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Abstract
Magnetic materials are usually characterized by anisotropy energy barriers which dictate the
timescale of the magnetization decay and consequently the magnetic stability of the sample.
Here we consider magnetization decay for spin systems in a d = 3 cubic lattice with an
isotropic Heisenberg interaction decaying as a power law with a critical exponent α = d and
on-site anisotropy. We show that the anisotropy energy barrier can be determined from the
ergodicity breaking energy of the corresponding isolated system and that, unlike in the case of
nearest neighbour interaction, the anisotropy energy barrier grows as the particle volume, V ,
and not as the cross-sectional area.

(Some figures may appear in colour only in the online journal)

1. Introduction

From a theoretical point of view the problem of magnetization
decay in nanosystems is difficult to treat: nanoscopic systems
are too big to be solved by brute force calculation and too
small to be tackled by the tools of statistical mechanics at
equilibrium. Indeed, the problem of magnetization decay is a
typical example of an out of equilibrium phenomenon, which
is the decay out of a metastable state.

On the other hand, nanomagnetism has important
consequences in the technology of memory and information
processing devices due to the quest for improving magneto-
storage density and for the realization of smaller and smaller
magnetic units. Significant improvements in experimental
techniques allowed investigations of magnetic properties in
nanoparticles and nanowires [1]. The analysis of magnetic
decay is crucial for understanding ferromagnetic behaviour;
indeed one-dimensional nanoscopic systems can also show
ferromagnetic behaviour at low but finite temperature, even if
a ferromagnetic phase transition is theoretically forbidden [2],
due to large magnetic decay times [3–7].

The modelling of the magnetic decay through an on-site
anisotropic barrier is typical in the literature where mainly

short range interactions have been considered. Nevertheless,
in many realistic situations, one needs to go beyond nearest
neighbour coupling, taking into account the long range nature
of the interaction. The latter is usually introduced as a
two-body interaction coupling decaying at large distance with
a power law exponent α not larger than the embedding
spatial dimension d [8]. It is the case, for instance, for the
dipolar interaction in 3D systems, or of the so-called RKKY
(Ruderman–Kittel–Kasuya–Yosida) interaction, which decays
as r−d, where r is the distance between spins, and d is
the dimension of the lattice system. In particular, long
range interactions might be responsible for the ferromagnetic
behaviour of diluted magnetic semiconductors (DMS) [9] and
diluted magnetic oxides (DMO) [10], promising materials for
the realization of spintronics devices. Note that in both cases
the interaction decays with a power, α, equal to the lattice
dimension, d, which is the case that we will analyse in this
work and that it is termed ‘critical’ in the literature [8].

One of the first attempts to understand magnetic decay
times in nanoparticles is due to Neél [11] and Brown [12],
who considered that all the spins in a magnetic particle move
coherently as a single spin, so magnetization decay can be
described as due to thermal activation over a single energy
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barrier. In Brown’s theory the magnetic decay time, τ , is
shown to follow an Arrhenius law:

τ ∝ eβ1E (1)

where β = 1/kBT is the inverse temperature and 1E ∝ V
is the anisotropic energy barrier proportional to the particle
volume, V . The question of whether a microscopic model
would support this conclusion has been analysed by many
authors, mainly assuming nearest neighbour interactions. For
instance in Braun’s theoretical approach [13] a sufficiently
elongated system of nearest neighbour interacting spins with
an on-site anisotropy barrier have been shown to reverse the
magnetization (thus producing an average magnetic decay)
through a process called nucleation, energetically convenient
with respect to coherent rotation. In this mechanism,
accomplished by the formation of a soliton–antisoliton
domain wall, the magnetic anisotropic energy to be overcome
turns out to be proportional to the cross-sectional area of the
particle,1E ∝ A, and not to its volume, V . Studies of different
mechanisms of magnetic decay have been the objective of
intensive investigation [14] until recently, where also 3D
spherical samples with short range interactions and on-site
anisotropy are shown to produce nucleation for sufficiently
large radius [15]. Thus, for short range interaction, Brown’s
theory and a consequent Arrhenius law with an exponent
proportional to the volume V of the particle are valid only for
very small particles, while in general, for large or elongated
particles, the exponent is given by the cross-sectional area of
the particle. A smaller exponent means smaller decay times
for the same temperature. The size and shape dependences
of the magnetic anisotropy barrier, and consequently of the
decay times, have also been confirmed experimentally in [16].

