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Abstract. The microcanonical dynamics of an ensemble of random magnetic
dipoles in a needle has been investigated. Due to the presence of a constant
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dimensional case has been found separating a paramagnetic chaotic phase from a
ferromagnetic regular one. In particular, a simple criterion for the transition has
been formulated and an intensive critical parameter found. Numerical simulations
support our understanding of this complex phenomenon.
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1. Introduction

A truly comprehensive understanding of magnetism at the nanoscale is still lacking and
has important consequences in the technology of memory and information processing
devices.

Many unsolved problems about the magnetic properties of diluted spin systems have
recently attracted a great deal of attention. Among the open problems there is the
emergence of ferromagnetism in doped diluted systems [1], where the Curie temperatures
can be as high as 300 K, and a deep theoretical understanding of the magnetic properties
of dilute dipole systems (spin glass transition, ferromagnetic and antiferromagnetic
transitions).

Here we will concentrate on randomly arranged dilute classical dipoles, which are
called dipole glasses. Many results in the literature, sometimes controversial, exist
on such kinds of systems. Magnetic properties of dipole–dipole interacting spins are
particularly difficult to study due to many factors: the long range nature of the
interaction, anisotropy and frustration. Long range and anisotropy can induce ergodicity
breaking [2] in a system. Breaking of ergodicity, a concept introduced by Palmer [2],
and recently found explicitly [3, 4] in a class of long-ranged anisotropic spin systems, is
a key word in understanding phase transitions too, even if it should not be confused
with breaking of symmetry [5]. Speaking loosely, a few constants of motion, such as
the energy or the angular momentum in a particular geometry, produce a separation
of the allowable phase space into two or more subspaces over which the motion is
constrained. In [3] the energy at which the separation occurs has been calculated explicitly
for an anisotropic 1D classical Heisenberg system. In that case both the anisotropy
and the long-ranged nature [6] of the inter-spin interaction, are essential ingredients
in order to have breaking of ergodicity [7]. On the other hand, frustration, that is
the impossibility to attain a global minimal energy minimizing locally the interactions,
induces a dependence of the ferromagnetic and antiferromagnetic properties on the lattice
geometry [8].

Other results concerning the so-called Ising dipole glass can also be found in the
literature, where Ising simply means uni-axial. To quote but a few: a spin glass transition
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for high concentration, using Monte Carlo simulation [9, 10], mean-field spin glass
transition at low concentration depending on the lattice geometry [11], absence of spin
glass transition for low concentration using Wang–Landau Monte Carlo simulations [12]
or the recent spin glass transition at non-zero temperature from extensive numerical
simulation [13].

In this paper we will focus our analysis on a dipole glass of freely rotating classical
dipoles. First of all, the dipole glass is a typical example of a very frustrated system [14]–
[16], so that different ground state configurations can exist, depending on the geometry and
the spin concentration. Results in the canonical ensemble typically consider a mean-field
approach, and it is common lore that the random positions of the dipoles induce magnetic
field fluctuations. These fluctuations do not vanish at T → 0, unlike thermal fluctuations,
and tend to suppress magnetic order even at T = 0 [15, 16]. So, magnetic order is expected
to happen only for high impurity concentrations (and low temperatures) [16]–[18]. Mean-
field theories consider only the equilibrium properties and do not take into account the
time needed to reach the equilibrium situation and finite size effects. On the other hand,
the question of how long a metastable state can last is a major issue in determining the
magnetic properties of a system.

