Some Basic Tools of Critical Point Theory

Marco Degiovanni

September 26, 2000

Contents

Ι	Son	ne basic tools of critical point theory	1
	1	The deformation theorem	1
	2	Mountain pass theorems	6
	3	Nemytskij operator	10
Bibliography		20	

Bibliography

CONTENTS

Chapter I

Some basic tools of critical point theory

1 The deformation theorem

Throughout this section, we will consider a real Banach space X and a function $f: X \to \mathbb{R}$ of class C^1 .

(1.1) Definition We say that $u \in X$ is a critical point of f, if f'(u) = 0. We say that $c \in \mathbb{R}$ is a critical value of f, if there exists a critical point u of f with f(u) = c. We say that $c \in \mathbb{R}$ is a regular value of f, if it is not a critical value of f.

(1.2) Definition Let $c \in \mathbb{R}$. We say that (u_h) is a Cerami-Palais-Smale sequence at level c ((CPS)_c-sequence, for short) for f, if $f(u_h) \to c$ and $(1 + ||u_h||)f'(u_h) \to 0$.

We say that f satisfies the Cerami-Palais-Smale condition at level c (condition $(CPS)_c$, for short), if every $(CPS)_c$ -sequence for f admits a (strongly) convergent subsequence in X.

(1.3) Remark In the classical Palais-Smale condition, one considers sequences with $f'(u_h) \to 0$ instead of $(1+||u_h||)f'(u_h) \to 0$. This useful variant, which is clearly a weaker condition, was introduced by CERAMI [4].

For every $b \in \mathbb{R} \cup \{+\infty\}$ and $c \in \mathbb{R}$, we set

$$f^b := \{ u \in X : f(u) \le b \} ,$$

$$K_c := \{ u \in X : f(u) = c, f'(u) = 0 \} .$$

(1.4) Definition Given $u \in X$, we say that $v \in X$ is a pseudogradient vector for f at u, if $||v|| \le 2||f'(u)||$ and $\langle f'(u), v \rangle \ge ||f'(u)||^2$.

We say that

 $V: \{u \in X: f'(u) \neq 0\} \longrightarrow X$

is a pseudogradient vector field for f, if V is locally Lipschitz and V(u) is a pseudogradient vector for f at u for any u in the domain of V.

(1.5) **Remark** If v is a pseudogradient vector for f at u, we have

$$|f'(u)||^2 \le \langle f'(u), v \rangle \le ||f'(u)|| ||v||,$$

hence $||f'(u)|| \le ||v||$.

(1.6) Lemma Let Y be a metric space, Z a normed space and for every $y \in Y$ let $\mathcal{F}(y)$ be a convex subset of Z. Assume that for every $y \in Y$ there exists a neighbourhood U of y such that

$$\bigcap_{\xi \in U} \mathcal{F}(\xi) \neq \emptyset.$$

Then there exists a locally Lipschitz map $F: Y \to Z$ such that $F(y) \in \mathcal{F}(y)$ for every $y \in Y$.

Proof. For every $y \in Y$ let U_y be an open neighbourhood of y such that

$$\bigcap_{\xi \in U_y} \mathcal{F}(\xi) \neq \emptyset$$

Since $\{U_y : y \in Y\}$ is an open cover of Y and Y is paracompact (see e.g. [8]), there exists a locally finite open cover $\{W_j : j \in J\}$ of Y refining $\{U_y : y \in Y\}$. Assume first that $W_j \neq Y$ for any $j \in J$. If we set

$$\psi_j(y) = d(y, Y \setminus W_j), \qquad \Psi(y) = \sum_{j \in J} \psi_j(y),$$

then ψ_j is Lipschitz and Ψ is well defined and locally Lipschitz, as $\{W_j : j \in J\}$ is locally finite. Since $\{W_j : j \in J\}$ is an open cover, we also have $\Psi(y) \neq 0$ for every $y \in Y$. Therefore, if we set

$$\varphi_j(y) = \frac{\psi_j(y)}{\Psi(y)} \,,$$

it turns out that $\{\varphi_j : j \in J\}$ is a locally Lipschitz partition of unity subordinated to $\{W_j : j \in J\}$. If there exists $j_0 \in J$ with $W_{j_0} = Y$, set $\varphi_{j_0} = 1$ and $\varphi_j = 0$ for $j \neq j_0$. Then also in this case $\{\varphi_j : j \in J\}$ is a locally Lipschitz partition of unity subordinated to $\{W_j : j \in J\}$.

Since $\{W_j : j \in J\}$ refines $\{U_y : y \in Y\}$, for every $j \in J$ we have

$$\bigcap_{y \in W_j} \mathcal{F}(y) \neq \emptyset$$

If for every $j \in J$ we choose a $z_j \in \bigcap_{y \in W_j} \mathcal{F}(y)$, we can define a locally Lipschitz map $F: Y \to Z$ by

$$F(y) = \sum_{j \in J} \varphi_j(y) \, z_j \, .$$

Given $y \in Y$, there is only a finite number W_{j_1}, \ldots, W_{j_n} of W_j 's such that $y \in W_j$. Then

$$F(y) = \sum_{k=1}^{n} \varphi_{j_k}(y) \, z_{j_k} \,, \qquad \sum_{k=1}^{n} \varphi_{j_k}(y) = 1 \,.$$

For every k = 1, ..., n, from $y \in W_{j_k}$ it follows $z_{j_k} \in \mathcal{F}(y)$. Since $\mathcal{F}(y)$ is convex, we conclude that $F(y) \in \mathcal{F}(y)$.

(1.7) **Theorem** There exists a pseudogradient vector field for f.

Proof. Let

$$Y = \{ u \in X : f'(u) \neq 0 \}$$
.

1. THE DEFORMATION THEOREM

For every $u \in Y$, denote by $\mathcal{V}(u)$ the set of pseudogradient vectors for f at u. It is readily seen that $\mathcal{V}(u)$ is a convex subset of X. Moreover, for every $u \in Y$ there exists $w \in X$ such that $||w|| \leq 1$ and $\langle f'(u), w \rangle \geq \frac{4}{5} ||f'(u)||$. Then $v = \frac{5}{3} ||f'(u)|| w$ satisfies $||v|| \leq \frac{5}{3} ||f'(u)||$ and $\langle f'(u), v \rangle \geq \frac{4}{3} ||f'(u)||^2$. Since f is of class C^1 , there exists a neighbourhood U of u such that $||v|| < 2 ||f'(\xi)||$ and $\langle f'(\xi), v \rangle > ||f'(\xi)||^2$ for every $\xi \in U$, so that

$$v \in \bigcap_{\xi \in U} \mathcal{V}(\xi)$$
.

From Lemma (1.6) we deduce that there exists a locally Lipschitz map $V: Y \to X$ with $V(u) \in \mathcal{V}(u)$ and the assertion follows.

Now we can prove the main result of this section.

(1.8) Theorem (Deformation Theorem) Let $c \in \mathbb{R}$ be such that f satisfies $(CPS)_c$. Then, for every $\overline{\varepsilon} > 0$, every neighbourhood U of K_c (if $K_c = \emptyset$, we allow $U = \emptyset$) and every $\lambda > 0$, there exist $\varepsilon \in]0, \overline{\varepsilon}[$ and a continuous map $\eta : X \times [0, 1] \to X$ such that for every $(u, t) \in X \times [0, 1]$ we have:

- (a) $\|\eta(u,t) u\| \le \lambda (1 + \|u\|)t;$
- (b) $f(\eta(u,t)) \leq f(u);$
- $(c) \ \eta(u,t) \neq u \implies f(\eta(u,t)) < f(u);$
- (d) $|f(u) c| \ge \overline{\varepsilon} \implies \eta(u, t) = u;$

$$(e) \ \eta \left(f^{c+\varepsilon} \times \{1\} \right) \subseteq f^{c-\varepsilon} \cup U$$

Proof. From condition $(CPS)_c$ it easily follows that K_c is compact. Therefore there exists $\varrho > 0$ such that $B_{3\varrho}(K_c) \subseteq U$.

