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Abstract: The effect of a position measurement on one component of a two-particle wave packet
in a regularized space-momentum entangled state is analyzed. The wave packet interacts in the
physical space with a potential barrier. When a position or momentum measurement is performed
on one particle, a consequent strong modification of the dynamics of the other particle occurs.
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1 Introduction

Entangled quantum states are not separable, even if their components are spatially far

away from one another. This characteristic is usually referred to as non-locality, and it

implies that measurements made on one part of the system influence the other instan-

taneously. The conflict between quantum mechanics and local realism that arises when

entangled states are considered was the object of the famous work by Einstein, Podolsky

and Rosen (EPR) [1]. In that paper, they introduced for the first time a gedanken exper-

iment based on a couple of particles in a state entangled in position and momentum on

which measurements of position and momentum are undertaken. They concluded about
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the incompleteness of quantum mechanics, and envisaged also a possible violation of the

Heisenberg uncertainty principle. This same problem was investigated by Bohm [2] in

the case of a system of discrete variables with opposite conclusions, and led Bell [3] to

the formulation of his inequalities relevant to the intrinsic quantum nature of a system.

Bell himself said in a subsequent work [4] that for the continuous variables position and

momentum it is not possible to derive analogous inequalities and that therefore the con-

tradiction between quantum mechanics and local realism is, for these variables, not so

easily made manifest as for the case of discrete states.

More recently, continuous-variables entangled states have been experimentally real-

ized by means of parametric down-conversion [5, 6], with atomic ensembles interacting

with light [7] or with squeezed beams of light [8]. Theoretical and experimental analy-

sis has accurately studied the properties of these states [9–16], testing the violation of

Bell inequality [17, 18], providing criteria for their separability [19–24] and showing the

phenomenon of the ghost interference [25, 26].

In the present work, we consider a space-momentum entangled quantum state, de-

scribing couples of particles. We simulate a possible EPR experiment involving two

particles in the presence of a potential barrier. In contrast to the case of EPR, we adopt

a proper Gaussian wave function as the initial condition, which guaranties at each instant

the correct normalization and the validity of the Heisenberg principle. In Section 2 we

present the dynamics of this entangled system in the presence of semi-transparent and

completely reflecting barriers. As the particles are initially anticorrelated in momentum,

one particle of the pair travels towards the barrier and interacts with it, while the other

propagates freely in the opposite direction. In Section 3 we consider the process of a posi-

tion measurement made on one component of the system during its time evolution, with

the aim of revealing the entanglement and the non-local correlations. When a measure

of position is made, for instance, on the first particle, the dynamics of the second particle

is considerably influenced, giving rise to several interesting phenomena which cannot be

found in the motion of non-correlated pairs and that can be used for quantifying the

entanglement of the system. The presence of the barrier introduces an element of asym-

metry that opposes to the weakening of the entanglement and amplifies the changes in

the dynamics of the particles that follow the measurement. In Section 4 measurements

of momentum are shown. Discussions and conclusions are presented in Section 5.

2 Model equation and time evolution

We consider a two-particle system described by the Schroedinger equation :

i
∂Ψ(x1, x2, t)

∂t
= Ĥψ(x1, x2, t)

Ĥ = −1
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+ V (x1, x2) (1)

where ψ(x1, x2, t) is the wave function of the system, x1 and x2 are the coordinates of

the particles of the pair and the potential V (x1,x2) is a barrier of height V0 and depth a
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defined by V (x1,x2)=V0 if 0 < x1 < a or if 0 < x2 < a and 0 elsewhere.

As initial condition we consider an entangled wave function, superposition of EPR

states, describing couples of particles that, in the same way as in EPR, are correlated in

position and anticorrelated in momentum. We adopt normalized quantities. This state

can be written in terms of the eigenfunctions of the operator x1–x2, namely δ(x1−x2−ξ),
and of the operator total momentum p1+p2, namely the functions eip01x1+ip02x2 , with

eigenvalues p01+p02=p0, as follows:

ψ(x1, x2, t = 0) = C
∫
dξ

∫
dp0 e

−ξ2

4σ2
d e−σ2

1p2
0 δ(x1 − x2 − ξ) eip0x1+ip02(x2−x1)

=
1√

2πσdσ1

e
− (x1−x2)2

4σ2
d

− x2
1

4σ2
1

−ip02(x1−x2)
(2)

The substantial difference between the state described by (2), and the δ function intro-

duced by EPR [1] is that (2) is correctly normalized.

The wave function in the momentum representation turns out to be:

φ(p1, p2) =

√
2σdσ1√
π

e−σ2
d(p2−p02)2−σ2

1(p1+p2)2 (3)

In the present paper we have integrated numerically [27, 28] equation (1) with σd = 0.5

and σ1 = 1.5, the initial position of both particles has been taken as x01 = x02 = −10,

p0 = 10, and a rectangular one-dimensional barrier of height V0 has been positioned

between x1,2 = 0 and x1,2 = a.