In this paper we study the microcanonical dynamics, reserving the study of the
influence of a thermal bath for further investigations. We analyze the microcanonical
dynamics of dipoles put at the vertices of a cubic lattice (so that their relative distance
cannot be smaller than the lattice size), only on the basis of the Landau–Lifshitz–Gilbert
equations of motion. 3D dipole–dipole interacting systems can be realized quite easily in
the laboratory, for instance doping a non-magnetic media with paramagnetic ions, weakly
interacting with the lattice and with a relative inter-dipole distance sufficiently large in
order to neglect the Heisenberg interaction (and therefore with a low concentration). The
choice of studying a random glass instead of a system composed of dipoles regularly
arranged in some lattice is twofold: on the one hand, it is relatively easy to dope a system
putting some paramagnetic doping ions in a random way inside any non-magnetic media.
On the other hand, a 3D cubic lattice with a full concentration of dopant ions δ = 1, even
if extremely thin, does not have a ferromagnetic ground state [19], so that another type
of transition should be considered (paramagnetic/antiferromagnetic).

Anticipating some of the results, we have found that, taking into account a typical
experimental situation with needle-shaped sample, at low dipole concentration a further
constant of motion appears that induces a kind of ‘phase’ transition related to invariant
tori, which separate the allowable phase into many disconnected regions. This result seems
to indicate that, at very low concentration a system of random dipoles in a needle resemble
a one-dimensional arrangement of dipoles, and thus can have ferromagnetic behavior. In
this particular case, the ergodicity breaking is not due to an increase of energy, but
to an increase of perturbation, which means the tendency to a transformation from a
needle shape (quasi-1D system) to a cubic shape (3D shape). In a sense, these results
are more akin to the standard perturbation theory in classical dynamical systems [20, 21],
re-interpreted in the light of phase transitions induced by demagnetization times [22].

In the future we are going to study the same system in contact with a thermal
bath. In this case the presence of the ergodicity breaking found in [3, 4] should influence
the demagnetization times. In the microcanonical case, the presence of this ergodicity
breaking is hidden by the quasi-integrability of motion.
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Figure 1. Needle geometry. The classical dipoles are put in a random way on
the vertices of a cubic lattice of size a. R and L are given in units of the lattice
size a.

2. The classical model and the perturbative approach

Let us consider a system of N classical dipoles �μi randomly put at the nodes of a 3D
gridded box R × R × L, with L � R, and low concentration δ � 1, as indicated in
figure 1.

From the physical point of view it represents a dilute system of paramagnetic ions in
a non-magnetic bulk, with a concentration δ = N/Ns, where Ns = R2L is the number of
allowable sites in the 3D lattice. As explained above, such a system can be realized in
the laboratory, doping a non-magnetic system having a cubic lattice with paramagnetic
impurities. In the last decade, a lot of experimental and theoretical results have been
collected for doped TiO2 and others [1]. If the dipoles weakly interact with the lattice and
if their average distance is much greater than the Bohr radius, we can simply neglect the
Heisenberg (exchange) interaction and represent their mutual interaction and dynamics
with a pure dipole–dipole interaction energy:

E =
μ0μ

2

4πa3

N∑

i=1

∑

j>i

1

|rij|3 [�Si · �Sj − 3(�Si · r̂ij)(�Sj · r̂ij)]. (1)

Here �Si is the ith dimensionless spin vector:

�Si · �Si = 1, (2)

μ is the magnetic moment of the paramagnetic doping ions and rij is the distance between
the ith and the jth spin in units of the lattice spacing a.

The dynamics is described by the Landau–Lifshitz–Gilbert equations of motion:

d

dt
�μk = γ�μk × δE

δ�μk

, (3)

where �μk = μ�Sk and γ is the gyromagnetic ratio.
They can be rewritten in the dimensionless form:

d

dτ
�Sk = �Sk × δE0

δ�Sk

, (4)
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where the following dimensionless quantities have been introduced:

E0 = E
4πa3

μ0μ2
τ = ωt, with ω =

γμμ0

4πa3
. (5)

The system of equations considered above conserves the energy (1) and the squared
moduli of the spins (2).

The diluted doped quasi-1D system can be magnetized with a strong magnetic field
directed along L, the longest axis (z axis). The questions we would like to answer is the
following: what is the dependence of the average demagnetization time and its fluctuations
on the system parameters?