Magnetic decay, in a macroscopic model with long range
interaction, has been much less investigated. Long range
interaction can affect the decay out of a metastable state in
a significant way; in the seminal paper [17] it was shown that
the time of decay out of a metastable state in a toy model
with infinite range interaction is given by an exponential law
with an exponent proportional to the squared volume of the
particle.

The main goal of this paper is to analyse magnetic decay
beyond nearest neighbour interaction, focusing on a critical
three-dimensional system.

In order to estimate the anisotropic energy barrier,
we propose a different point of view which does not
assume the specific motion of the spins upon the magnetic
reversal; rather we estimate the minimal energy barrier
that must be encountered during the magnetic reversal
process. We related the energy barrier to the recently found
topological non-connectivity threshold (TNT) in anisotropic
spin systems [18–21].

2. The topological non-connectivity threshold (TNT)

Following [18], we briefly review the topological non-
connectivity threshold. Let us consider a generic anisotropic
spin system, with an easy axis of magnetization (the direction

n̂easy of the magnetization in the ground state), with a
microcanonical energy

H(ES1, . . . , ESN) = E.

Let us also set

m =
1
N

∑
k

ESk · n̂easy, (2)

as the magnetization along the easy axis. Note that in our
paper it will be n̂easy = ẑ.

It was proven [18] that below a suitable threshold, Etnt,
given by the minimal energy attainable under the constraint of
zero magnetization, m, along the easy axis:

Etnt = Min(H(. . . ESi . . .)| m = 0), (3)

the constant energy surface is disconnected into two portions,
characterized by a different sign of the magnetization. From
the dynamical point of view one has a case of ergodicity
breaking: a trajectory at fixed energy cannot change the sign
of magnetization since it is confined forever in one region of
the phase space.

It was also demonstrated that in the case of long range
interaction among the spins [20], the disconnected energy
portion determined by the TNT remains finite when the
number of particles becomes infinite.

While for isolated systems the magnetization cannot
reverse its sign if the microcanonical energy E is below the
energy threshold Etnt, when the system is put into contact
with a heat bath this may happen for any (even extremely low)
temperature. In the following we will address the question of
whether the TNT influences in some way the magnetization
decay.

3. The α-ranged model with on-site anisotropy

The model that we consider is a spin system characterized
by an isotropic α-ranged exchange interaction and on-site
anisotropy and it is described by the following Hamiltonian:

H = −J
∑
i>j

ESiESj

rαi,j
− D

∑
i

(Sz
i )

2, (4)

where the ESi are the spin vectors with unit length, α determines
the range of the interaction among the spins, J > 0 is the
exchange coupling and D > 0 is the on-site energy anisotropy.
As one can see in equation (4), the first term is not the usual
Heisenberg (or exchange) term, but it contains a power law
decaying factor r−αi,j = |Exi − Exj|

−α , where Exi indicates the
position of the ith spin in the lattice. α is called the range
of interaction and, as one can observe, for α = 0 one has
the so-called ‘infinite-ranged’ model where all spins interact
in the same way with all others. On the other hand, for
α = ∞, one gets the usual nearest neighbour (or Heisenberg)
interaction. This model has been considered for instance
in [19, 22].

The minimal energy for this class of spin systems is
attained when all the spins are aligned along the ẑ direction,
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which thus defines the easy axis of magnetization. In the
following we will consider the ‘critical’ case α = d.

