, s) =

∫ s
0
g(x, t) dt.

Then G : E × R→ R
k is a C1−Carathéodory function with G(x, 0) = 0.

Proof. It is evident that {s 7−→ G(x, s)} is of class C1 for a.e. x ∈ E. Moreover, for every s ∈ R we have

G(x, s) = lim
k

(
k∑
h=1

s

k
g
(
x, h

s

k

))
a.e. in E.

Therefore {x 7−→ G(x, s)} is measurable for every s ∈ R.

(3.8) Theorem Let G : E × RN → R
k be a C1−Carathéodory function, let 1 ≤ q < p < ∞, let r > 1 be

such that
1
r

+
1
p

=
1
q

and set g(x, s) = DsG(x, s). Assume that G(x, 0) ∈ Lq(E) and that there exist a ∈ Lr(E) and b ∈ R such that

|g(x, s)| ≤ a(x) + b|s|
p
q−1(3.9)

for a.e. x ∈ E and every s ∈ RN .

Then g :E×RN → R
Nk is a Carathéodory function, we have G(x, u) ∈ Lq(E;Rk) for every u ∈ Lp(E;RN )

and the Nemytskij operator
G : Lp(E;RN ) −→ Lq(E;Rk)

u 7−→ G(x, u)

associated with G is of class C1. Moreover we have

∀u, v ∈ Lp(E;RN ) : G′(u)v = g(x, u)v .
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Proof. It is evident that {s 7−→ g(x, s)} is continuous for a.e. x ∈ E. Moreover, for every s, σ ∈ RN we have

g(x, s)σ = lim
k
k

(
G

(
x, s+

1
k
σ

)
−G(x, s)

)
a.e. in E.

Therefore {x 7−→ g(x, s)} is measurable for every s ∈ R.

Since p
p−q = r

q , from (3.9) and Young’s inequality we deduce that

|G(x, s)| ≤ |G(x, 0)|+ a(x)|s|+ bq

p
|s|

p
q ≤ |G(x, 0)|+ p− q

p
a(x)

p
p−q +

q

p
|s|

p
q +

bq

p
|s|

p
q =

= |G(x, 0)|+ p− q
p

a(x)
r
q + (1 + b)

q

p
|s|

p
q .

Since a
r
q ∈ Lq(E), from Theorem (3.3) it follows that the Nemytskij operator

G : Lp(E;RN ) −→ Lq(E;Rk)
u 7−→ G(x, u)

is well defined and continuous. Since p
q − 1 = p

r , also the Nemytskij operator

Lp(E;RN ) −→ Lr(E;RNk)
u 7−→ g(x, u)

is well defined and continuous.

Now let u ∈ Lp(E;RN ). By Hölder’s inequality it is readily seen that the map

Lp(E;RN ) −→ Lq(E;Rk)
v 7−→ g(x, u)v

is well defined, linear and continuous. Let (vh) be a sequence convergent to 0 in Lp(E;RN ). Up to a

subsequence, (vh) is convergent to 0 also a.e. and there exists w ∈ Lp(E) such that |vh| ≤ w a.e. Set

zh = vh
‖vh‖p and define

αh =


G(x, u+ vh)−G(x, u)− g(x, u)vh

|vh|
where vh(x) 6= 0,

0 where vh(x) = 0.

Then (αh) is convergent to 0 a.e. and, by Lagrange’s Inequality, we have

|αh|r ≤ |g(x, u+ ϑhvh)− g(x, u)|r ≤

≤
(
a+ b|u+ ϑhvh|

p
r + a+ b|u|

p
r

)r
≤

≤
(
a+ b(|u|+ |w|)

p
r + a+ b|u|

p
r

)r
,

where 0 < ϑh < 1. Therefore (αh) is convergent to 0 also in Lr(E;Rk). From Hölder’s inequality it follows∫
E

∣∣∣∣G(x, u+ vh)−G(x, u)− g(x, u)vh
‖vh‖p

∣∣∣∣q dx =
∫
E

|αh|q|zh|q dx ≤

≤ ‖αh‖qr‖zh‖qp = ‖αh‖qr ,

hence

lim
h

∫
E

∣∣∣∣G(x, u+ vh)−G(x, u)− g(x, u)vh
‖vh‖p

∣∣∣∣q dx = 0 .