The relevant parameters to take into account are the concentration δ of paramagnetic
ions and the aspect ratio ε = R/L. In principle, due to the long-ranged nature of the
dipole interaction, one could ask whether there are effects dependent on both the system
size and the number of doping spins N , even if, in quasi-1D systems, the dipole interaction
can be treated as a short range interaction.

From the point of view of the equations of motion (4), if the N dipoles are lying
along a straight line (R = 0 ⇒ ε = 0), there is a further constant of motion, i.e.
Mz = (1/N)

∑
k Sz

k . Therefore, for a 1D system, the answer to the first question above
is very simple: a state with any initial magnetization Mz(0) �= 0 will keep the initial
magnetization forever. The natural question thus becomes: what happens for ε �= 0? Will
a magnetized state demagnetize and how much time does it take to do that?

The classical dynamical picture can be simplified by adopting a perturbative
approach, namely approximating the unit vector between two spins as follows:

r̂ij = cos θij ẑ + sin θij(cosφijx̂ + sin φij ŷ) � ẑ + (εN)(cos φijx̂ + sin φij ŷ) (6)

where x̂, ŷ, ẑ are the unit vectors, φij are the azimuthal angles with respect the z axis
and θi,j are the polar angles. In the last equation we approximate cos θij � 1 and
sin θi,j � R/〈d〉, where, for dilute dipoles in a needle geometry, 〈d〉 = L/N is the average
distance among spins. The energy (1), to first order in εN , becomes E0 = H0 + εNV ,
where H0 is the energy part that conserve Mz, and V is the perturbation:

H0 =
1

2

N∑

i=1

∑

j �=i

1

|rij|3 [Sx
i Sx

j + Sy
i Sy

j − 2Sz
i S

z
j ],

V = −3

N∑

i=1

∑

j �=i

1

|rij|3 [cosφijS
z
i S

x
j + sin φijS

z
i S

y
j ].

(7)

The equations of motion for the macroscopic variables, Mx,y,z, can be written as

dMz

dτ
= 3ε

∑

k

∑

i�=k

1

|rik|3Sz
i (S

y
k cos φik − Sx

k sin φik)

dMy

dτ
=

3

N

∑

k

∑

i�=k

1

|rik|3{S
z
i S

x
k + εN [Sx

k Sy
i sin φik + (Sx

kSx
i − Sz

kS
z
i ) cos φik]}

dMx

dτ
= − 3

N

∑

k

∑

i�=k

1

|rik|3{S
z
i S

y
k + εN [Sx

kSy
i cos φik + (Sy

kSy
i − Sz

kS
z
i ) sin φik]},

(8)
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Figure 2. Three different trajectories, for R = 4, L = 4000, δ = 10−3, N = 64,
in the integrable case. Initially spins are chosen with random components on the
unit sphere.

and, in particular, for ε = 0 we have

dMz

dτ
= 0

dMy

dτ
=

1

N

∑

k

ωkS
x
k

dMx

dτ
= − 1

N

∑

k

ωkS
y
k , (9)

having defined, the average ‘local’ frequencies:

ωk = 3
∑

i�=k

1

|rik|3Sz
i . (10)

These equations describe a kind of rotation in the plane perpendicular to the z
magnetization (which is a constant of motion). Therefore one could expect that for
εN � 1 a rotational-like motion about the z axis persists, while Mz remains a quasi-
constant of motion. This is what can be observed, for instance, by a direct inspection
of the trajectories of the macroscopic vector �M , in the plane x, y, see figure 2, where
few selected trajectories have been iterated in time, for ε = 10−3 and N = 64. Quite
naturally, on increasing the perturbation strength ε, one could expect that the invariant
tori Mz = const will be broken and, eventually, a stochastic motion of the macroscopic
variable Mz will appear. In section 3 we will study the survival of invariant tori under
the dimensional perturbation εN > 0.

