Elementi di Fisica Moderna, Meccanica Quantistica 11 Gennaio 2011

PROBLEMA 1

Un oscillatore armonico di massa m e frequenza ω si trova in uno stato tale che il valore di aspettazione dell'energia é

 $\langle H \rangle = \frac{3}{2}\hbar\omega$

e lo scarto quadratico medio é

$$\langle (H - \langle H \rangle)^2 \rangle = \frac{1}{2} (\hbar \omega)^2.$$

Inoltre, una misura dell'energia non puó dare un risultato maggiore di $3\hbar\omega$.

- Quali sono i possibili risultati di una misura dell'energia? Con quale probabilitá?
- Si scriva il più generale vettore di stato compatibile con le precedenti informazioni.
- Sapendo che all'istante t = 0 il valore di aspettazione dell'operatore di posizione \hat{x} é il massimo possibile, determinarne il valore ad un generico istante successivo t > 0.

PROBLEMA 2

Si consideri la Hamiltoniana di una particella con spin 1/2 immersa in un campo magnetico \vec{B} uniforme e costante :

$$\hat{H} = -\mu \hbar \vec{B} \cdot \vec{\sigma}$$

dove $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$ e $\sigma_{x,y,z}$ sono le tre matrici di Pauli.

Si consideri il caso in cui \vec{B} giace nel piano XZ e si assuma $\epsilon = B_x/B_z \ll 1$.

- Si determinino, usando la teoria delle perturbazioni gli autovalori di \hat{H} fino all'ordine ϵ^2 incluso e gli autostati fino all'ordine ϵ .
- Si determini la soluzione esatta per autostati ed autovalori.