For this class of systems, the energy, Etnt (see
equation (3)), can be computed numerically using for instance
a minimizing constrained algorithm, but it can also be
estimated analytically. To this end let us consider two
configurations with m = 0:

• The first one has all spins aligned perpendicular to the easy
axis (the z axis in our case). The energy difference of this
configuration from the one having minimal energy is DN,
which is the energy barrier due to the coherent rotation of
all spins.
• The second is a configuration, labelled ↑↓, consisting

of two neighbouring identical blocks with opposite
magnetization along the easy axis. This configuration
roughly corresponds to what is called nucleation. The
energy difference of this configuration from the minimal
energy, for large N values, is given by [20]

1E↑↓ ' JCN (5)

where C is a suitable, shape dependent, constant.

For the sake of clarity we give here below the same
general argument as in [20], leading to equation (5). In the
↑↓ configuration the spins in each of the two blocks are
aligned along the easy axis, so the energy of each block is
just the minimal energy of N/2 spins, Emin(N/2). Thus, the
energy of the system in the ↑↓ configuration is the sum of the
energies of each of the blocks plus the energy of interaction,
V , between the two blocks:

E↑↓ = 2Emin(N/2)+ V. (6)

On the other hand, we can write in a similar way the minimal
energy for a block of N spins: Emin(N)= 2Emin(N/2)−V , and
compute the disconnected portion of the spectrum as1E↑↓ =
E↑↓ − Emin = 2V . This implies that we can compute 1E↑↓
only from the knowledge of the minimal energy, since we have
V = 2Emin(N/2)−Emin(N), from which equation (5) follows
since Emin(N) ∝ N ln N for α = d = 3; see [20] and references
therein. Note that the same argument can be applied for any
α; in particular for α ≤ d, we have 1E↑↓ ∝ N2−α/d.

Moreover it can be shown (see [20]) that the energy of
these two configurations is a good approximation of Etnt, so
we can write

1Etnt ≡ Etnt − Emin ≈ Min(DN,1E↑↓). (7)

Equation (7) is valid whenever DN is not too close to 1E↑↓.
The magnetic decay times have been analysed in the canonical
ensemble, using a modified Monte Carlo simulation [23, 5].
In this modified Monte Carlo approach, at each step the
spin is allowed to move inside a cone with a temperature
dependent size. This method allows us to connect the
unrealistic Monte Carlo time to the physical time given by
the Langevin equations in the high damping limit [5]. As the
initial condition we chose all spins aligned along the easy
axis, and from the exponential decay in time of the average
magnetization, 〈m(t)〉 ∝ e−t/τ , we computed the magnetic
decay time, τ .

Figure 1. Decay time τ versus the inverse temperature β for a
parallelepiped L× L× εL with α = 3, J = 1/20,D = 0.5, ε = 10.
Symbols refer to numerical data, while full lines are the analytical
prediction from equations (7) and (8); see the text. Black squares are
for L = 3, green circles are for L = 4 and red asterisks are for
L = 5. Arrows indicate the corresponding critical temperatures βstat
defined in equation (9).

4. Results

In order to prove that the energy barrier depends on the
volume and not on the cross-section, in the following
we will consider the ‘worst’ possible case, namely a thin
parallelepiped, L × L × εL, in the presence of a ‘critical’
interaction α = d = 3. We chose the aspect ratio ε = 10.

Magnetic decay times as a function of the inverse
temperature, β, for different sizes, L, are shown in figure 1.
As one can see, two different regimes are clearly identified:
one for high temperature (small β) where all curves
are superimposed, and another one, for sufficiently low
temperature, where times grow exponentially fast. In the same
figure we also show, as full lines, the magnetic decay times
given by the following formula:

τ = τ0 eβ1Etnt , (8)

where τ0 is a factor that may depend on temperature too,
β = 1/kBT , and 1Etnt has been obtained from equation (7).
Note that for the parameters used in figure 1 we have1Etnt '

1E↑↓, so we are in the nucleation regime.
The good agreement with numerical simulations shows

that the anisotropic energy barrier, 1E, is very well
approximated by 1Etnt. Note that in this case (nucleation)
we have τ0 ∝ eDβ [4]. Indeed a single spin can continuously
change from S = 1 to −1 only passing through the state
S = 0. While the two extreme states have the same magnetic
anisotropy (since it is proportional to DS2), the intermediate
state S = 0 has a barrier higher by a factor D. This additional
spin flip does not occur, for instance, in discrete models, such
as the Ising model, since there are no intermediate states
between S = 1 and −1.

