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1.Integer linear programs (ILPs)  

We will say that an optimization problem is 
discrete if the decision variables can only take a 
finite number of values.  

The majority of discrete optimization problems 
can be formulated as integer linear programs 
(ILPS).  These are problems of the form:  

Minimise 
n

i
ii xc

1 

Subject to:  

n

i
iij xa

1  

 

bj            (j = 1, …, m) 

xi 

 

0 and integer     (i = 1, …, n). 
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2. Solving ILPs: classical methods  

If we remove the integrality condition, we obtain 
a linear program, which is easy to solve.  

In the late 1950s and early 1960s, two methods 
were proposed to find the integer solution.  

i) cutting: adding extra linear inequalities.         

ii) branching: dividing into subproblems.        

x1

 

x2 

x1

 

x2 
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Gomory’s cutting plane method

  

i) Solve the initial LP relaxation by a variant of 
the simplex method.  

ii) Let x* be the current solution vector.  If x* is 
integral, stop.  

iii) Let x*k be fractional.  There will be a row of 
the simplex tableau of the form:  

xk  + 
NBi

ii x = x*k. 

Generate the cutting plane:  

NBi
ii xf )(

 

f(x*k).  

iv) Add the cutting plane to the LP and re-
optimize via a dual simplex pivot.  Return to (ii).   

(This was proven to be finitely convergent given 
a certain rule for choosing the fractional variable 
in step (iii).)
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The problem with Gomory’s cutting plane 
method is:   

i) A very large number of cutting planes are 
typically needed.  

ii) Numerical errors can lead to an incorrect 
solution or even cause the program to crash.  

iii) No feasible solution to the problem is 
obtained until the very end.  

The problem with branch-and-bound is: 

i) A large number of sub-problems may need 
to be explored.  

ii) If we do bread-first search, a huge amount 
of memory may be necessary.  

iii) If we do depth-first search, we may spend a 
long time exploring a “dead-end”.  
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3. Valid inequalities and facets  

Why are Gomory’s cutting planes weak? 

What makes a cutting plane weak or strong? 

We can make this more formal as follows.  

The linear programming relaxation is: 

min {cx: Ax 

 

b, x 

 

n}. 

Its feasible region is: 

P = {x 

 

n : Ax 

 

b}. 

The set of integer solutions is: 

{ x 

 

nZ : Ax 

 

b}. 

The integral hull is: 

PI = conv{ x 

 

nZ : Ax 

 

b}.  

The strongest cutting planes are the ones 
defining facets of PI.  
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Example 1:  The perfect matching polytope

  

Let G = (V, E) be an undirected graph with an 
even number of vertices.  

A perfect matching is a set of edges which meets 
each vertex exactly once.  

For each edge e 

 

E, let xe be a binary variable 
taking the value 1 if e is in the matching, 0 
otherwise.  Then the vectors x representing 
feasible matchings satisfy:   

)(ie
ex

 

= 1       (i 

 

V)  (degree equations) 

x 

 

{0, 1}|E|     (binary condition)  

The integral hull is called the perfect matching 
polytope. 
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The perfect matching polytope is not full-
dimensional, because of the degree equations.  

(There are no other equations necessary.)  

The non-negativity inequalities xe 

 

0 induce 
facets.  

In the 1960s, Jack Edmonds showed that a 
complete description of the perfect matching 
polytope is given by the degree equations, the 
non-negativity inequalities, and the following 
odd-cut inequalities:  

)(Se
ex

  

1       ( S 

 

V: |S| odd).  

Note that there are an exponential number of 
odd-cut inequalities.  

But, as Edmonds showed, they do not all have to 
be generated explicitly…! 
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Example 2:  The 0-1 knapsack polytope

  

A 0-1 knapsack polytope is a polyhedron of the 
form:  

conv{ x 

 

{0, 1}n :
n

i
ii xa

1 

 

b}, 

where 1 

 

ai 

  

b for i = 1, …, n.  

Since the 0-1 knapsack problem is NP-hard, we 
cannot hope to get a complete linear description 
for general n (unless NP = co-NP: see works by 
Papadimitriou).  

Nevertheless, some useful polyhedral results are 
known.  

E.g., if a set of items C 

 

{1, …, n} is such that 

Ci
ii xa 

 

b, then we have the so-called cover 

inequality 
Ci

ix 

 

|C| - 1.  

These can be strengthened in various ways 
(Balas, Wolsey, Zemel, Savelsbergh…) 
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Example 3:  The Symmetric TSP

  

Again, we are given a graph G = (V , E).  