We claim there exist $\hat{\varepsilon} \in \left]0, \frac{1}{2}\overline{\varepsilon}\right[$ and $\sigma > 0$ such that

(1.9)
$$c - 2\hat{\varepsilon} \le f(u) \le c + 2\hat{\varepsilon}, \ u \notin \mathcal{B}_{\varrho}(K_c) \Longrightarrow (1 + ||u||) ||f'(u)|| \ge \sigma.$$

Actually, assume for a contradiction that (u_h) is a sequence in X with $f(u_h) \to c$, $u_h \notin B_{\varrho}(K_c)$ and $(1 + ||u_h||)||f'(u_h)|| \to 0$. Then, up to a subsequence, (u_h) is convergent to some u with f(u) = c, $u \notin B_{\varrho}(K_c)$ and f'(u) = 0, which is clearly impossible.

Let $\chi: X \to [0,1]$ be a locally Lipschitz function such that

$$\left(|f(u) - c| \ge 2\hat{\varepsilon} \text{ or } u \in \overline{\mathcal{B}_{\varrho}(K_c)}\right) \Longrightarrow \chi(u) = 0,$$
$$\left(|f(u) - c| \le \hat{\varepsilon} \text{ and } u \notin \mathcal{B}_{2\varrho}(K_c)\right) \Longrightarrow \chi(u) = 1,$$

let $\mu > 0$ with

$$\exp \mu - 1 \le \lambda$$

and let

$$W(u) = \begin{cases} \sigma \mu \chi(u) \frac{V(u)}{\|V(u)\|^2} & \text{if } |f(u) - c| \le 2\hat{\varepsilon} \text{ and } u \notin B_{\varrho}(K_c), \\ 0 & \text{otherwise}, \end{cases}$$

where V is a pseudogradient vector field for f. Then $W : X \to X$ is locally Lipschitz. Moreover, if $|f(u) - c| \leq 2\hat{\varepsilon}$ and $u \notin B_{\varrho}(K_c)$, we deduce from (1.9) and the definition of pseudogradient vector that

$$\begin{split} \|W(u)\| &\leq \sigma \mu \, \frac{1}{\|V(u)\|} \leq \sigma \mu \, \frac{1}{\|f'(u)\|} \leq \mu \left(1 + \|u\|\right), \\ \langle f'(u), W(u) \rangle &= -\sigma \mu \chi(u) \, \frac{\langle f'(u), V(u) \rangle}{\|V(u)\|^2} \leq -\sigma \mu \chi(u) \, \frac{\|f'(u)\|^2}{\|V(u)\|^2} \leq -\frac{1}{4} \, \sigma \mu \chi(u) \end{split}$$

It follows

(1.10)
$$\forall u \in X : \|W(u)\| \le \mu (1 + \|u\|),$$

(1.11)
$$\forall u \in X : \langle f'(u), W(u) \rangle \leq -\frac{1}{4} \, \sigma \mu \chi(u) \, .$$

Therefore the Cauchy problem

$$\left\{ \begin{array}{l} \displaystyle \frac{\partial \eta}{\partial t}(u,t) = W(\eta(u,t)) \\ \displaystyle \eta(u,0) = u \end{array} \right.$$

defines a continuous map $\eta : X \times \mathbb{R} \to X$ such that $\eta(u, t) = u$ whenever $|f(u) - c| \ge 2\hat{\varepsilon}$, whence assertion (d). From (1.11) also (b) and (c) easily follow.

By (1.10) we have

$$\begin{aligned} \|\eta(u,t) - u\| &\leq \int_0^t \|W(\eta(u,\tau))\| \, d\tau \leq \\ &\leq \mu \int_0^t (1 + \|\eta(u,\tau)\|) \, d\tau \leq \\ &\leq \mu \int_0^t \|\eta(u,\tau) - u\| \, d\tau + \mu(1 + \|u\|)t \,, \end{aligned}$$

hence

$$\int_0^t \|\eta(u,\tau) - u\| \, d\tau \le \frac{1 + \|u\|}{\mu} \left(\exp(\mu t) - 1 \right) - (1 + \|u\|) t \, .$$

If $0 \le t \le 1$, it follows

$$\|\eta(u,t) - u\| \le (1 + \|u\|) (\exp(\mu t) - 1) \le (1 + \|u\|) (\exp(\mu - 1)) t \le (1 + \|u\|)\lambda t$$

whence assertion (a). Since $\eta(u, t_2) = \eta(\eta(u, t_1), t_2 - t_1)$, we also have

$$0 \le t_1 \le t_2 \le 1 \implies \|\eta(u, t_2) - \eta(u, t_1)\| \le \lambda (1 + \|\eta(u, t_1)\|)(t_2 - t_1).$$

Finally, to prove assertion (e), consider R > 0 such that $\overline{B_{2\varrho}(K_c)} \subseteq B_R(0)$ and $\varepsilon \in [0, \hat{\varepsilon}]$ such that

$$8\varepsilon \le \sigma \mu$$
, $8\lambda(1+R)\varepsilon \le \sigma \mu \varrho$.

Let $u \in f^{c+\varepsilon}$ and assume, for a contradiction, that $f(\eta(u,1)) > c - \varepsilon$ and $\eta(u,1) \notin U$. First of all, we have $c - \varepsilon < f(\eta(u,t)) \le c + \varepsilon$ for every $t \in [0,1]$. Moreover, it is not possible to have $\eta(\{u\} \times [0,1]) \cap B_{2\varrho}(K_c) = \emptyset$, for otherwise from (1.11) it would follow

$$2\varepsilon > f(u) - f(\eta(u, 1)) \ge \frac{1}{4} \sigma \mu$$
.

1. THE DEFORMATION THEOREM

Therefore there exist $0 \le t_1 < t_2 \le 1$ such that

$$\begin{split} d(\eta(u,t_1),K_c) &= 2\varrho\,, \qquad d(\eta(u,t_2),K_c) = 3\varrho\,, \\ \forall t \in]t_1,t_2 [: \ 2\varrho < d(\eta(u,t),K_c) < 3\varrho\,. \end{split}$$

We have

$$2\varepsilon > f(\eta(u, t_1)) - f(\eta(u, t_2)) \ge \frac{1}{4} \,\sigma \mu(t_2 - t_1) \,,$$

hence

$$\varrho \le \|\eta(u, t_2) - \eta(u, t_1)\| \le \lambda (1 + \|\eta(u, t_1)\|)(t_2 - t_1) < \lambda (1 + R) \frac{8\varepsilon}{\sigma\mu}$$

and a contradiction follows. \blacksquare

We end this section by providing a useful criterion for the verification of condition $(CPS)_c$.

(1.12) Definition Let Y, Z be two normed spaces. A map $F : Y \to Z$ is said to be completely continuous, if

- (a) F is continuous;
- (b) for every bounded sequence (u_h) in Y, $(F(u_h))$ admits a (strongly) convergent subsequence in Z.

(1.13) Theorem Assume that

$$f'(u) = Lu - F(u)$$

where $L: X \to X^*$ is linear, continuous, with closed range and finite dimensional null space and $F: X \to X^*$ is completely continuous.

Then for every $c \in \mathbb{R}$ the following assertions are equivalent:

- (a) f satisfies condition $(CPS)_c$;
- (b) every $(CPS)_c$ -sequence for f is bounded in X.

Proof.

 $(a) \Longrightarrow (b)$ If (u_h) is an unbounded $(CPS)_c$ -sequence for f, there exists a subsequence (u_{h_k}) with $||u_{h_k}|| \to \infty$. Then (u_{h_k}) is a $(CPS)_c$ -sequence which cannot admit any convergent subsequence. $(b) \Longrightarrow (a)$ Let (u_h) be a $(CPS)_c$ -sequence for f. In particular, we have $f'(u_h) \to 0$ in X^* . Since (u_h) is bounded in X, up to a subsequence $(F(u_h))$ is convergent in X^* . Consequently, also (Lu_h) is convergent in X^* . Let Y be a closed subspace of X with $X = \mathcal{N}(L) \oplus Y$ and let $P_0 : X \to \mathcal{N}(L), P_1 : X \to Y$ be the projections associated with the direct decomposition. Of course, we have $LP_1u_h = Lu_h$. Since $L : Y \to \mathcal{R}(L)$ is bijective and $\mathcal{R}(L)$ is closed, from the Open Mapping Theorem we deduce that (P_1u_h) is convergent in Y, hence in X. On the other hand, up to a subsequence also (P_0u_h) is convergent, as $\mathcal{N}(L)$ is finite dimensional. Then the assertion follows.

