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From closed to open 1D Anderson model: Transport versus spectral statistics
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We show that the transport properties of a one-dimensional Anderson model of finite size with
weak disorder can be effectively expressed in terms of the repulsion parameter 0 ≤ β ≤ ∞ in the
level spacing distribution of eigenvalues of the corresponding closed system. This result stems from
the detailed numerical analysis demonstrating that the normalized localization length of eigenstates
is nothing but the parameter β. We give the analytical expressions for the mean transmission
coefficient 〈T 〉 and its variance Var(T ), as well as for 〈lnT 〉 for any value of β and degree κ of
coupling to continuum. The numerical data fully correspond to the analytical predictions.

PACS numbers: Valid PACS appear here

Introduction. In spite of a remarkable progress in un-
derstanding statistical properties of quantum systems, ei-
ther deterministic or disordered, one of the important
problems still waits for the detailed analysis. The spe-
cific question is: to what extent one can predict scat-
tering properties of a complex open system, if we know
global properties of eigenstates and energy spectra of the
corresponding closed system? This problem was solved
for a specific case of closed systems with maximal chaotic
properties described by fully random matrices. A proper
mathematical tool in these studies is based on effective
non-Hermitian Hamiltonians of a certain structure [1],
and many analytical results have been obtained, see, for
example, [2–4]. The key point in this method is that
the scattering matrix of an open system is expressed in
terms of eigenvalues and eigenfunctions of the related
closed system along with their decay amplitudes.

A much more difficult problem emerges if the closed
system is not fully chaotic being characterized by an addi-
tional parameter related to the degree of chaos. Recently,
this problem was analyzed numerically in Refs. [5] where
the global characteristics of scattering or signal transmis-
sion through a system have been studied in dependence
on two control parameters, the degree of internal chaos
and the strength of coupling to continuum. In particular,
it was found that, independently of the degree of chaos,
the increasing continuum coupling leads the system from
the quasistable regime of isolated narrow resonances to
the “super-radiant” regime of overlapping resonances co-
existing with long-lived compound states. However, the
specific features of this evolution may critically depend
on the degree of chaos and therefore the observation of
the signal transmission provides important information
on regular or chaotic character of intrinsic dynamics.

The above studies have been performed with the use of
random matrices (canonical Gaussian ensembles or two-
body random interactions). Some statistical assumptions
may be questionable in application to realistic physical

systems. Below we study the 1D Anderson model, pay-
ing main attention to the relation between the scattering
properties of an open model and those of eigenstates and
spectral statistics of the closed model. We discover un-
expected effects that give a new insight to the problem
of scattering through finite disordered systems.
The model. The tight-binding Anderson model is often

used to describe electron propagation in random media.
In the 1D case the corresponding Hamiltonian with di-
agonal disorder takes the standard form,

Hmn = ǫn δmn − ν(δm,n+1 + δm,n−1). (1)

Here ν is the hopping amplitude connecting the nearest
sites (in what follows we set ν = 1); the site energies ǫn
are assumed to be uniformly distributed in the interval
−W/2 to W/2 giving rise to the disorder variance σ2 =
W 2/12. Our interest is in the transmission properties
through the samples of finite size N with the arbitrary
coupling amplitudes

√

γL and
√

γR connecting the left
and right edges with attached semi-infinite ideal leads (in
which ǫn = 0). In the case of zero disorder open tight-
binding models have been studied in Refs. [6, 7]. As for
non-zero disorder, so far, the main interest was related
to the statistics and distributions of resonances for one
open channel [8, 9]; the relation of the resonances to the
transport properties was studied in [10].
Without disorder, the spectrum of the closed chain

consists of Bloch waves with the nodes at the ends and
energies inside the band |E| ≤ 2. In the limit N → ∞
and for weak disorder, σ2 ≪ 1, all eigenstates are expo-
nentially localized with the characteristic length l∞(E)
given by the Thouless relation [11],

l∞(E) = 8σ−2(1− E2/4). (2)

