ANALISI MATEMATICA II/UNITÀ 3

COMPITO DI ESAME DEL 17 SETTEMBRE 2012

1) Sia (f_n) la successione delle funzioni definite per n>0 in $]0,+\infty[$ da

$$f_n(x) = \frac{n^x}{e^{nx}}.$$

- (a) Si dimostri che per ogni n risulta $f_n \in \mathcal{B}(]0, +\infty[; \mathbb{R}).$
- (b) Si studi la convergenza puntuale della successione (f_n) .
- (c) Si studi la convergenza uniforme della successione (f_n) .

2) Si determinino gli eventuali punti di massimo e di minimo, relativo e assoluto, della funzione f definita in \mathbb{R}^2 da

$$f(x,y) = x + y$$

nell'insieme M definito da

$$M = \{(x, y) \in \mathbb{R}^2 : x + y \ge 1; \ x \ge 0; \ y \ge 0; \ x^2 + y^2 \le 4\}$$

TEMPO: 1 ORA E 30 MINUTI

N.B.: Non è ammesso l'uso di alcuna calcolatrice e di libri di testo (sono consentiti la dispensa del corso e gli appunti).

COMPLEMENTI DI

ANALISI MATEMATICA

COMPITO DI ESAME DEL 17 SETTEMBRE 2012

1) Si calcoli

$$\int_{D} (x^2 + y^2) d\mathcal{L}^2(x, y),$$

essendo Dil sottoinsieme di \mathbb{R}^2 definito da

$$D = \{(x,y) \in \mathbb{R}^2 : x > 0; \ y > 0; \ x + y > 1; \ x^2 + y^2 < 4\}.$$

2) Si determinino le soluzioni dell'equazione differenziale

$$(x^2 + 1)y' + 4xy = 2\sqrt{y}$$

che verificano la condizione

$$y(0) = 0.$$

TEMPO: 1 ORA E 30 MINUTI

N.B.: Non è ammesso l'uso di alcuna calcolatrice e di libri di testo (sono consentiti la dispensa del corso e gli appunti).