2 Mountain pass theorems

Throughout this section, we will consider again a real Banach space X and a function $f: X \to \mathbb{R}$ of class C^1 .

(2.1) **Definition** Let $A, B \subseteq X$. We say that B links A, if $B \cap A = \emptyset$ and B is not contractible in $X \setminus A$.

(2.2) **Remark** Of course any $B \subseteq X$ is contractible in X.

The next result is a general mountain pass theorem which will be specialized in some corollaries later. Our kind of approach is taken from [5, 11]. We want also to recall that the possibility to consider also the large inequality in the sup – inf –estimate involving B and A is due to [7].

(2.3) Theorem Let A be a nonempty closed subset of X, B a nonempty subset of X and let C_B be the family of all contractions of B in X. Assume that B links A, that

$$\sup_{B} f \leq \inf_{A} f,$$
$$c := \inf_{\mathcal{H} \in \mathcal{C}_{B}} \sup_{B \times [0,1]} f \circ \mathcal{H} < +\infty$$

and that f satisfies $(CPS)_c$.

Then $c \ge \inf_A f$ and c is a critical value of f. Moreover, if $c = \inf_A f$, there exists a critical point u of f with f(u) = c and $u \in A$.

Proof. Since B links A, we have $\mathcal{H}(B \times [0,1]) \cap A \neq \emptyset$ for every $\mathcal{H} \in \mathcal{C}_B$. It follows $c \ge \inf_A f$.

Now, consider first the case $c = \inf_A f$ and assume, for a contradiction, that $K_c \cap A = \emptyset$. Let U be a neighbourhood of K_c with $U \cap A = \emptyset$ and let $\varepsilon > 0$ and $\eta : X \times [0,1] \to X$ be as in the Deformation Theorem. Let also $\mathcal{H} \in \mathcal{C}_B$ be such that $f(\mathcal{H}(u,t)) \leq c + \varepsilon$ for every $(u,t) \in B \times [0,1]$. If we define $\mathcal{K} : B \times [0,1] \to X$ by

$$\mathcal{K}(u,t) = \begin{cases} \eta(u,2t) & \text{if } 0 \le t \le \frac{1}{2}, \\ \eta(\mathcal{H}(u,2t-1),1) & \text{if } \frac{1}{2} \le t \le 1, \end{cases}$$

it is readily seen that $\mathcal{K} \in \mathcal{C}_B$. For every $u \in B$ we have either $\eta(u, 2t) = u$ or $f(\eta(u, 2t)) < f(u) \leq \inf_A f$. In both cases it follows $\eta(u, 2t) \notin A$. On the other hand

$$\eta(\mathcal{H}(u, 2t-1), 1) \subseteq f^{c-\varepsilon} \cup U$$

and $(f^{c-\varepsilon} \cup U) \cap A = \emptyset$. Therefore \mathcal{K} is a contraction of B in $X \setminus A$ and this contradicts the assumption that B links A.

Finally, consider the case $c > \inf_A f$ and assume, for a contradiction, that $K_c = \emptyset$. Let $U = \emptyset$ and let $\varepsilon > 0$ and $\eta : X \times [0,1] \to X$ be as in the Deformation Theorem. Let also $\mathcal{H} \in \mathcal{C}_B$ be such that $f(\mathcal{H}(u,t)) \leq c + \varepsilon$ for every $(u,t) \in B \times [0,1]$. If we define $\mathcal{K} : B \times [0,1] \to X$ by

$$\mathcal{K}(u,t) = \begin{cases} \eta(u,2t) & \text{if } 0 \le t \le \frac{1}{2} ,\\ \eta(\mathcal{H}(u,2t-1),1) & \text{if } \frac{1}{2} \le t \le 1 , \end{cases}$$

we have again $\mathcal{K} \in \mathcal{C}_B$. On the other hand, for every $u \in B$ we have

$$f(\eta(u, 2t)) \le f(u) \le \sup_{B} f$$
,

2. MOUNTAIN PASS THEOREMS

$$f(\eta(\mathcal{H}(u, 2t-1), 1)) \le c - \varepsilon.$$

Since $\sup_{B} f < c$, this contradicts the definition of c.

(2.4) Corollary Let A be a nonempty closed subset of X, B a nonempty subset of X and let C_B be the family of all contractions of B in X. Assume that B links A, that

$$\sup_{B} f \le \inf_{A} f$$

 $and \ that$

$$c := \inf_{\mathcal{H} \in \mathcal{C}_B} \sup_{B \times [0,1]} f \circ \mathcal{H} < +\infty.$$

Then
$$c \ge \inf_{A} f$$
 and there exists a $(CPS)_c$ -sequence (u_h) for f .

Proof. As before, one easily verifies that $c \ge \inf_A f$. Now assume, for a contradiction, that there are no $(CPS)_c$ -sequences for f. Then there exists $\sigma > 0$ such that

(2.5)
$$c - \sigma \le f(u) \le c + \sigma \implies (1 + ||u||) ||f'(u)|| \ge \sigma,$$

Therefore condition $(CPS)_c$ holds and from Theorem (2.3) we deduce that c is a critical value of f. This contradicts (2.5).

The first particular case we consider is the classical mountain pass theorem of Ambrosetti-Rabinowitz (see [1, 10]).

(2.6) Corollary (Mountain Pass Theorem) Assume there exist $u_1 \in X$ and r > 0 such that $||u_1|| > r$ and

$$\max\{f(0), f(u_1)\} \le \inf\{f(u) : ||u|| = r\}.$$

Set

$$\begin{split} \Gamma &= \{\gamma \in C([0,1];X): \, \gamma(0) = 0, \, \gamma(1) = u_1 \} \ , \\ c &= \inf_{\gamma \in \Gamma} \, \max_{t \in [0,1]} \, f(\gamma(t)) \end{split}$$

and suppose that f satisfies $(CPS)_c$.

Then $c \ge \inf \{f(u) : \|u\| = r\}$ and c is a critical value of f. Moreover, if $c = \inf \{f(u) : \|u\| = r\}$, there exists a critical point u of f with f(u) = c and $\|u\| = r$.

Proof. Set $A = \{u \in X : ||u|| = r\}$ and $B = \{0, u_1\}$. It is evident that B links A and that $c < +\infty$. If $\gamma \in \Gamma$, then

$$\mathcal{H}(u,t) = \begin{cases} \gamma(t) & \text{if } u = 0\\ u_1 & \text{if } u = u_1 \end{cases}$$

is clearly a contraction of B in X. Therefore

$$c \geq \inf_{\mathcal{H} \in \mathcal{C}_B} \sup_{B \times [0,1]} f \circ \mathcal{H}.$$

Conversely, if \mathcal{H} is a contraction of B in X, then

$$\gamma(t) = \begin{cases} \mathcal{H}(0, 2t) & \text{if } 0 \le t \le \frac{1}{2} \\ \mathcal{H}(u_1, 2 - 2t) & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

belongs to Γ , whence

$$c \leq \inf_{\mathcal{H} \in \mathcal{C}_B} \sup_{B \times [0,1]} f \circ \mathcal{H}.$$

From Theorem (2.3) the assertion follows.

(2.7) Lemma Let Y be a finite dimensional normed space, U a bounded open subset of Y and $y_0 \in U$. Then ∂U is not contractible in $Y \setminus \{y_0\}$.

Proof. Assume, for a contradiction, that $\mathcal{H} : \partial U \times [0,1] \to Y \setminus \{y_0\}$ is a contraction of ∂U in $Y \setminus \{y_0\}$ to some point y_1 . If $F : \overline{U} \to Y$ is the map with constant value y_1 , by well known properties of Brouwer's degree (see e.g. [6, 12]), we have

$$1 = \deg (\mathrm{Id}, U, y_0) = \deg (F, U, y_0) = 0,$$

which is clearly absurd. \blacksquare

Now we come to the saddle theorem of Rabinowitz (see [10]).