This expression is valid everywhere apart from the vicin-
ity of the band edges, |E| = 2, and band center, E = 0.
Level repulsion in a closed model. To quantify the de-

gree of chaos in the finite samples with no continuum cou-
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plings, γL = γR = 0, we employ the well known results
of random matrix theory (RMT). The maximal chaos in
deterministic quantum models with chaotic behavior in
its classical counterpart is characterized by the Wigner-
Dyson (WD) distribution P (s) of normalized spacings s
between the nearest energy levels. In the opposite case
of integrable classical counterparts the level spacing dis-
tribution is typically close to the Poisson distribution.
Therefore, one can take the distribution P (s) as a mea-
sure of chaos in the closed Anderson model.
For zero disorder, the energy spectrum near the band

center, ǫn = 0, is equidistant, so that P (s) → δ(s − 1),
the eigenstates are extended and regular. In the limit
of strong disorder, all eigenstates are effectively localized
on the scale of the sample size N ≫ 1, thus resulting
in the Poisson distribution. In between these limits, for
l∞ ≈ N , one can expect that the eigenstates are both

extended and “chaotic”. By the last term we mean that
the components of eigenstates are uncorrelated, with the
distribution close to the Gaussian. In this region P (s)
is expected to be close to the WD-distribution. Thus,
when passing from zero to strong disorder, the repulsion
parameter β in P (s) changes from β = ∞ to β = 0 with
β ≈ 1 in the intermediate case.
In order to describe the evolution of P (s) in a large

range of the values of β, we use, instead of the Brody
interpolation [12], the expression suggested in Ref. [13],

Pβ(s) = B1z
β(1 +B2βz)

f(β)e[−
1

4
βz2

−(1− β
2 )z], (3)

where f(β) = β−12β
(

1− β
2

)

− 0.16874. Here z = πs/2

and the parametersB1 and B2 are determined by the nor-
malization conditions,

∫

∞

0 Pβ(s)ds =
∫

∞

0 sPβ(s)ds = 1.
The function f(β) is constructed in such a way that for
the values β = 1; 2; 4, corresponding to the Gaussian en-
sembles of random matrices of a given symmetry (orthog-
onal, unitary and symplectic, respectively) it is close to
the expressions for P (s) obtained in the RMT for those
ensembles [12]. As shown in Ref. [14], for these values
of β, the dependence (3) is more accurate (in a whole
range of s) than the WD surmise typically used in the
literature. Note that for β = 0 Eq. (3) coincides with
the Poisson distribution, and for β = ∞ it reproduces
the delta-function. With Eq. (3) we performed a numer-
ical study by changing the degree of disorder for a closed
chain in a large range of the control parameter x = l∞/N
with l∞ defined by Eq. (2), see examples in Fig. 1.
Our conclusion is that Eq. (3) gives an amazingly good

correspondence (supported by the χ2 criteria) with the
numerical data in a very large range of x. It should be
noted that Eq. (3) was obtained in Refs. [13, 14] by using
the analytical expressions by Dyson [15] derived for the
classical model of two-dimensional charged particles on
a ring with the temperature 1/β. For specific values of
the inverse temperature β = 1, 2, 4 the partition function
giving the probability to find the particles at specific po-
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FIG. 1: Examples of P (s) for 0.02 < |E| < 0.2 (excluding
the energies very close to 0), with N = 1000. The data are
obtained for 120 disorder realizations with the χ2-fit to Eq. (3)
for r = 40 bins. Confidence levels are given in parenthesis.

sitions on the ring in this Coulomb gas model is the same
as for the canonical Gaussian ensembles. Therefore, one
can make an unexpected conclusion that the distribution
P (s) for the Anderson model on a finite scale N can be
described by the Dyson Coulomb gas model for which s
is the distance between the nearest particles on a ring.
Localization length vs. repulsion parameter. Now we

can establish the relation between x and β. It is qual-
itatively clear that they express the same phenomenon
of gradual transformation of standing waves into local-
ized states. All the data are summarized in Fig. 2. We
see a precise linear dependence between x and β in a
whole range of x values independently of the chosen en-
ergy range. The fit of the data as β = Ax + C gives the
slope A = 2.3± 0.1 with C essentially zero. This result,
obtained carefully with the use of χ2 statistical criteria,
shows that the repulsion parameter β is nothing but the
properly normalized localization length l∞,

β ≈ 2.34
l∞
N
. (4)

The factor 2.34 in Eq. (4) can be attributed to the fluc-
tuations of components of eigenstates.
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FIG. 2: Repulsion parameter β versus x = l∞/N for E ≈ 0,
(circles), and E ≈ −1 (squares), see details in Fig. 1.