Therefore G is Fréchet differentiable at u and G′(u)v = g(x, u)v.
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Finally, for every u1, u2, v ∈ Lp(E;RN ) we have

‖G′(u1)v − G′(u2)v‖q = ‖g(x, u1)v − g(x, u2)v‖q ≤ ‖g(x, u1)− g(x, u2)‖r‖v‖p ,

hence

‖G′(u1)− G′(u2)‖L(Lp;Lq) ≤ ‖g(x, u1)− g(x, u2)‖r .

Therefore G is of class C1.

(3.10) Theorem Let G : E × RN → R
k be a C1−Carathéodory function, let 1 ≤ q < ∞ and set

g(x, s) = DsG(x, s). Assume that G(x, 0) ∈ Lq(E;Rk) and that for every M > 0 there exists aM ∈ Lq(E)

such that

|g(x, s)| ≤ aM (x)

for a.e. x ∈ E and every s ∈ RN with |s| ≤M .

Then g :E×RN → R
Nk is a Carathéodory function, we have G(x, u)∈Lq(E;Rk) for every u∈L∞(E;RN )

and the Nemytskij operator
G : L∞(E;RN ) −→ Lq(E;Rk)

u 7−→ G(x, u)

associated with G is of class C1. Moreover we have

∀u, v ∈ L∞(E;RN ) : G′(u)v = g(x, u)v .

Proof. As before, we have that g is a Carathéodory function. Moreover,

|G(x, s)| ≤ |G(x, 0)|+ aM (x)|s| ≤ |G(x, 0)|+MaM (x)

for a.e. x ∈ E and every s ∈ RN with |s| ≤M . From Theorem (3.4) it follows that the Nemytskij operators

G : L∞(E;RN ) −→ Lq(E;Rk)
u 7−→ G(x, u)

and
L∞(E;RN ) −→ Lq(E;RNk)

u 7−→ g(x, u)

are well defined and continuous. Then it is possible to argue, with minor variants, as in the proof of Theo-

rem (3.8).

Let now Ω be an open subset of Rn.

(3.11) Theorem The following facts hold:

(a) if 1 ≤ p < n, then we have W 1,p
0 (Ω;RN ) ⊆ L

np
n−p (Ω;RN ) and there exists c(n, p) > 0 such that

∀u ∈W 1,p
0 (Ω;RN ) : ‖u‖ np

n−p
≤ c(n, p) ‖∇u‖p ;
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(b) if n < p <∞, then we have W 1,p
0 (Ω;RN ) ⊆ L∞(Ω;RN ) and there exists c(n, p) > 0 such that

∀u ∈W 1,p
0 (Ω;RN ) : ‖u‖∞ ≤ c(n, p)

(
‖∇u‖pp + ‖u‖pp

) 1
p .

(c) if a, b ∈ R and 1 ≤ p ≤ ∞, then we have W 1,p(]a, b[;RN ) ⊆ L∞(]a, b[;RN ) and there exists c(a, b) > 0

such that

∀u ∈W 1,p(]a, b[;RN ) : ‖u‖∞ ≤ c(a, b)
(
‖u′‖pp + ‖u‖pp

) 1
p .

Proof. See for instance [3, Theorems IX.9, IX.12 and VIII.7].

(3.12) Theorem Let 1 ≤ p ≤ ∞. Then every bounded sequence (uh) in W 1,p(Ω;RN ) admits a subsequence

convergent a.e. to some u ∈ Lp(Ω;RN ).