(2.8) Corollary (Saddle Theorem) Assume that

- (a) $X = X_{-} \oplus X_{+}$, where dim $X_{-} < \infty$ and X_{+} is closed in X;
- (b) there exists R > 0 such that

$$\max \{ f(u) : u \in X_{-}, \|u\| = R \} \le \inf \{ f(u) : u \in X_{+} \} ;$$

(c) f satisfies $(CPS)_c$, where

$$\begin{split} c &= \inf_{\varphi \in \Phi} \max_{u \in D} f(\varphi(u)) \,, \\ D &= \left\{ u \in X_{-} : \, \|u\| \leq R \right\} \,, \\ \Phi &= \left\{ \varphi \in C(D;X) : \, \varphi(u) = u \text{ whenever } \|u\| = R \right\} \,. \end{split}$$

Then $c \ge \inf_{X_+} f$ and c is a critical value of f. Moreover, if $c = \inf_{X_+} f$, there exists a critical point u of f with f(u) = c and $u \in X_+$.

Proof. Set $A = X_+$ and

$$B = \{ u \in X_{-} : ||u|| = R \} .$$

Since D is compact, it is evident that $c < +\infty$. Moreover, if \mathcal{H} is a contraction of B in $X \setminus X_+$ and $P_-: X \to X_-$ is the projection associated with the direct decomposition, then

$$\mathcal{K}(u,t) = P_{-}\mathcal{H}(u,t)$$

is a contraction of B in $X_{-} \setminus \{0\}$. Since this contradicts Lemma (2.7), it follows that B links A.

2. MOUNTAIN PASS THEOREMS

If $\varphi \in \Phi$, then

$$\mathcal{H}(u,t) = \varphi((1-t)u)$$

is a contraction of B in X. Therefore

$$c \ge \inf_{\mathcal{H} \in \mathcal{C}_B} \sup_{B \times [0,1]} f \circ \mathcal{H}$$

Conversely, if \mathcal{H} is a contraction of B in X to some point u_1 , we can define a continuous map

$$\psi: (B \times [0,1]) \cup (D \times \{1\}) \to X$$

by

$$\psi(u,t) = \begin{cases} \mathcal{H}(u,t) & \text{if } (u,t) \in B \times [0,1], \\ u_1 & \text{if } (u,t) \in D \times \{1\}. \end{cases}$$

There exists a homeomorphism

$$F: D \to (B \times [0,1]) \cup (D \times \{1\})$$

with $F(B) = B \times \{0\}$. Then we have that $\psi \circ F \in \Phi$, whence

$$c \leq \inf_{\mathcal{H} \in \mathcal{C}_B} \sup_{B \times [0,1]} f \circ \mathcal{H}.$$

From Theorem (2.3) the assertion follows.

Finally, we derive the linking theorem of Benci-Rabinowitz (see [10] and [2] for the corresponding version in the strongly indefinite case).

(2.9) Corollary (Linking Theorem) Assume that

- (a) $X = X_{-} \oplus X_{+}$, where dim $X_{-} < \infty$ and X_{+} is closed in X;
- (b) there exist 0 < r < R and $v \in X_+$ with ||v|| = 1 such that

$$\max \{ f(u) : u \in B \} \le \inf \{ f(u) : u \in S \}$$

where B is the boundary of

$$D := \{ u + tv : u \in X_{-}, t \ge 0, \|u + tv\| \le R \}$$

in $X_{-} \oplus \mathbb{R}v$ and

$$S = \{ u \in X_+ : ||u|| = r \} ;$$

(c) f satisfies $(CPS)_c$, where

$$\begin{split} c &= \inf_{\varphi \in \Phi} \; \max_{u \in D} \, f(\varphi(u)) \,, \\ \Phi &= \{ \varphi \in C(D;X) : \; \varphi(u) = u \; whenever \; u \in B \} \;. \end{split}$$

Then $c \ge \inf_{S} f$ and c is a critical value of f. Moreover, if $c = \inf_{S} f$, there exists a critical point u of f with f(u) = c and $u \in S$.

Proof. Since D is compact, it is evident that $c < +\infty$. If \mathcal{H} is a contraction of B in $X \setminus S$, consider the projections $P_{\pm} : X \to X_{\pm}$ associated with the direct decomposition. Then

$$\mathcal{K}(u,t) = P_{-}\mathcal{H}(u,t) + \|P_{+}\mathcal{H}(u,t)\|v$$

is a contraction of B in $(X_{-} \oplus \mathbb{R}v) \setminus \{rv\}$. Since this contradicts Lemma (2.7), it follows that B links A.

Now, the same argument used in the proof of the Saddle Theorem shows that

$$c = \inf_{\mathcal{H} \in \mathcal{C}_B} \sup_{B \times [0,1]} f \circ \mathcal{H}.$$

From Theorem (2.3) the assertion follows.

3 Nemytskij operator

Throughout this section, E will denote a measurable subset of \mathbb{R}^n and $\| \|_p$ the usual norm of L^p $(1 \le p \le \infty)$.

(3.1) Definition We say that $g: E \times \mathbb{R}^N \to \mathbb{R}^k$ is a Carathéodory function, if

- (a) for every $s \in \mathbb{R}^N$ the function $\{x \mapsto g(x, s)\}$ is measurable on E;
- (b) for a.e. $x \in E$ the function $\{s \mapsto g(x,s)\}$ is continuous on \mathbb{R}^N .

If $u: E \to \mathbb{R}^N$ is a function, we denote by g(x, u) the function

$$\begin{array}{cccc} E & \longrightarrow & \mathbb{R}^k \\ x & \longmapsto & g(x, u(x)) \end{array}$$

(3.2) Theorem Let $g: E \times \mathbb{R}^N \to \mathbb{R}^k$ be a Carathéodory function.

Then for every measurable function $u: E \to \mathbb{R}^N$ we have that $g(x, u): E \to \mathbb{R}^k$ is measurable. Moreover, if u, v agree a.e. in E, then also g(x, u) and g(x, v) agree a.e. in E.

Proof. Let $u: E \to \mathbb{R}^N$ be a simple function, namely a measurable function with a finite number of values. If $u(E) = \{s_1, \ldots, s_m\}$, set $E_h = u^{-1}(s_h)$. Then $\{E_1, \ldots, E_m\}$ is a measurable partition of E and we have

$$\forall x \in E : g(x, u(x)) = \sum_{h=1}^{m} \chi_{E_h}(x) g(x, s_h) .$$

Therefore g(x, u) is measurable.

Let now $u: E \to \mathbb{R}^N$ be a measurable function. It is well known that there exists a sequence (u_h) of simple functions pointwise convergent to u. Then we have

$$\lim_{h} g(x, u_h) = g(x, u) \qquad \text{a.e. in } E,$$

whence the measurability of g(x, u).

It is evident that, if u, v agree a.e. in E, then also g(x, u) and g(x, v) agree a.e. in E.

(3.3) **Theorem** Let $g: E \times \mathbb{R}^N \to \mathbb{R}^k$ be a Carathéodory function and let $p, q \in [1, \infty[$. Assume there exist $a \in L^q(E)$ and $b \in \mathbb{R}$ such that

$$|g(x,s)| \le a(x) + b|s|^{\frac{p}{q}}$$

for a.e. $x \in E$ and every $s \in \mathbb{R}^N$.

Then for every $u \in L^p(E; \mathbb{R}^N)$ we have $g(x, u) \in L^q(E; \mathbb{R}^k)$ and the map

$$\begin{array}{ccc} L^p(E;\mathbb{R}^N) & \longrightarrow & L^q(E;\mathbb{R}^k) \\ u & \longmapsto & g(x,u) \end{array}$$

is continuous.

Proof. For any $u \in L^p(E; \mathbb{R}^N)$ we have

$$|g(x,u)|^q \le \left(a(x) + b|u|^{\frac{p}{q}}\right)^q \le 2^{q-1} \left(a(x)^q + b^q|u|^p\right) .$$

Combining this fact with Theorem (3.2), we deduce that $g(x, u) \in L^q(E; \mathbb{R}^k)$.