The localization length l∞ can be defined due to the
Shannon entropy, S = −∑N

n=1 wn lnwn with wn = ψ2
n.

For completely random states with the Gaussian distri-
bution of ψn one gets, S = ln(N/2.07). Thus, it is
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convenient to introduce the normalized entropic local-

ization length, dN = 2.07N exp〈S〉, where 〈...〉 repre-
sent an ensemble average. With this definition we have
dN = N for fully chaotic eigenfunctions occupying N
sites. Our numerical data show that the onset of strong
chaos occurs when dN ≈ 2.1l∞ [16] which is equivalent
to β ≈ dN/N ≈ 1. Therefore, one arrives at the same re-
sult through an analysis of the spectrum as through the
eigenstates.
Open model: Non-Hermitian Hamiltonian. The scat-

tering properties of open systems can be formulated [1]
with the effective non-Hermitian Hamiltonian [6, 8, 10,
16], where D(E) = E/2− (i/2)

√
4− E2,

Hmn(E) = Hmn+D(E)(γLδn,1δm,1+γ
Rδn,Nδm,n). (5)

This exact expression is valid for any disorder ǫn, contin-
uum coupling γL, γR, and energy E. Near the center of
the band (the general case of any energy, −2 < E < 2, is
studied in Ref. [16]) it can be written as

Hmn(E) = Hmn−
i

2
Wmn, Wmn = 2π

∑

c=L,R

Ac
m(0)Ac

n(0),

(6)
where W (E) is defined by the coupling amplitudes,

AL,R
n (E) = (γL,R/π)1/2[1− E2/4]1/4(δ

(L)
n,1 + δ

(R)
n,N ). (7)

Here Hmn from Eq. (1) describes the internal dynamics,
while the non-Hermitian partW (E) is factorized in terms
of the coupling amplitudes Ac

n(E) between the internal
states |n〉 and open decay channels labeled by c = L,R.
The non-Hermitian Hamiltonian (6) allows us to con-

struct the scattering matrix S in the space of channels,

S =
1− iπK

1 + iπK
, (8)

where the reaction matrix K is defined as

Kab(E) =
∑

j

Ãa
j Ã

b
j

E − Ej
; Ãc

j =
∑

m

Ac
mψm(Ej), (9)

and ψm(Ej) is the m-component of the eigenstate |j〉 of
the closed Hermitian Hamiltonian (1).
In the case of weak disorder, σ2 ≪ 1, the strength

of coupling to the leads is characterized by the coupling
parameter, κc = 2πγc/ND, calculated via the average
scattering matrix. For this definition the channel trans-
mission coefficient τc = 1−|〈Scc〉|2 is maximal for perfect
coupling when κc = 1. Here D is the mean level spac-
ing at the center of the energy band in a closed chain,
κc = 0. Below we consider the equiprobable coupling,
γc ≡ γ, κc ≡ κ. The average scattering matrix can be
written in the form 〈Scc〉 = (1− κ)/(1 + κ) and vanishes
for perfect coupling. In all numerical simulations we take
N = 1000 sites and combine an ensemble average over a

large number of realizations with a spectral average over
1000 energies across an energy window |E| < 0.2.
Transport characteristics. It is known (see, for exam-

ple, [17]) that, for continuous weak random potentials in
1D geometry, all transport characteristics for finite sam-
ples of lengthN depend on the ratioN/L∞(E). Here L∞

is the back-scattering length of scattering states that can
be associated with the localization length l∞ of eigen-
states in infinite samples. This is the core of the single

parameter scaling (SPS) [18]. Unlike the models with
continuous potentials, the SPS is questionable for the
tight-binding model (1). It is shown that at least at the
band center, E = 0, the SPS fails [19]).
Below we demonstrate that the main results obtained

for 1D disordered models can be also applied to the An-
derson model provided the energy E is not very close to
band center. For example, in the case of perfect cou-
pling, the average transmission coefficient and its second
moment (q = 1 and 2, respectively) are given by [17]