The choice made for σd and σ1 guaranties that the initial function (2) is entangled with

respect to the separability criteria proposed in the literature [20–25]. The entanglement

marker defined by ε =< Δ(x1 − x2)
2 >< Δ(p1 + p2)

2 > / < |[x1, p1]| > is, in this case

given by ε = σ2
d/σ

2
1 = 0, 11 < 1/4 while the covariance matrix takes the form

Σ =
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so that the quantity S [21]

S = detA detB + (
1

4
− | detC|)2 − tr(AJCJBJCTJ) − 1

4
(detA+ detB) (5)

with J =

⎛
⎜⎜⎝

0 1

−1 0

⎞
⎟⎟⎠, assumes at the initial instant, and during all the free propagation

stage, before the impinging of the barrier, the negative value S = −1
4

σ2
1

σ2
d
. Two differ-

ent cases have been studied starting from the same initial condition (2). First a semi-

transparent barrier with a = 1 and V0 = 40 has been considered, and then an opaque
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completely reflecting barrier. The solution ψ(x1, x2, t) of equation (1) is, of course, a

complex function in the plane (x1, x2) and the motion in the physical space is analyzed

by constructing the quantity:

P (x, t) =
∫
|ψ(x, ς, t)|2dς (6)

which represents the probability density that one particle be in the position x, indepen-

dently of the position of the other particle.

An important factor of analysis is the Fourier transform of the wave packet, because

it is connected with the composition in momentum of the packet.

The Fourier transform of the wave function with respect to one coordinate x2 turns

out to be:

ξ(p2, x1, t) =
1√
2π

∫
dx2Ψ(x1, x2, t)e

−ip2x2 (7)

and |ξ(p2, x1, t)|2 represents the joint probability density that the first particle is in the

position x1, and the second particle has momentum p2. Then, the integrated value:

Π(p2, t) =
∫
|ξ(p2, p1, t)|2dp1 (8)

represents the probability density of finding particles with momentum p2 in one of the

two spatially separated components of the system.

As already stated, we start by analyzing the dynamics of a couple of entangled particle

in the presence of a semi-transparent barrier of depth a=1 and height V0=40. As the

particles are initially anticorrelated in momentum, one of the particles travels towards

the barrier, the other in the opposite direction.

Following the same conventional language used in the experiments with couples of

photons we shall call signal the first wave packet and an idler the second. In Fig. 1

the time evolution of the modulus of the wave function |Ψ(x1, x2, t)| in the plane x1,x2

is reported, showing the contour graphs at the time instants: Fig. 1(a) t = 0, Fig. 1(b)

t = 0.5, Fig. 1(c) t = 1 Fig. 1(d) t = 1.5, Fig.1(e) t = 2 and Fig. 1(f) t = 2.5. The

wave function propagates obliquely in the plane x1, x2 and the peak moves from the point

(−10,−10) at t = 0 towards the barrier as can be seen in Fig. 1(a) and 1(b). The first

effect that can be noticed is the spread of the wave function.

As soon as the signal impinges on the barrier at x1 = 0 it breaks into transmitted and

reflected parts and looses the Gaussian shape. The reflection gives rise to interference

fringes on the wave function on the left of the barrier (Fig. 1(c) and 1(d)).

Furthermore, a series of secondary peaks develop on the reflected part due to multiple

reflections from the barrier. These secondary wave packets overlap the incident wave and

interfere with it. It is also interesting to see the formation of the transmitted part, which

first emerges symmetrically from the barrier and then distorts.

This distortion and the general asymmetry of the peaks and of the level curves can be

observed in Fig. 1(e) and 1(f). This asymmetry is a consequence of the entanglement of

the initial function because the term proportional to the factor x1x2 in the exponent is re-

sponsible for the obliquity of the symmetry axes of the initial condition. This asymmetry

is more accentuated for the reflected part, with respect to the transmitted one.
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Fig. 1 Contour curves of the modulus of the wave function in the plane x1, x2 at (a)

t = 0, (b) t = 0.5, (c) t = 1, (d) t = 1.5, (e) t = 2, (f) t = 2.5. The position of the barrier

in x1 = 0 is also drawn.

The multiple reflections yield the formation of islands. These islands have the major

axis reversed with respect to that of the initial condition, and are aligned along their

minor axis.

Another view of the dynamics of the system is given by the sequence of the integrated

quantities P given by (6) for both particles, which is shown in Fig. 2 versus the position

x in the laboratory for the same parameters and times as the preceding figures. In the

integrated curves, many details present in the (x1, x2) plane are lost, particularly during

and after the crossing of the barrier. In fact, the comparison, for instance, of Fig. 1(f)

and Fig. 2(f), representing the same instant, shows to us how the structure of the joint

probability |ψ(x1, x2)|2 is more complicated than the probability density P in the physical

space.