Now, let (u_h) be a sequence convergent to some u in $L^p(E; \mathbb{R}^N)$. Up to a subsequence, (u_h) is convergent a.e. to u and there exists $w \in L^p(E)$ such that

$$|u_h| \le w$$
 a.e. in E

(see e.g. [3, Theorem IV.9]). Therefore we have

$$\lim_{h} g(x, u_h) = g(x, u) \qquad \text{a.e. in } E,$$

$$\begin{aligned} |g(x,u_h) - g(x,u)|^q &\leq 2^{q-1} (|g(x,u_h)|^q + |g(x,u)|^q) \leq \\ &\leq 4^{q-1} \left(2a(x)^q + b^q |u_h|^p + b^q |u|^p \right) \leq \\ &\leq 4^{q-1} \left(2a(x)^q + b^q w^p + b^q |u|^p \right) \quad \text{a.e. in } E. \end{aligned}$$

From Lebesgue's Theorem we deduce that $(g(x, u_h))$ is convergent to g(x, u) in $L^q(E; \mathbb{R}^k)$.

(3.4) Theorem Let $g: E \times \mathbb{R}^N \to \mathbb{R}^k$ be a Carathéodory function and let $q \in [1, \infty[$. Assume that for every M > 0 there exists $a_M \in L^q(E)$ such that

$$|g(x,s)| \le a_M(x)$$

for a.e. $x \in E$ and every $s \in \mathbb{R}^N$ with $|s| \leq M$.

Then for every $u \in L^{\infty}(E; \mathbb{R}^N)$ we have $g(x, u) \in L^q(E; \mathbb{R}^k)$ and the map

$$\begin{array}{ccc} L^{\infty}(E;\mathbb{R}^N) & \longrightarrow & L^q(E;\mathbb{R}^k) \\ u & \longmapsto & g(x,u) \end{array}$$

is continuous.

Proof. If $u \in L^{\infty}(E; \mathbb{R}^N)$ and $M = ||u||_{\infty}$, we have $|g(x, u)| \leq a_M(x)$ a.e. Taking into account Theorem (3.2), we easily deduce that $g(x, u) \in L^q(E; \mathbb{R}^k)$.

If (u_h) is a sequence convergent to some u in $L^{\infty}(E; \mathbb{R}^N)$, there exists M > 0 such that $||u_h||_{\infty} \leq M$ for every h. It follows that $(g(x, u_h))$ is convergent to g(x, u) a.e. and

$$|g(x, u_h) - g(x, u)|^q \le 2^q a_M(x)^q$$
.

From Lebesgue's Theorem we deduce that $(g(x, u_h))$ is convergent to g(x, u) in $L^q(E; \mathbb{R}^k)$.

(3.5) Definition The map

$$\begin{array}{cccc} L^p(E;\mathbb{R}^N) & \longrightarrow & L^q(E;\mathbb{R}^k) \\ u & \longmapsto & g(x,u) \end{array}$$

is called Nemytskij operator or superposition operator associated with g.

(3.6) Definition We say that $G: E \times \mathbb{R}^N \to \mathbb{R}^k$ is a C^1 -Carathéodory function, if

- (a) for every $s \in \mathbb{R}^N$ the function $\{x \mapsto G(x, s)\}$ is measurable on E;
- (b) for a.e. $x \in E$ the function $\{s \mapsto G(x,s)\}$ is of class C^1 on \mathbb{R}^N .

(3.7) **Proposition** Let $g: E \times \mathbb{R} \to \mathbb{R}^k$ be a Carathéodory function and set $G(x,s) = \int_0^s g(x,t) dt$. Then $G: E \times \mathbb{R} \to \mathbb{R}^k$ is a C^1 -Carathéodory function with G(x,0) = 0.

Proof. It is evident that $\{s \mapsto G(x, s)\}$ is of class C^1 for a.e. $x \in E$. Moreover, for every $s \in \mathbb{R}$ we have

$$G(x,s) = \lim_{k} \left(\sum_{h=1}^{k} \frac{s}{k} g\left(x, h\frac{s}{k}\right) \right) \quad \text{a.e. in } E$$

Therefore $\{x \longmapsto G(x, s)\}$ is measurable for every $s \in \mathbb{R}$.

(3.8) Theorem Let $G : E \times \mathbb{R}^N \to \mathbb{R}^k$ be a C^1 -Carathéodory function, let $1 \le q , let <math>r > 1$ be such that

$$\frac{1}{r} + \frac{1}{p} = \frac{1}{q}$$

and set $g(x,s) = D_s G(x,s)$. Assume that $G(x,0) \in L^q(E)$ and that there exist $a \in L^r(E)$ and $b \in \mathbb{R}$ such that

(3.9)
$$|g(x,s)| \le a(x) + b|s|^{\frac{p}{q}-1}$$

for a.e. $x \in E$ and every $s \in \mathbb{R}^N$.

Then $g: E \times \mathbb{R}^N \to \mathbb{R}^{Nk}$ is a Carathéodory function, we have $G(x, u) \in L^q(E; \mathbb{R}^k)$ for every $u \in L^p(E; \mathbb{R}^N)$ and the Nemytskij operator

$$\begin{array}{cccc} \mathcal{G}: & L^p(E;\mathbb{R}^N) & \longrightarrow & L^q(E;\mathbb{R}^k) \\ & u & \longmapsto & G(x,u) \end{array}$$

associated with G is of class C^1 . Moreover we have

$$\forall u, v \in L^p(E; \mathbb{R}^N) : \mathcal{G}'(u)v = g(x, u)v$$

Proof. It is evident that $\{s \mapsto g(x,s)\}$ is continuous for a.e. $x \in E$. Moreover, for every $s, \sigma \in \mathbb{R}^N$ we have

$$g(x,s)\sigma = \lim_{k} k \left(G\left(x,s+\frac{1}{k}\sigma\right) - G(x,s) \right)$$
 a.e. in E .

Therefore $\{x \longmapsto g(x, s)\}$ is measurable for every $s \in \mathbb{R}$.

Since $\frac{p}{p-q} = \frac{r}{q}$, from (3.9) and Young's inequality we deduce that

$$\begin{aligned} |G(x,s)| &\leq |G(x,0)| + a(x)|s| + \frac{bq}{p}|s|^{\frac{p}{q}} \leq |G(x,0)| + \frac{p-q}{p}a(x)^{\frac{p}{p-q}} + \frac{q}{p}|s|^{\frac{p}{q}} + \frac{bq}{p}|s|^{\frac{p}{q}} = \\ &= |G(x,0)| + \frac{p-q}{p}a(x)^{\frac{r}{q}} + (1+b)\frac{q}{p}|s|^{\frac{p}{q}}. \end{aligned}$$

Since $a^{\frac{r}{q}} \in L^q(E)$, from Theorem (3.3) it follows that the Nemytskij operator

$$\begin{array}{cccc} \mathcal{G}: & L^p(E;\mathbb{R}^N) & \longrightarrow & L^q(E;\mathbb{R}^k) \\ & u & \longmapsto & G(x,u) \end{array}$$

is well defined and continuous. Since $\frac{p}{q} - 1 = \frac{p}{r}$, also the Nemytskij operator

$$\begin{array}{cccc} L^p(E;\mathbb{R}^N) & \longrightarrow & L^r(E;\mathbb{R}^{Nk}) \\ u & \longmapsto & g(x,u) \end{array}$$

is well defined and continuous.