〈T q〉 =
√

2x3

π
exp

(

− 1

2x

)
∫

∞

0

fq(z) exp

(

−z
2x

2

)

dz;

f1(z) =
z2

cosh z
; f2(z) =

2z2 + z sinh 2z

4 cosh3 z
, (10)

which together define the variance of the transmission,
Var(T ) ≡ 〈T 2〉 − 〈T 〉2. Here x = l∞/N with l∞ defined
by Eq. (2), and 〈...〉 stands for the ensemble average. A
simpler relation emerges for the self-averaged logarithm,
〈lnT 〉 = −2N/l∞. Quite often, this expression serves as
the definition of the localization length l∞. Our numer-
ical data for 〈T 〉, 〈T 2〉,Var(T ) and 〈lnT 〉 manifest excel-
lent correspondence with Eqs. (10).
For non-perfect coupling we derived the following for-

mula for 〈lnT 〉 which is valid for any coupling κ,

〈ln T 〉 = −2N

l∞
+ 2 ln

[

4κ

(1 + κ)2

]

. (11)

Our data nicely correspond to this expression for 0.05 ≤
κ ≤ 10 and 0.2 ≤ β ≤ 22 with β defined by Eq. (4);
β = 1 marks the strongest chaos in a closed system.
Another quantity of theoretical and experimental in-

terest is the reflectivity factor F ,

F =
〈R〉 − 〈Scc〉2

〈T 〉 with c = L,R , (12)

where R and T are the reflection and transmission co-
efficients, respectively, and the term 〈Scc〉2 takes into
account direct scattering emerging for a non-perfect cou-
pling [5]. For perfect coupling, κ = 1, we have 〈Scc〉 = 0,
and Eq. (12) with R = 1 − T can be written explicitly
with the use of Eq. (10). For non-perfect coupling, κ 6= 1,
we found an approximate relation,

F = a0(e
a1/β − 1) +

(1− κ)2

(1 + κ)2
, (13)
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that gives quite a good description of the data for a0 =
2.8, a1 = 1.4, see Fig. 3. For β → ∞ the expression
F = (1−κ)2/(1+κ)2 can be confirmed analytically. Our
data demonstrate that the reflectivity factor strongly de-
pends on the degree of internal disorder. It is remarkable
that regardless of the coupling there is a sharp change in
the value F at β ≈ 1 corresponding to the onset of strong
“chaos” in the closed system. Thus, measuring experi-
mentally F one can observe the transition from extended
to localized states on the scale of the sample size N .
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FIG. 3: Reflectivity factor versus the parameter β =
2.34l∞/N for N = 1000 and different couplings. Each sym-
bol is obtained by an average over 1000 disorder realizations.
The inset shows a closer view of the indicated section with a
logarithmic scale on the vertical axis.

Conclusion. We studied the transport properties of the
1D Anderson model in dependence on the degree of in-
ternal chaos and strength of coupling to continuum. We
found that the level spacing distribution P (s) for a closed
model of finite sizeN is well described by the phenomeno-
logical expression (3) in which the repulsion parameter
β changes from β = 0 to β = ∞. This expression is
originated from the two-dimensional Coulomb gas model
with the temperature 1/β, and gives the distribution of
spacings between nearest charged particles moving on a
ring. This fact may be used for further analytical studies
of the spectrum statistics in the finite Anderson model.
In the closed model we established the linear relation

between the repulsion parameter β and normalized local-
ization length, l∞/N , of the eigenfunctions. Thus, the
repulsion parameter β reflects the transformation of the
wave functions from localized states to extended stand-
ing waves. In a narrow region with β ∼ 1 the properties
of the model can be adequately described by the RMT.
Opening the system at the ends we used the effective

non-Hermitian Hamiltonian to study the transport
properties of the model. We demonstrated that the
average transmission coefficient and its variance entirely
depend on the parameter β for a given strength of
continuum coupling. Finally, the reflectivity factor
(the ratio of average fluctuative reflection to average
transmission) is shown to be a universal function of
the same parameter. We conclude that the trans-
mission properties of the Anderson model provide a

reliable tool for getting information on the degree of
randomness and spectrum statistics in the closed system.
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