Proof. If Ω is an open ball, the Rellich-Kondrachov Theorem (see e.g. [3, Theorem IX.16]) implies that

there exists a subsequence (uhk) strongly convergent in Lp(Ω;RN ) to some u. Then a further subsequence is

convergent to u a.e.

Since any open subset of Rn is a countable union of open balls, also in the general case we may find a

subsequence convergent a.e. to some u. From Fatou’s Lemma it is easy to deduce that u ∈ Lp(Ω;RN ).

(3.13) Theorem Let 1 ≤ p < n, let X be a subspace of W 1,p(Ω;RN ) continuously imbedded in L
np
n−p (Ω;RN ),

let G : Ω×RN → R be a C1−Carathéodory function and set g(x, s) = ∇sG(x, s). Assume that G(x, 0) ∈ L1(Ω)

and that there exist a ∈ L
np

n(p−1)+p (Ω) and b ∈ R such that

|g(x, s)| ≤ a(x) + b|s|
np
n−p−1

for a.e. x ∈ Ω and every s ∈ RN .

Then for every u ∈ X we have G(x, u) ∈ L1(Ω) and the functional

f : X −→ R

u 7−→
∫

Ω
G(x, u) dx

is of class C1. Moreover we have

∀u, v ∈ X : f ′(u)v =
∫

Ω

g(x, u) · v dx .

Proof. Since
n(p− 1) + p

np
+
n− p
np

= 1 ,

it follows from Theorem (3.8) that the Nemytskij operator

G : L
np
n−p (Ω;RN ) −→ L1(Ω)

u 7−→ G(x, u)

is of class C1 with G′(u)v = g(x, u) · v.
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On the other hand X is continuously included in L
np
n−p (Ω;RN ) and

{
w 7→

∫
Ω
w dx

}
is a continuous and

linear functional on L1(Ω). Then the assertion easily follows.

(3.14) Definition Let 1 ≤ p < n. We say that a Carathéodory function g : Ω × RN → R
k has subcritical

growth with respect to W 1,p(Ω;RN ), if for every ε > 0 there exists aε ∈ L
np

n(p−1)+p (Ω) such that

|g(x, s)| ≤ aε(x) + ε|s|
np
n−p−1

for a.e. x ∈ Ω and every s ∈ RN .

(3.15) Remark If Ω has finite measure and

|g(x, s)| ≤ a(x) + b|s|q

with a ∈ L
np

n(p−1)+p (Ω), b ∈ R and 0 < q < np
n−p − 1, then g has subcritical growth with respect to W 1,p(Ω;RN ).

Proof. Let rq = np
n−p − 1. From Young’s inequality we deduce that

|g(x, s)| ≤ a(x) +
1
r′

(
b

δ

)r′
+

1
r
δr|s|

np
n−p−1

for every δ > 0. Since the constant 1
r′

(
b
δ

)r′
belongs to L

np
n(p−1)+p (Ω) and δr can be made arbitrarily small,

the assertion follows.

(3.16) Theorem Let 1 ≤ p < n, let X be a subspace of W 1,p(Ω;RN ) continuously imbedded in L
np
n−p (Ω;RN ),

let G : Ω×RN → R be a C1−Carathéodory function and set g(x, s) = ∇sG(x, s). Assume that G(x, 0) ∈ L1(Ω)

and that g has subcritical growth with respect to W 1,p(Ω;RN ).

Then the functional
f : X −→ R

u 7−→
∫

Ω
G(x, u) dx

is of class C1 with

∀u, v ∈ X : f ′(u)v =
∫

Ω

g(x, u) · v dx

and the derivative f ′ : X → X∗ is completely continuous.

Proof. Since g has subcritical growth, it follows from Theorem (3.13) that f is well defined and of class C1

with

∀u, v ∈ X : f ′(u)v =
∫

Ω

g(x, u) · v dx .