Now let $u \in L^p(E; \mathbb{R}^N)$. By Hölder's inequality it is readily seen that the map

$$\begin{array}{cccc} L^p(E;\mathbb{R}^N) & \longrightarrow & L^q(E;\mathbb{R}^k) \\ v & \longmapsto & g(x,u)v \end{array}$$

is well defined, linear and continuous. Let (v_h) be a sequence convergent to 0 in $L^p(E; \mathbb{R}^N)$. Up to a subsequence, (v_h) is convergent to 0 also a.e. and there exists $w \in L^p(E)$ such that $|v_h| \leq w$ a.e. Set $z_h = \frac{v_h}{\|v_h\|_p}$ and define

$$\alpha_h = \begin{cases} \frac{G(x, u+v_h) - G(x, u) - g(x, u)v_h}{|v_h|} & \text{where } v_h(x) \neq 0, \\ 0 & \text{where } v_h(x) = 0. \end{cases}$$

Then (α_h) is convergent to 0 a.e. and, by Lagrange's Inequality, we have

$$\begin{aligned} |\alpha_h|^r &\leq |g(x, u + \vartheta_h v_h) - g(x, u)|^r \leq \\ &\leq \left(a + b|u + \vartheta_h v_h|^{\frac{p}{r}} + a + b|u|^{\frac{p}{r}}\right)^r \leq \\ &\leq \left(a + b(|u| + |w|)^{\frac{p}{r}} + a + b|u|^{\frac{p}{r}}\right)^r, \end{aligned}$$

where $0 < \vartheta_h < 1$. Therefore (α_h) is convergent to 0 also in $L^r(E; \mathbb{R}^k)$. From Hölder's inequality it follows

$$\int_{E} \left| \frac{G(x, u+v_{h}) - G(x, u) - g(x, u)v_{h}}{\|v_{h}\|_{p}} \right|^{q} dx = \int_{E} |\alpha_{h}|^{q} |z_{h}|^{q} dx \leq \\ \leq \|\alpha_{h}\|_{r}^{q} \|z_{h}\|_{p}^{q} = \|\alpha_{h}\|_{r}^{q},$$

hence

$$\lim_{h} \int_{E} \left| \frac{G(x, u + v_{h}) - G(x, u) - g(x, u)v_{h}}{\|v_{h}\|_{p}} \right|^{q} dx = 0.$$

Therefore \mathcal{G} is Fréchet differentiable at u and $\mathcal{G}'(u)v = g(x, u)v$.

Finally, for every $u_1, u_2, v \in L^p(E; \mathbb{R}^N)$ we have

$$\|\mathcal{G}'(u_1)v - \mathcal{G}'(u_2)v\|_q = \|g(x, u_1)v - g(x, u_2)v\|_q \le \|g(x, u_1) - g(x, u_2)\|_r \|v\|_p$$

hence

$$\|\mathcal{G}'(u_1) - \mathcal{G}'(u_2)\|_{\mathcal{L}(L^p; L^q)} \le \|g(x, u_1) - g(x, u_2)\|_r.$$

Therefore \mathcal{G} is of class C^1 .

(3.10) Theorem Let $G : E \times \mathbb{R}^N \to \mathbb{R}^k$ be a C^1 -Carathéodory function, let $1 \leq q < \infty$ and set $g(x,s) = D_s G(x,s)$. Assume that $G(x,0) \in L^q(E;\mathbb{R}^k)$ and that for every M > 0 there exists $a_M \in L^q(E)$ such that

$$|g(x,s)| \le a_M(x)$$

for a.e. $x \in E$ and every $s \in \mathbb{R}^N$ with $|s| \leq M$.

Then $g: E \times \mathbb{R}^N \to \mathbb{R}^{Nk}$ is a Carathéodory function, we have $G(x, u) \in L^q(E; \mathbb{R}^k)$ for every $u \in L^{\infty}(E; \mathbb{R}^N)$ and the Nemytskij operator

$$\begin{array}{ccccc} : & L^{\infty}(E;\mathbb{R}^N) & \longrightarrow & L^q(E;\mathbb{R}^k) \\ & u & \longmapsto & G(x,u) \end{array}$$

associated with G is of class C^1 . Moreover we have

$$\forall u, v \in L^{\infty}(E; \mathbb{R}^N) : \mathcal{G}'(u)v = g(x, u)v$$

Proof. As before, we have that g is a Carathéodory function. Moreover,

G

$$|G(x,s)| \le |G(x,0)| + a_M(x)|s| \le |G(x,0)| + Ma_M(x)$$

for a.e. $x \in E$ and every $s \in \mathbb{R}^N$ with $|s| \leq M$. From Theorem (3.4) it follows that the Nemytskij operators

$$\begin{array}{cccc} \mathcal{G}: & L^{\infty}(E;\mathbb{R}^N) & \longrightarrow & L^q(E;\mathbb{R}^k) \\ & u & \longmapsto & G(x,u) \end{array}$$

and

$$\begin{array}{cccc} L^{\infty}(E;\mathbb{R}^N) & \longrightarrow & L^q(E;\mathbb{R}^{Nk}) \\ u & \longmapsto & g(x,u) \end{array}$$

are well defined and continuous. Then it is possible to argue, with minor variants, as in the proof of Theorem (3.8).

Let now Ω be an open subset of \mathbb{R}^n .

(3.11) Theorem The following facts hold:

(a) if $1 \le p < n$, then we have $W_0^{1,p}(\Omega; \mathbb{R}^N) \subseteq L^{\frac{np}{n-p}}(\Omega; \mathbb{R}^N)$ and there exists c(n,p) > 0 such that

$$\forall u \in W_0^{1,p}(\Omega; \mathbb{R}^N) : \|u\|_{\frac{np}{n-p}} \le c(n,p) \|\nabla u\|_p;$$

(b) if $n , then we have <math>W_0^{1,p}(\Omega; \mathbb{R}^N) \subseteq L^{\infty}(\Omega; \mathbb{R}^N)$ and there exists c(n,p) > 0 such that

$$\forall u \in W_0^{1,p}(\Omega; \mathbb{R}^N) : \|u\|_{\infty} \le c(n,p) \left(\|\nabla u\|_p^p + \|u\|_p^p \right)^{\frac{1}{p}} .$$

(c) if $a, b \in \mathbb{R}$ and $1 \le p \le \infty$, then we have $W^{1,p}(]a, b[; \mathbb{R}^N) \subseteq L^{\infty}(]a, b[; \mathbb{R}^N)$ and there exists c(a, b) > 0 such that

$$\forall u \in W^{1,p}(]a, b[; \mathbb{R}^N) : \|u\|_{\infty} \le c(a, b) \left(\|u'\|_p^p + \|u\|_p^p \right)^{\frac{1}{p}}$$

Proof. See for instance [3, Theorems IX.9, IX.12 and VIII.7]. \blacksquare

(3.12) Theorem Let $1 \le p \le \infty$. Then every bounded sequence (u_h) in $W^{1,p}(\Omega; \mathbb{R}^N)$ admits a subsequence convergent a.e. to some $u \in L^p(\Omega; \mathbb{R}^N)$.

Proof. If Ω is an open ball, the Rellich-Kondrachov Theorem (see e.g. [3, Theorem IX.16]) implies that there exists a subsequence (u_{h_k}) strongly convergent in $L^p(\Omega; \mathbb{R}^N)$ to some u. Then a further subsequence is convergent to u a.e.

Since any open subset of \mathbb{R}^n is a countable union of open balls, also in the general case we may find a subsequence convergent a.e. to some u. From Fatou's Lemma it is easy to deduce that $u \in L^p(\Omega; \mathbb{R}^N)$.

(3.13) Theorem Let $1 \le p < n$, let X be a subspace of $W^{1,p}(\Omega; \mathbb{R}^N)$ continuously imbedded in $L^{\frac{np}{n-p}}(\Omega; \mathbb{R}^N)$, let $G: \Omega \times \mathbb{R}^N \to \mathbb{R}$ be a C^1 -Carathéodory function and set $g(x,s) = \nabla_s G(x,s)$. Assume that $G(x,0) \in L^1(\Omega)$ and that there exist $a \in L^{\frac{np}{n(p-1)+p}}(\Omega)$ and $b \in \mathbb{R}$ such that

$$|g(x,s)| \le a(x) + b|s|^{\frac{np}{n-p}-1}$$

for a.e. $x \in \Omega$ and every $s \in \mathbb{R}^N$.