3. The chaotic–paramagnetic and the integrable-ferromagnetic phases

The dynamical behavior of the system can be characterized by a ‘regular region’ εN < 1
in which the magnetization Mz(τ) is bounded in a small interval δMz, while, for εN > 1,
Mz(τ) quickly decays to zero. To be more precise, the transition across (εN)cr = 1 is
smooth, namely there is a region of εN values in which the initial magnetization decays
to some non-zero constant when the time τ becomes large.

doi:10.1088/1742-5468/2010/05/P05013 6
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Figure 3. Data in this figure refer to systems with N = 64 spins and a
concentration δ = 10−3. The time behavior of the magnetization is shown, for
different initial conditions, in the overcritical case ε = 0.125 (a) (L = 160, R = 20)
and in the undercritical case ε = 10−3 (b) (L = 4000, R = 4). In (c) and (d) the
probability distribution functions for the fluctuations ΔMz = (〈M2

z 〉 − 〈Mz〉2)1/2

around the equilibrium value are shown for the data given respectively in (a)
and (b).

The critical value of the perturbation strength (εN)cr = 1 can be obtained with the
following hand-waving argument. Let us divide the 3D box into n = L/R = 1/ε small
cubic boxes of side R. If the impurities concentration δ is sufficiently small in order to have
only one spin inside each R-sided box then the system is approximately one-dimensional
and Mz can be considered an approximate constant of motion. Otherwise, for large δ, the
system behaves like a 3D system and Mz can spread everywhere. In other words, in order
to have less than one spin in each R3 block one should have N/n < 1, or εN < (εN)cr = 1.

Moreover the study of the dynamics done in section 2 suggests we take as a small
parameter εN and to look for ferromagnetism when εN < 1. Note that this choice is
also appropriate from the thermodynamic point of view since εN = RN/L is an intensive
parameters in the large N limit L → ∞, N → ∞, N/L = const, with R fixed.

An example is shown in figure 3, where the dynamics of magnetization has been
plotted in the overcritical case (εN > 1, figure 3(a)) and in the undercritical one (εN < 1,
figure 3(b)). Different trajectories, corresponding to different initial conditions Mz(0),
have been shown in different colors. As one can see, in the ‘paramagnetic’ phase (εN > 1)
the magnetization first decays to zero and then it fluctuates randomly around zero. In

doi:10.1088/1742-5468/2010/05/P05013 7
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Figure 4. (a) Time behavior of the average magnetization for different values of
the aspect ratio ε = 1.25×10−4, 2.9×10−4, 9.8×10−4, 4.5×10−3, 2.5×10−2, 10−1

(from the upper to the lower), fixed number of spins N = 220 and fixed
concentration δ = 10−3. The average is taken over 100 different random
configurations. Initially we choose Sz

i (0) = 1, i = 1, . . . , N . (b) Dependence
of the equilibrium value of fluctuations as a function of εN . Dashed vertical line
indicates the critical value εN = 1. Red line indicates the dependence

√
Nε.

Different symbols stand for: N = 40, δ = 5 × 10−4 (circles), N = 80, δ = 10−3

(squares), N = 220, δ = 10−3 (triangles down) and ε = 0.1, δ = 10−2 (triangles
up).

contrast, in the ‘ferromagnetic’ phase (εN < 1), it shows a periodic behavior around the
initial conditions.

This behavior is quite typical in the study of dynamical systems, where the increase
of a suitable perturbative parameter is related to the breaking of invariant tori and to the
emergence of chaotic motion [20, 21].

It is also remarkable to study the fluctuations around the asymptotic behavior: in
the undercritical case (figure 3(d)) fluctuations are much smaller than in the overcritical
case (figure 3(c)), roughly ten times in this case, as can be seen by comparing the width
of the probability distribution functions in figures 3(c) and (d).

The large fluctuations around the average values in order to fit a possible experimental
situation suggest averaging over disorder, namely an ensemble of samples with different
random configurations, initially magnetized along the z axis.

