Quantum Mechanics July, 62017

PROBLEM A

A two level system is described by the Hamiltonian

$$
H=\hbar \omega\left(\begin{array}{cc}
4 & 3 i \tag{1}\\
-3 i & -4
\end{array}\right) .
$$

Initially is in the state $|1\rangle=\binom{1}{0}$.

1. Determine eigenvalues and eigenvectors of H.
2. What is the probability to found the system at the time t in the state $|2\rangle=\binom{0}{1}$?
3. Determine at what time t the probability to find the system in state $|2\rangle$ is $1 / 2$.

PROBLEM B

Consider a particle with mass m and charge q in a 3 d harmonic potential

$$
V(x, y, z)=\frac{1}{2} k\left(x^{2}+y^{2}+z^{2}\right) \equiv \frac{1}{2} k|\vec{r}|^{2}
$$

Switch on a uniform magnetic field B along z. Neglecting the spin degrees of freedom the Hamiltonian is given by,

$$
H=\frac{1}{2 m}(\vec{p})^{2}+\frac{1}{2} k|\vec{r}|^{2}-\frac{q B}{2 m c} L_{z} .
$$

1. Re-write the Hamiltonian using creation and annihilation operators for the harmonic oscillator.
2. Using perturbation theory for small B find the smallest corrections for the first two energy levels.