Then for every $u \in X$ we have $G(x, u) \in L^1(\Omega)$ and the functional

$$\begin{array}{cccc} f: & X & \longrightarrow & \mathbb{R} \\ & u & \longmapsto & \int_{\Omega} G(x, u) \, dx \end{array}$$

is of class C^1 . Moreover we have

$$\forall u, v \in X : f'(u)v = \int_{\Omega} g(x, u) \cdot v \, dx$$

Proof. Since

$$\frac{n(p-1) + p}{np} + \frac{n-p}{np} = 1,$$

it follows from Theorem (3.8) that the Nemytskij operator

$$\begin{array}{cccc} \mathcal{G}: & L^{\frac{np}{n-p}}(\Omega; \mathbb{R}^N) & \longrightarrow & L^1(\Omega) \\ & u & \longmapsto & G(x,u) \end{array}$$

is of class C^1 with $\mathcal{G}'(u)v = g(x, u) \cdot v$.

On the other hand X is continuously included in $L^{\frac{np}{n-p}}(\Omega; \mathbb{R}^N)$ and $\{w \mapsto \int_{\Omega} w \, dx\}$ is a continuous and linear functional on $L^1(\Omega)$. Then the assertion easily follows.

(3.14) **Definition** Let $1 \leq p < n$. We say that a Carathéodory function $g: \Omega \times \mathbb{R}^N \to \mathbb{R}^k$ has subcritical growth with respect to $W^{1,p}(\Omega; \mathbb{R}^N)$, if for every $\varepsilon > 0$ there exists $a_{\varepsilon} \in L^{\frac{np}{n(p-1)+p}}(\Omega)$ such that

$$|g(x,s)| \le a_{\varepsilon}(x) + \varepsilon |s|^{\frac{np}{n-p}-1}$$

for a.e. $x \in \Omega$ and every $s \in \mathbb{R}^N$.

(3.15) **Remark** If Ω has finite measure and

$$|g(x,s)| \le a(x) + b|s|^q$$

with $a \in L^{\frac{np}{n(p-1)+p}}(\Omega)$, $b \in \mathbb{R}$ and $0 < q < \frac{np}{n-p} - 1$, then g has subcritical growth with respect to $W^{1,p}(\Omega; \mathbb{R}^N)$. *Proof.* Let $rq = \frac{np}{n-p} - 1$. From Young's inequality we deduce that

$$|g(x,s)| \le a(x) + \frac{1}{r'} \left(\frac{b}{\delta}\right)^{r'} + \frac{1}{r} \,\delta^r |s|^{\frac{np}{n-p}-1}$$

for every $\delta > 0$. Since the constant $\frac{1}{r'} \left(\frac{b}{\delta}\right)^{r'}$ belongs to $L^{\frac{np}{n(p-1)+p}}(\Omega)$ and δ^r can be made arbitrarily small, the assertion follows.

(3.16) Theorem Let $1 \leq p < n$, let X be a subspace of $W^{1,p}(\Omega; \mathbb{R}^N)$ continuously imbedded in $L^{\frac{np}{n-p}}(\Omega; \mathbb{R}^N)$, let $G: \Omega \times \mathbb{R}^N \to \mathbb{R}$ be a C^1 -Carathéodory function and set $g(x,s) = \nabla_s G(x,s)$. Assume that $G(x,0) \in L^1(\Omega)$ and that g has subcritical growth with respect to $W^{1,p}(\Omega; \mathbb{R}^N)$.

Then the functional

$$\begin{array}{cccc} f: & X & \longrightarrow & \mathbb{R} \\ & u & \longmapsto & \int_{\Omega} G(x,u) \, dx \end{array}$$

is of class C^1 with

$$\forall u, v \in X : f'(u)v = \int_{\Omega} g(x, u) \cdot v \, dx$$

and the derivative $f': X \to X^*$ is completely continuous.

Proof. Since g has subcritical growth, it follows from Theorem (3.13) that f is well defined and of class C^1 with

$$\forall u, v \in X : f'(u)v = \int_{\Omega} g(x, u) \cdot v \, dx$$
.

For every $u_1, u_2, v \in X$, Hölder's inequality yields,

$$\begin{aligned} |f'(u_1)v - f'(u_2)v| &= \left| \int_{\Omega} \left(g(x, u_1) - g(x, u_2) \right) \cdot v \, dx \right| \leq \\ &\leq \left\| g(x, u_1) - g(x, u_2) \right\|_{\frac{np}{n(p-1)+p}} \|v\|_{\frac{np}{n-p}} \leq \\ &\leq c \|g(x, u_1) - g(x, u_2)\|_{\frac{np}{n(p-1)+p}} \left(\|\nabla v\|_p^p + \|v\|_p^p \right)^{\frac{1}{p}}. \end{aligned}$$

Therefore it is sufficient to prove assertion (b) of Definition (1.12) for the map

$$\begin{array}{rccc} X & \longrightarrow & L^{\frac{np}{n(p-1)+p}}(\Omega; \mathbb{R}^N) \\ u & \longmapsto & g(x, u) \end{array}$$

Without loss of generality, we can suppose N = 1. Let us treat first of all the case in which

$$|g(x,s)| \le a(x)$$

with $a \in L^{\frac{np}{n(p-1)+p}}(\Omega)$. Let (u_h) be a bounded sequence in X. By Theorem (3.12), up to a subsequence (u_h) is convergent a.e. to some $u \in L^p(\Omega)$. Since

$$|g(x, u_h) - g(x, u)| \le 2a(x) \,,$$

from Lebesgue's Theorem we deduce that $(g(x, u_h))$ is strongly convergent to g(x, u) in $L^{\frac{np}{n(p-1)+p}}(\Omega)$.

In the general case, set for any $\varepsilon>0$

$$g_{\varepsilon}(x,s) = \min\left\{\max\left\{g(x,s), -a_{\varepsilon}(x)\right\}, a_{\varepsilon}(x)\right\}.$$

Since $|g_{\varepsilon}(x,s)| \leq a_{\varepsilon}(x)$, the map

$$\begin{array}{rccc} X & \longrightarrow & L^{\frac{np}{n(p-1)+p}}(\Omega) \\ u & \longmapsto & g_{\varepsilon}(x,u) \end{array}$$

satisfies condition (b) of Definition (1.12) by the previous step. On the other hand, we have

$$|g_{\varepsilon}(x,s) - g(x,s)| \le \varepsilon |s|^{\frac{np}{n-p}-1},$$

hence, for every $u \in X$,

$$\|g_{\varepsilon}(x,u) - g(x,u)\|_{\frac{np}{n(p-1)+p}} \le \varepsilon \|u\|_{\frac{np}{n-p}}^{\frac{np}{n-p}-1} \le \varepsilon c^{\frac{np}{n-p}-1} \left(\|\nabla u\|_{p}^{p} + \|u\|_{p}^{p}\right)^{\frac{n}{n-p}-\frac{1}{p}}.$$

We deduce that

$$\lim_{\varepsilon \to 0} \|g_{\varepsilon}(x, u) - g(x, u)\|_{\frac{np}{n(p-1)+p}} = 0$$

uniformly on bounded subsets of X and the assertion follows from well known properties of completely continuous operators (see e.g. [9, Proposition III.5.4]).

(3.17) Theorem Let $n , let X be a subspace of <math>W^{1,p}(\Omega; \mathbb{R}^N)$ continuously imbedded in $L^{\infty}(\Omega; \mathbb{R}^N)$, let $G: \Omega \times \mathbb{R}^N \to \mathbb{R}$ be a C^1 -Carathéodory function and set $g(x,s) = \nabla_s G(x,s)$. Assume that $G(x,0) \in L^1(\Omega)$ and that for every M > 0 there exists $a_M \in L^1(\Omega)$ such that

$$|g(x,s)| \le a_M(x)$$

for a.e. $x \in \Omega$ and every $s \in \mathbb{R}^N$ with $|s| \leq M$.

Then for every $u \in X$ we have $G(x, u) \in L^1(\Omega)$ and the functional

$$\begin{array}{rcccc} f: & X & \longrightarrow & \mathbb{R} \\ & u & \longmapsto & \int_{\Omega} G(x,u) \, dx \end{array}$$

is of class C^1 . Moreover we have

$$\forall u, v \in X : f'(u)v = \int_{\Omega} g(x, u) \cdot v \, dx$$

and the derivative $f': X \to X^*$ is completely continuous.