The results for the ensemble average 〈Mz〉 are shown in figure 4(a), where the
different behaviors in the two ‘phases’ εN < 1 and εN > 1 are reflected in an average
magnetization not decreasing or decreasing to zero. Indeed, the average magnetization
in the undercritical regime reaches some equilibrium value different from zero after some
initial decay, while in the overcritical regime it goes to zero in an algebraic way.

Ensemble fluctuations at the equilibrium are independent of εN in the paramagnetic
phase while in the ferromagnetic one they are typically smaller and increasing as

√
εN .

doi:10.1088/1742-5468/2010/05/P05013 8
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They are presented in figure 4(b), where

ΔM eq
z = lim

τ→∞
ΔMz(τ)

has been shown as a function of εN . On the vertical axis we renormalize the asymptotic
values by

√
N to take into account fluctuations due to variation of the number of spins

N . Each series of points on the plot corresponds to an ensemble of magnetized needles,
with the same concentration δ and number of spins N (paramagnetic ions) and different
aspect ratio ε, or the same concentration and aspect ratio and different number of spins.
It is quite remarkable that the critical value εN ∼ 1 is well fitted by all different series,
suggesting εN as a good scaling parameter for the macroscopic behavior.

Both the independence of the perturbation strength in the paramagnetic phase and
the square root dependence on εN in the ferromagnetic phase can be understood on the
basis of classical dynamical theory. Breaking invariant tori with a perturbation strength k
corresponds to creating stochastic layers between invariant tori whose size is proportional
to

√
k [20, 21]. On the other side, when the system is completely chaotic, since the

variable Mz is bounded, it can only occupy all the allowable stochastic region, and a
further increasing of perturbation strength cannot modify this size.

Finally we point out that, around εN = 1, we can expect a transition from a
ferromagnetic ground state to an antiferromagnetic ground state. Indeed for εN � 1
the system is close to a 1D arrangement of dipoles, so that the ground state will be
ferromagnetic, as pointed out in section 2. On the other hand, for εN � 1 the system
is close to a 3D arrangement of dipoles. In this case, for a simple cubic lattice, it can
be shown [19] that the ground state is antiferromagnetic. Some numerical simulations we
did confirm this conjecture, but work is still in progress and will be presented in a future
publication.

4. Demagnetization time

As we have seen in section 3, the system dynamics can be described by the parameter, εN ,
characterizing two different dynamical phases, and describing how much one-dimensional
a system is. In this section we will show that εN is also a good (and intensive) scaling
parameter for the macroscopic properties of the quasi-1D system.

In order to prove numerically such an argument we need to find two physical
observables that can describe the paramagnetic and the ferromagnetic phases and to study
their dependence on the parameter εN . To this end, let us introduce, on the paramagnetic
side, the demagnetization time τ1/2, defined as the time at which the average magnetization
decays to one-half of its initial value:

〈Mz(τ1/2)〉 = (1/2)〈Mz(0)〉.
In the same way, on the ferromagnetic side, we introduce the ‘remnant magnetization’ Mr

as the magnetization left when τ → ∞:

Mr = lim
τ→∞

〈Mz(τ)〉.
Let us stress that both quantities are physically sound, in the sense that they are directly
and easily measurable.

doi:10.1088/1742-5468/2010/05/P05013 9
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Figure 5. Average magnetization at time T as a function of εN . For the same
εN we show the average magnetization after different simulation times, T . Data
refer to the case δ = 10−3. Different numbers of dipoles are shown: N = 220
(circles for T = 103 and lozenges for T = 104) and N = 80 (squares for T = 103,
left triangles for T = 104 and crosses for T = 105).