We also checked that equation (8) is valid in the coherent
rotation regime, where the anisotropic energy barrier is given
by 1Etnt = DN.
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We may expect that the exponential law given by
equation (8) holds when kBT � 1E, see [12]. Clearly
this gives an upper bound for the temperature for which
equation (8) is valid. Indeed, it should also be the case that
T � Tstat, where the latter is the temperature at which the
barrier at m = 0 in the free energy vanishes (which coincides,
in the thermodynamic limit, with the critical temperature, Tcr,
at which a phase transition occurs). Clearly in the absence of
a free energy barrier, i.e. when T ≥ Tstat, one cannot expect
the magnetic decay to be described by the Arrhenius law.

Tstat can be computed numerically from the probability
distribution PT(m) of the magnetization in the canonical
ensemble at the temperature T . An example of these
probability distributions is shown in figure 2 where it is clear
that on increasing the temperature, and thus decreasing β, the
distribution changes from bi-modal to singly peaked. It is thus
natural to define Tstat as the temperature at which the second
derivative of such a probability distribution at m = 0 changes
sign:

d2PTstat

dm2 (0) = 0. (9)

The related values of βstat = 1/kBTstat for different L values
are indicated as arrows in figure 1 and agree very well with the
temperatures at which the exponential law starts to be valid.
Work is in progress in an effort to understand whether the
onset of the exponential law at the temperature Tstat occurs
also for a generic interaction range α 6= d. One should note
that on increasing the system size, Tstat increases; see figure 1.
This is typical of long range interacting systems when the
coupling has not been rescaled in order to get an extensive
energy.

For α < d and D= 0 a simple mean field approach allows
us to compute the critical temperature of the thermodynamic
phase transition:

Tcr = JN∗/3,

N∗ = ∝


2N1−α/d

− 1
(2− α/d)(1− α/d)

for α < d

2 ln(N) for α = d.

(10)

Let us note that for the parameters chosen in figure 1, Tstat
behaves as Tcr for α = d, namely it grows with the number of
spins as ln N, even if D 6= 0. We do not know whether such
scaling is valid for any values of D.

It is possible to give a heuristic justification of
equation (8). Magnetic decay occurs through fluctuations
of the magnetization around its equilibrium value. The
probability of a magnetization fluctuation is determined by
the free energy barrier, 1F = 1E − kBT1S, through the
Arrhenius factor, e−β1F . Whenever the entropic barrier,
1S, is negligible at low temperature, the accessible spin
configurations can be determined by minimizing the energy
only. In order to reverse its sign, the value of the
magnetization, m, has to go, say, from m = 1 to 0. Since
for m = 1 the system has minimal energy, it is clear that
1Etnt represents the minimal energy barrier encountered by
the system while reversing its magnetization.

Figure 2. Magnetization probability distribution for a cubic lattice,
4× 4× 40, at different inverse temperatures β as indicated in the
legend. The critical curve corresponding to βstat, where the curve
changes concavity (see equation (9)), has been shown as a dashed
line.

Figure 3. Anisotropic energy barrier 1E as a function of the side L
of the parallelepiped, L× L× εL, obtained by an exponential fitting
of the decay time versus the inverse temperature β (namely fitting
the points after the arrows in figure 1). The (full) line L3 and the
(dashed) line L2 have also been added for the sake of comparison.
Here, ε = 10, α = 3, J = 1/20 and D = 0.5.