Proof. From Theorem (3.10) we deduce that the Nemytskij operator

$$\begin{array}{cccc} \mathcal{G}: & L^\infty(\Omega;\mathbb{R}^N) & \longrightarrow & L^1(\Omega) \\ & u & \longmapsto & G(x,u) \end{array}$$

is of class C^1 with $\mathcal{G}'(u)v = g(x, u) \cdot v$.

On the other hand, X is continuously included in $L^{\infty}(\Omega; \mathbb{R}^N)$ and $\{w \mapsto \int_{\Omega} w \, dx\}$ is a continuous and linear functional on $L^1(\Omega)$. Then it is easy to show that f is of class C^1 with $f'(u)v = \int_{\Omega} g(x, u) \cdot v \, dx$.

For every $u_1, u_2, v \in X$, Hölder's inequality yields,

$$\begin{aligned} |f'(u_1)v - f'(u_2)v| &= \left| \int_{\Omega} \left(g(x, u_1) - g(x, u_2) \right) \cdot v \, dx \right| \leq \\ &\leq \left\| g(x, u_1) - g(x, u_2) \right\|_1 \|v\|_{\infty} \leq \\ &\leq c \|g(x, u_1) - g(x, u_2)\|_1 \left(\|\nabla v\|_p^p + \|v\|_p^p \right)^{\frac{1}{p}}. \end{aligned}$$

Therefore it is sufficient to show that the map

$$\begin{array}{rccc} X & \longrightarrow & L^1(\Omega; \mathbb{R}^N) \\ u & \longmapsto & g(x, u) \end{array}$$

satisfies condition (b) of Definition (1.12).

Let (u_h) be a bounded sequence in X and let M > 0 be such that $||u_h||_{\infty} \leq M$. By Theorem (3.12), up to a subsequence (u_h) is convergent a.e. to some $u \in L^p(\Omega; \mathbb{R}^N)$. Since

$$|g(x, u_h) - g(x, u)| \le 2a_M(x)$$

from Lebesgue's Theorem we deduce that $(g(x, u_h))$ is strongly convergent to g(x, u) in $L^1(\Omega; \mathbb{R}^N)$.

(3.18) Corollary Let Ω be bounded, let $G: \Omega \times \mathbb{R}^N \to \mathbb{R}$ be a C^1 -Carathéodory function with $G(x, 0) \in L^1(\Omega)$ and assume that $g := \nabla_s G(x, s)$ has subcritical growth with respect to $W^{1,2}(\Omega; \mathbb{R}^N)$.

Then the functional $f: W_0^{1,2}(\Omega) \to \mathbb{R}$ defined by

$$f(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \int_{\Omega} G(x, u) \, dx$$

is of class C^1 with

$$\forall u, v \in W_0^{1,2}(\Omega) : f'(u)v = \int_{\Omega} \nabla u \cdot \nabla v \, dx - \int_{\Omega} g(x, u) \cdot v \, dx$$

and the derivative $f': W_0^{1,2}(\Omega; \mathbb{R}^N) \to W^{-1,2}(\Omega; \mathbb{R}^N)$ has the form required in Theorem (1.13). *Proof.* Define $f_1: W_0^{1,2}(\Omega; \mathbb{R}^N) \to \mathbb{R}$ by

$$f_1(u) = -\int_{\Omega} \widetilde{G}(x, u) \, dx \, ,$$

where $\tilde{G}(x,s) = G(x,s) + \frac{1}{2} |s|^2$. Taking into account Remark (3.15), it is easy to see that also $\tilde{g} := \nabla_s \tilde{G}$ has subcritical growth with respect to $W^{1,2}(\Omega; \mathbb{R}^N)$. From Theorem (3.16) it follows that f_1 is well defined, of class C^1 with f_1' completely continuous.

Since

$$f(u) = \frac{1}{2} \int_{\Omega} \left(|\nabla u|^2 + |u|^2 \right) \, dx - f_1(u) \, ,$$

we have $f'(u) = Lu - f_1'(u)$, where $L: W_0^{1,2}(\Omega; \mathbb{R}^N) \to W^{-1,2}(\Omega; \mathbb{R}^N)$ is an isomorphism, and the assertion follows

(3.19) Corollary Let

$$X = \left\{ u \in W^{1,2}(] - \pi, \pi[; \mathbb{R}^N) : u(-\pi) = u(\pi) \right\}$$

let $G :] - \pi, \pi[\times \mathbb{R}^N \to \mathbb{R}$ be a C^1 -Carathéodory function and set $g(x,s) = \nabla_s G(x,s)$. Assume that $G(x,0) \in L^1(] - \pi, \pi[)$ and that for every M > 0 there exists $a_M \in L^1(] - \pi, \pi[)$ such that

$$|g(x,s)| \le a_M(x)$$

for a.e. $x \in]-\pi, \pi[$ and every $s \in \mathbb{R}^N$ with $|s| \leq M$.

Then X is a closed subspace of $W^{1,2}(] - \pi, \pi[; \mathbb{R}^N)$, the functional $f: X \to \mathbb{R}$ defined by

$$f(u) = \frac{1}{2} \int_{-\pi}^{\pi} |u'|^2 \, dx - \int_{-\pi}^{\pi} G(x, u) \, dx$$

is of class C^1 with

$$\forall u, v \in X : f'(u)v = \int_{-\pi}^{\pi} u' \cdot v' \, dx - \int_{-\pi}^{\pi} g(x, u) \cdot v \, dx$$

and the derivative $f': X \to X^*$ has the form required in Theorem (1.13).

Proof. It is well known that $W^{1,2}(] - \pi, \pi[; \mathbb{R}^N)$ is continuously imbedded in $C([-\pi, \pi]; \mathbb{R}^N)$ (see e.g. [3]). Therefore X is well defined and is in fact a closed linear subspace of $W^{1,2}(] - \pi, \pi[; \mathbb{R}^N)$.

If we define again $f_1: X \to \mathbb{R}$ by

$$f_1(u) = -\int_{-\pi}^{\pi} \widetilde{G}(x,u) \, dx \, ,$$

where $\widetilde{G}(x,s) = G(x,s) + \frac{1}{2} |s|^2$, we deduce now from Theorem (3.17) that $(f_1)' : X \to X^*$ is completely continuous. Then the assertion easily follows.

Bibliography

- A. AMBROSETTI AND P. H. RABINOWITZ, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.
- [2] V. BENCI AND P. H. RABINOWITZ, Critical point theorem for indefinite functionals, *Invent. Math.* 52 (1979), 241–273.
- [3] H. BREZIS, "Analyse fonctionnelle. Théorie et applications", Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.
- [4] G. CERAMI, Un criterio di esistenza per i punti critici su varietà illimitate, Istit. Lombardo Accad. Sci. Lett. Rend. A 112 (1978), 332–336.
- [5] J.-N. CORVELLEC, Quantitative deformation theorems and critical point theory, *Pacific J. Math.*, in press.
- [6] K. DEIMLING, "Nonlinear functional analysis", Springer-Verlag, Berlin, 1985.
- [7] N. GHOUSSOUB AND D. PREISS, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 321–330.
- [8] J. L. KELLEY, "General topology", Springer-Verlag, New York, 1975.
- R. H. MARTIN JR., "Nonlinear operators and differential equations in Banach spaces", Pure and Applied Mathematics. A Wiley - Interscience Publication, John Wiley & Sons, Inc., New York, 1976.
- [10] P. H. RABINOWITZ, "Minimax methods in critical point theory with applications to differential equations", CBMS Regional Conference Series in Mathematics, 65. Published for the Conference Board of the Mathematical Sciences, Washington, D.C.; by the American Mathematical Society, Providence, R.I., 1986.
- [11] M. SCHECHTER, The intrinsic mountain pass, Pacific J. Math. 171 (1995), 529–544.
- [12] E. ZEIDLER, "Nonlinear functional analysis and its applications. I. Fixed-point theorems", Springer-Verlag, New York-Berlin, 1986.