For every u1, u2, v ∈ X, Hölder’s inequality yields,

|f ′(u1)v − f ′(u2)v| =
∣∣∣∣∫

Ω

(g(x, u1)− g(x, u2)) · v dx
∣∣∣∣ ≤

≤ ‖g(x, u1)− g(x, u2)‖ np
n(p−1)+p

‖v‖ np
n−p
≤

≤ c‖g(x, u1)− g(x, u2)‖ np
n(p−1)+p

(
‖∇v‖pp + ‖v‖pp

) 1
p .
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Therefore it is sufficient to prove assertion (b) of Definition (1.12) for the map

X −→ L
np

n(p−1)+p (Ω;RN )
u 7−→ g(x, u)

.

Without loss of generality, we can suppose N = 1. Let us treat first of all the case in which

|g(x, s)| ≤ a(x)

with a ∈ L
np

n(p−1)+p (Ω). Let (uh) be a bounded sequence in X. By Theorem (3.12), up to a subsequence (uh)

is convergent a.e. to some u ∈ Lp(Ω). Since

|g(x, uh)− g(x, u)| ≤ 2a(x) ,

from Lebesgue’s Theorem we deduce that (g(x, uh)) is strongly convergent to g(x, u) in L
np

n(p−1)+p (Ω).

In the general case, set for any ε > 0

gε(x, s) = min {max {g(x, s),−aε(x)} , aε(x)} .

Since |gε(x, s)| ≤ aε(x), the map
X −→ L

np
n(p−1)+p (Ω)

u 7−→ gε(x, u)

satisfies condition (b) of Definition (1.12) by the previous step. On the other hand, we have

|gε(x, s)− g(x, s)| ≤ ε|s|
np
n−p−1 ,

hence, for every u ∈ X,

‖gε(x, u)− g(x, u)‖ np
n(p−1)+p

≤ ε‖u‖
np
n−p−1
np
n−p

≤ εc
np
n−p−1

(
‖∇u‖pp + ‖u‖pp

) n
n−p−

1
p .

We deduce that

lim
ε→0
‖gε(x, u)− g(x, u)‖ np

n(p−1)+p
= 0

uniformly on bounded subsets of X and the assertion follows from well known properties of completely

continuous operators (see e.g. [9, Proposition III.5.4]).

(3.17) Theorem Let n < p ≤ ∞, let X be a subspace of W 1,p(Ω;RN ) continuously imbedded in L∞(Ω;RN ),

let G : Ω×RN → R be a C1−Carathéodory function and set g(x, s) = ∇sG(x, s). Assume that G(x, 0) ∈ L1(Ω)

and that for every M > 0 there exists aM ∈ L1(Ω) such that

|g(x, s)| ≤ aM (x)

for a.e. x ∈ Ω and every s ∈ RN with |s| ≤M .

Then for every u ∈ X we have G(x, u) ∈ L1(Ω) and the functional

f : X −→ R

u 7−→
∫

Ω
G(x, u) dx
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is of class C1. Moreover we have

∀u, v ∈ X : f ′(u)v =
∫

Ω

g(x, u) · v dx

and the derivative f ′ : X → X∗ is completely continuous.

Proof. From Theorem (3.10) we deduce that the Nemytskij operator

G : L∞(Ω;RN ) −→ L1(Ω)
u 7−→ G(x, u)

is of class C1 with G′(u)v = g(x, u) · v.

On the other hand, X is continuously included in L∞(Ω;RN ) and
{
w 7→

∫
Ω
w dx

}
is a continuous and

linear functional on L1(Ω). Then it is easy to show that f is of class C1 with f ′(u)v =
∫

Ω
g(x, u) · v dx.

For every u1, u2, v ∈ X, Hölder’s inequality yields,

|f ′(u1)v − f ′(u2)v| =
∣∣∣∣∫

Ω

(g(x, u1)− g(x, u2)) · v dx
∣∣∣∣ ≤

≤ ‖g(x, u1)− g(x, u2)‖1‖v‖∞ ≤

≤ c‖g(x, u1)− g(x, u2)‖1
(
‖∇v‖pp + ‖v‖pp

) 1
p .