For each edge e 

 

E, let xe be a binary variable 
taking the value 1 if e is in the tour, 0 otherwise. 
Then the vectors x representing tours satisfy:  

)(ie
ex = 2       (i 

 

V)  (degree equations)  

)(Se
ex

  

2       (S 

 

V )  (SECs)  

x 

 

{0, 1}|E|     (binary condition)  

The integral hull is called the symmetric 
traveling salesman polytope. 
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The STS polytope is not full-dimensional 
because of the degree equations.  

(There are no other equations necessary.)  

The trivial bounds 0 

 

xe 

 

1 induce facets.  

The SECs induce facets.  Note that there are an 
exponential number of them.  

Lots of other facets are known: 

2-matching, comb, clique-tree, hypohamiltonian, 
chain, ladder, crown, path, star, hyperstar, 
bipartition, binested, domino-parity… etc.  

However, again, we cannot hope to get a 
complete description for general n unless NP = 
co-NP.  
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4. The Separation Problem(s)  

In order to use strong valid inequalities in a 
practical cutting plane algorithm, we need to be 
able to detect when they are violated by the 
solution to a given LP relaxation.  

That is, given a vector x* 

 

P \ PI, we would 
like to find an inequality (preferably facet-
inducing) which separates x* from PI.  

The problem of finding such violated 
inequalities is called the separation problem 
(Grötschel, Lovász & Schrijver, 1988).  

Bad News:

  

If the ILP is NP-hard then:  

i) We do not know all the facets. 
ii) Even the known valid inequalities / 

facets are usually exponential in 
number. 

iii) Testing whether there is a cut separating 
x* from PI is co-NP-complete. 
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Good news:

 
for some particular classes of 

inequalities, we have algorithms for detecting if 
an inequality in that class is violated.  

This leads to the following concepts:  

An exact separation algorithm for a given class 
of inequalities is a procedure which takes a 
vector x* 

 

P as input, and either outputs one or 
more inequalities in the class which are violated 
by x*, or proves that none exists.  

A heuristic separation algorithm is similar, 
except that it outputs either one or more 
inequalities in the class which are violated by x*, 
or a failure message.  

E.g. in the case of the TSP there are exact 
separation algorithms known for the SECs, the 
2-matching ineq.s, and certain variants of the 
comb inequalities, though not the combs 
themselves.  

There are also some fast and effective heuristics 
for various other classes. 
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5. Strong Cutting Plane Algorithms  

In the 1970s and 1980s, the above ideas were 
used as follows:  

Strong Cutting Plane Algorithm

  

i. Solve an initial LP relaxation.  

ii. Let x* be the solution. If it is integer and 
feasible, output the optimal solution and stop.  

iii. Attempt to find some facet-inducing 
inequalities which are violated by x*.  If none 
are found, output the final lower bound and 
stop (or resort to branch-and-bound).  

iv. Add the facet-inducing inequalities to the LP.  
Resolve the LP and go to (ii).  

Using this general scheme, Miliotis, Padberg, 
Grötschel... were able to solve STSP 
instances with up to 600 vertices.  

Crowder, Johnson & Padberg won an award for 
applying the scheme to general 0-1 ILPs.
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6. Branch-and-cut algorithms   

The next big advance was the realization that 
separation algorithms could be called at every 
node of the branch-and-bound tree.  

A primitive version of this idea was already 
applied to the TSP by Hong (1972) and Miliotis 
(1976).  

Grötschel, Jünger, Reinelt (1984) applied it to 
the Linear Ordering Problem.  

However, a major landmark was the papers by 
Padberg & Rinaldi (1987, 1991).  They devised 
the full paradigm which is now called Branch-
and-Cut:  

i) LP-based branch-and-bound plus… 
ii) separation called at each node of tree 
iii) cutting planes globally available via cut pool 
iv) reduced-cost fixing 
v) LP-based primal heuristics. 
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Branch-and-cut is very effective for the TSP: 
Applegate et al. solve real-life instances with 
over 10,000 nodes.  

Also successful on: 

- other variants of the TSP, 

- facility location problems, 

- lot-sizing problems 

- bus, train, airline scheduling problems 

- constrained tree problems, 

- large sparse 0-1 integer programs...  

But not so successful on tightly constrained 
machine scheduling or vehicle routing problems, 
nor on certain graph theory problems like max-
clique, chromatic number etc.  

Other methods which sometimes work better 
are: 

- Branch-and-relax 
- Branch-and-price 
- Constraint Programming 
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7. Conclusions  

Branch-and-cut provides a general framework 
for designing solution algorithms for hard 
discrete optimisation problems:  

i) Formulate as an ILP 
ii) Study associated polyhedra 
iii) Look for separation algorithms 
iv) Do computational experiments 
v) Play with branching rules, heuristics, etc.  

Software is available (CPLEX, XPRESS, 
ABACUS, etc.) to deal with the LP and 
branching parts. 