While it is clear that, even if both quantities can be defined only in their respective
phases, they can give useful information when extended to the other phases. For
instance, in the paramagnetic phase the average magnetization will depend strongly on
the simulation time (τ), while in the ferromagnetic phase the demagnetization time is
typically infinite3. The dependence of the average magnetization on the simulation time
can give important information on the ferromagnetic–paramagnetic transition. Indeed we
can expect a weak dependence of the average magnetization in the ferromagnetic region
εN < 1, since the presence of quasi-constant motions freezes the magnetization while, in
the paramagnetic phase, the average magnetization 〈Mz(T )〉 goes to zero as the simulation
time grows. This fact is clearly shown in figure 5, where the average magnetization
〈Mz(T )〉 is plotted versus εN for different simulation times. As we can see from figure 5,
as we increase the simulation time the average magnetization remains almost constant on
the ferromagnetic side (εN < 1), while it goes to zero on the paramagnetic side (εN > 1),
thus demonstrating a clear signature of the dimensional transition discussed above.

Since εN = δR3, one can essentially consider different ways to approach the critical
point εN = δR3 � 1, keeping fixed one of the four quantities ε, N, δ, R and correspondingly
varying all the others. This is exactly what we did in figure 6, where we show, on the
same plot, the remnant magnetization Mr (open symbols and vertical axis to the left) and
the inverse demagnetization time (τ1/2δ), rescaled by the concentration δ (vertical axis to
the right, full symbols) both as a function of the parameter εN . Reserving later on the
discussion about the time-rescaling with δ, let us observe two relevant features. The first
is the presence of a change of curvature of both curves on approaching the critical border

3 In this case we underestimate its value, putting as a magnetization time the maximum dimensionless simulation
time, which is 104.

doi:10.1088/1742-5468/2010/05/P05013 10
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Figure 6. Inverse demagnetization time τ1/2 rescaled by the concentration δ
versus the parameter εN : full symbols should be read on the right vertical axis.
Remnant magnetization Mr versus the parameter εN : open symbols read on the
left vertical axis. Circles (ε = 0.1, δ = 10−3), lozenges (N = 80, δ = 0.01), crosses
(N = 220, δ = 10−3), squares (N = 100, R = 4), asterisks (N = 500, R = 20)
and left triangles (ε = 0.01, δ = 0.01). Initially we choose Sz

i (0) = 1,
i = 1, . . . , N . In this figure an ensemble of 100 different configurations has
been considered. Each member of the ensemble has been integrated for 104

dimensionless time units.

εN = δR3 � 1. The second is the scaling of all points in the two curves (one for τ1/2δ and
the other for the remnant magnetization Mr).

As for the rescaling of the time, let us observe that, due to the particular quasi-1D
geometry, and to the low concentration δ � 1, closest dipoles give the major contribution
to the energy. For instance, the configuration with all spins aligned along the z axis will
have an energy

E ′ ∝
∑

〈i,j〉

1

|rij|3 , (11)

where the sum is taken over N couples 〈i, j〉 of neighbor dipoles. In other words,
E ′ ∼ N/d3 ∼ Nδ, where d is the average distance between two dipoles.

On the other hand, the Landau–Lifshitz–Gilbert equations of motion are invariant
under a simultaneous scaling of time and energy τ ′ = τ/δ and E ′ = Eδ so that we will
expect τ ∝ 1/δ. This simple relation has been verified considering a system with the
same aspect ratio ε and the same number of particles N (so as to have the same value
of εN) and changing the concentration δ over three orders of magnitude. Results are
presented in figure 7(a), where τ1/2 has been shown versus δ. To guide the eye a dashed
line indicating the inverse proportionality has been superimposed. As one can see, looking

doi:10.1088/1742-5468/2010/05/P05013 11

http://dx.doi.org/10.1088/1742-5468/2010/05/P05013


J.S
tat.M

ech.
(2010)

P
05013

Dynamics of random dipoles: chaos versus ferromagnetism

Figure 7. (a) Dependence of the average demagnetization time τ1/2 as a function
of concentration δ, for systems with ε = 0.1 and N = 72. The average has been
taken over an ensemble of 100 different samples. Initially all samples have all
spins aligned along the z axis: Sz

i (0) = 1, i = 1, . . . , N . Dashed line represents
τ1/2 ∝ 1/δ. (b) Average magnetization 〈Mz(τ)〉 as a function of the rescaled time
τδ for different concentrations δ and fixed ε = 0.1, and N = 72 as in (a).

at the last point to the right-hand side of figure 7(a), this relation does not hold true for
concentrations δ � 1, where the nearest-neighbor approximation (11) fails.