Therefore it is sufficient to show that the map

X −→ L1(Ω;RN )
u 7−→ g(x, u)

satisfies condition (b) of Definition (1.12).

Let (uh) be a bounded sequence in X and let M > 0 be such that ‖uh‖∞ ≤M . By Theorem (3.12), up

to a subsequence (uh) is convergent a.e. to some u ∈ Lp(Ω;RN ). Since

|g(x, uh)− g(x, u)| ≤ 2aM (x) ,

from Lebesgue’s Theorem we deduce that (g(x, uh)) is strongly convergent to g(x, u) in L1(Ω;RN ).

(3.18) Corollary Let Ω be bounded, let G :Ω×RN → R be a C1−Carathéodory function with G(x, 0) ∈ L1(Ω)

and assume that g := ∇sG(x, s) has subcritical growth with respect to W 1,2(Ω;RN ).

Then the functional f : W 1,2
0 (Ω)→ R defined by

f(u) =
1
2

∫
Ω

|∇u|2 dx−
∫

Ω

G(x, u) dx

is of class C1 with

∀u, v ∈W 1,2
0 (Ω) : f ′(u)v =

∫
Ω

∇u · ∇v dx−
∫

Ω

g(x, u) · v dx

and the derivative f ′ : W 1,2
0 (Ω;RN )→W−1,2(Ω;RN ) has the form required in Theorem (1.13).

Proof. Define f1 : W 1,2
0 (Ω;RN )→ R by

f1(u) = −
∫

Ω

G̃(x, u) dx ,
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where G̃(x, s) = G(x, s) + 1
2 |s|

2. Taking into account Remark (3.15), it is easy to see that also g̃ := ∇sG̃ has

subcritical growth with respect to W 1,2(Ω;RN ). From Theorem (3.16) it follows that f1 is well defined, of

class C1 with f1
′ completely continuous.

Since

f(u) =
1
2

∫
Ω

(
|∇u|2 + |u|2

)
dx− f1(u) ,

we have f ′(u) = Lu − f1
′(u), where L : W 1,2

0 (Ω;RN ) → W−1,2(Ω;RN ) is an isomorphism, and the assertion

follows

(3.19) Corollary Let

X =
{
u ∈W 1,2(]− π, π[;RN ) : u(−π) = u(π)

}
let G :] − π, π[×RN → R be a C1−Carathéodory function and set g(x, s) = ∇sG(x, s). Assume that

G(x, 0) ∈ L1(]− π, π[) and that for every M > 0 there exists aM ∈ L1(]− π, π[) such that

|g(x, s)| ≤ aM (x)

for a.e. x ∈]− π, π[ and every s ∈ RN with |s| ≤M .

Then X is a closed subspace of W 1,2(]− π, π[;RN ), the functional f : X → R defined by

f(u) =
1
2

∫ π

−π
|u′|2 dx−

∫ π

−π
G(x, u) dx

is of class C1 with

∀u, v ∈ X : f ′(u)v =
∫ π

−π
u′ · v′ dx−

∫ π

−π
g(x, u) · v dx

and the derivative f ′ : X → X∗ has the form required in Theorem (1.13).

Proof. It is well known that W 1,2(] − π, π[;RN ) is continuously imbedded in C([−π, π];RN ) (see e.g. [3]).

Therefore X is well defined and is in fact a closed linear subspace of W 1,2(]− π, π[;RN ).

If we define again f1 : X → R by

f1(u) = −
∫ π

−π
G̃(x, u) dx ,

where G̃(x, s) = G(x, s) + 1
2 |s|

2, we deduce now from Theorem (3.17) that (f1)′ : X → X∗ is completely

continuous. Then the assertion easily follows.
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