From the data shown in figure 1 we have that 1E ≈
1Etnt. Moreover, from equations (5) and (7), we have that,
independently of the size and the shape of the magnetic
particle, 1Etnt ∝ N. It follows that the anisotropic energy
barrier is proportional to the particle volume since V ∝
N. In particular, this means that even in the case of 3D
elongated particles, in contrast to what happens for nearest
neighbour interactions, the energy barrier depends not on the
cross-sectional area but on the whole particle volume.

In order to further confirm such theoretical prediction we
discuss the dependence of the anisotropic energy barrier, 1E,
as a function of the side, L, of the parallelepiped. Results
are shown in figure 3. For the sake of comparison, the lines
proportional to the cross-section (L2) and to the volume (L3)
have been drawn. As one can see, the barrier grows as the
particle volume even in this elongated quasi-1D geometry.

Last but not the least, we would like to mention that the
term ‘nucleation’ that we used above is meaningful even for
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α-ranged interactions and that the proportionality between the
energy barrier, 1E, and the number of particles, N, is not due
to coherent rotation.

To prove that, we first consider in figure 4 the time
evolution of a single system taken from figure 1. In particular
we plot for one single Monte Carlo trajectory the values of

M =

∣∣∣∣∣ 1
N

N∑
i=1

ESi

∣∣∣∣∣ , (11)

and

m =
1
N

N∑
i=1

Sz
i , (12)

as a function of the Metropolis time. As one can see, every
time m changes its sign, the modulus of the magnetization, M,
goes to zero, which is consistent with a coherent movement of
all spins as in the soliton–antisoliton mechanism.

Let us note that in this work we mainly considered the
case D � J for which, during magnetic reversal, we have
the formation of a sharp domain wall, i.e. with a width
much smaller than the particle size. Nevertheless we find
that the energy barrier scales with the volume, even if the
magnetic reversal mechanism is given by nucleation, as shown
in figure 4. This is at variance with the short range interacting
case, found in the literature, where nucleation always implies
a scaling with the cross-sectional area and not with the
volume. This crucial difference from results found in the
literature for nearest neighbour interactions is one of the main
points of our paper and a generic hallmark of long range
interaction.

5. Conclusions

In conclusion, we have analysed a 3D spin system with
long range interaction characterized by an exponent α = d =
3. We have predicted and numerically confirmed that the
magnetic decay time depends exponentially on the volume
of the particle, independently of shape and size, and not
on its cross-sectional area, as happens for nearest neighbour
interactions in the large size limit.

The fast growth of the anisotropic energy barrier
with the volume gives rise to the possibility of observing
long-lived metastable ferromagnetism in nanosystems at high
temperature, which is difficult to achieve for short range
interaction.

Another important result is that we were able to compute
the anisotropic energy barrier at finite temperature from the
corresponding topological non-connectivity threshold of the
isolated system.

One might ask whether the TNT gives the anisotropic
energy barrier for any range of interaction. Our preliminary
results indicate that this is the case for short range interaction;
in particular for nearest neighbour interacting chains, the TNT
agrees with the anisotropic energy barrier as computed in
the literature (see [4]). For the long range case, α < d, the
relation between the TNT and the anisotropic energy barrier
needs further investigations to be clarified. Nevertheless our

Figure 4. Magnetization as a function of the Metropolis time for a
4× 4× 40 system with β = 3.5, J = 1/20,D = 0.5 and α = 3. The
light (red) curve refers to M (see equation (11)), while the dark
(black) one refers to m (see equation (12)). As one can see,
whenever m changes sign, M goes to zero, so a process close to
nucleation occurs. It is important to stress that in the case of
coherent rotation one would have M 6= 0 when m changes sign.

preliminary data indicate that the anisotropic energy barrier
can grow even faster than the volume 1E ∝ V2−α/d. Such
an effect would be a distinguishing feature of long range
interactions and cannot occur for short range ones.
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