The ‘scale invariance’ is even more evident if the average magnetization is considered
as a function of the rescaled time τδ, shown in figure 7(b), for the same cases belonging
to the straight line shown in figure 7(a).

At last, we investigate the system behavior on approaching the large N limit. First
of all let us observe that the scaling variable εN = RN/L is well defined in the large N
limit N, L → ∞, N/L = const and R fixed4.

In order to do that we take into account different systems with fixed concentration δ
and radius R and increasing length L and number of particles N : both in the ferromagnetic
phase εN < 1 (figure 8(a)) and in the paramagnetic one εN > 1 (figure 8(b)), the average
magnetization is independent of the number of particles N .

5. Conclusions

In this paper the microcanonical dynamics of a system of random dipoles, interacting with
a pure dipole–dipole interaction, has been considered. We have shown that a dimensional
‘phase’ transition, correspondent to a transition from the regular (ferromagnetic) to
the stochastic (paramagnetic) regime occurs, in the microcanonical ensemble, for low
concentration δ. Such a transition is characterized from the dynamical point of view by a

4 We thank the referee for this remark.
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Figure 8. Average magnetization 〈Mz〉 versus the dimensionless time τ , for
different sample lengths L, as indicated in the legend, and different numbers of
spins N , at fixed density (N/L = 0.36) for the paramagnetic phase Nε = 2.16 (a),
and for the ferromagnetic one εN = 0.1 (b). In (a) R = 6, δ = 0.01, while in
(b) R = 4 and δ = 0.001 5625. Initially we choose Sz

i (0) = 1, i = 1, . . . , N . An
ensemble of 100 different configurations has been considered.

different behavior of the fluctuations of the average magnetization, and from the physical
point of view, respectively, by a zero remnant magnetization, Mr = limτ→∞〈Mz(τ)〉, and
finite decay rates, ∝1/τ1/2δ (paramagnetic phase) or zero decay rates and finite remnant
magnetization (ferromagnetic phase). We showed that this dimensional transition occurs
when the intensive parameter εN = 1, where ε is the aspect ratio and N is the number of
dipoles. For instance, in an experimental situation if we have a non-magnetic substrate
with R = 1.6 nm and L = 1.6 μm, with a lattice size of ≈4 Å, we expect a dimensional
transition for δ = 0.15%. We also conjectured that, in correspondence to this transition,
the ground state changes from ferromagnetic to antiferromagnetic.

In the future we would like to investigate dilute dipole systems in the canonical
ensemble, that is letting the system be in contact with a thermal bath. Our analysis in
the microcanonical ensemble indicated that the behavior of very dilute dipoles in a needle
geometry is very similar to a 1D array of dipoles. In the 1D case dipole interaction induces
a ferromagnetic ground state and, due to its anisotropy, to a breaking of ergodicity [3].
As shown in [23], the ergodicity breaking threshold can induce very large demagnetization
times, thus producing ferromagnetic behavior in finite samples. Thus, even if one would
expect that invariant tori will be destroyed under a suitable thermal perturbation, the
question of the demagnetization times in the presence of temperature and on the relevance
of the ergodicity breaking is still open.

The ergodicity breaking found in [3] considers the total magnetization as an order
parameter. On the other hand, different order parameters can be defined in dipole systems,
depending on the ground state configuration, for instance an antiferromagnetic order
parameter or a spin glass order parameter. Therefore, it would be interesting to investigate
the existence of an ergodicity breaking energy threshold with respect to different order
parameters.
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In conclusion dipole–dipole interacting spin systems offer a realistic playground to
analyze many properties of magnetic systems which challenge our comprehension.
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