We can evaluate the spatial correlations of the wave function during the time evolution

by means of the quantity

c(x1, x2) = |ψ(x1, x2)|2 − px(x1)px(x2) (9)
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Fig. 2 Probability density P vs x of particle 1 (blue) and particle 2 (red) for the same

parameter values as Figs 1, 2, 3 and (a) t = 0, (b) t = 0.5, (c) t = 1, (d) t = 1.5, (e)

t = 2, (f) t = 2.5.

and by means of the global quantity:

C =
∫
|c(x1, x2)|dx1dx2 (10)

that can be calculated for the total wave function or separately for the transmitted and

the reflected parts.

In Fig. 3 the quantity C is shown versus t for the total wave function in the presence

of a barrier (a), for the reflected wave function (b), for the transmitted part (c) and, for

comparison, for the free wave function (d), obtained in absence of a barrier. As can be

seen, the presence of the barrier increases the correlations, especially when the reflected

part is analyzed.

3 Position measurement

A position measurement on x1, which localizes this particle in an interval δ around x̄1,

projects the state of the system onto the wave function given by: ψ̄(x1, x2) = ψ(x1, x2) if

x1 − δ
2
< x1 < x1 + δ

2
and 0 elsewhere.

The conditional probability density of having particle 2 in the position x2 after this

measurement turns out to be:

P x(x2, x̄1, δ) =
∫
dx1

∣∣∣ψ̄
∣∣∣2 =

x1+δ/2∫

x1−δ/2

dx1 |ψ|2 . (11)

In Fig. 4 some position measurements on the transmitted part of the wave function

of the signal are presented in the same case as Fig. 1, while Fig. 5 regards measurements
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Fig. 3 Quantity C versus time t for the same parameter of Fig. 1; (a) for the total

wave function, (b) for the reflected part, (c) for the transmitted part, and (d) for the free

propagation case.

performed on the reflected part. In particular: Fig. 4 (a) represents the conditional

probability density P x for the signal on the right and for the idler on the left versus x,

for a set of measurements made on x1 for 2 < x1 < 25; in Fig. 4(b) x1 ranges from 2 to

11; and in Fig. 4(c) 8 < x1 < 9. The measure on the transmitted part is felt by the idler

in a limited way and the result is a shrinking of its probability density as in the usual

EPR case.

A more intense effect is obtained if the measurement is made on the reflected part

of the signal as shown in Fig. 5. In particular in Fig. 5(a) the measure is made on the

whole reflected part for −25 < x1 < −1. In Fig. 5(b) x1 ranges between -9 and -1, while

in Fig. 5(c) x1 is from -5 to -4. In this case we do not have a shrinking of the conditional

probability of the idler, but a strong deformation with the onset of large secondary peaks.

This effect is connected to the existence of the islands shown in Fig. 1(f) and to their

disposition in the plane x1, x2. If we perform a cut along the x2 axis we can provide

evidence of the presence of these islands.

A further insight can be gained by observing the momentum distribution before and

after the position measurements. In Fig. 6 (a) the integrated quantity Π for particle 2

versus p2 is shown before the measurement.

In Fig. 6(b) this same quantity Π is represented after the thinner measurement made

on the transmitted part with x1 from 8 to 9 (as the case (c) of Fig. 4). In Fig. 6(c) the

case of a thin measurement made on the reflected part (case (c) of Fig. 5, made on x1

between −5 and -4) is presented. The measurement made on the transmitted part also

has the effect of shrinking the momentum distribution, while the position measurement

on the reflected part alters not only the shape of the probability density of particle 2, but

in a drastic way all its future dynamics, because it produces the formation of two peaks

with different values of momentum.

In fact, the spectrum Π of the conditional wave function just after the measurement
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Fig. 4 Conditional probability density P x vs. x for particle 1 (green) and particle 2

(yellow) after position measurements on x1: (a) 2 < x1 < 25, (b) 2 < x1 < 11, (c)

8 < x1 < 9.

Fig. 5 Conditional probability density P x vs. x for particle 1 (pink) and particle 2

(cyan) after position measurements on x1: (a) −25 < x1 < −1, (b) −9 < x1 < −1, (c)

−5 < x1 < −4.

presents a structure with two peaks, generating two separate wave packets with two

different average values of momentum. The peak at the right represents an ensemble of

particles with smaller velocity that will travel more slowly with respect to the others.

In fact if we evolve in time the wave function after the position measurement repre-

sented in Fig. 5(c) and 6(c) looking at what happens to the idler, we can see clearly the

spatial fragmentation in two principal packets propagating with different momentum. A

snapshot of the probability density P x of the idler versus x at t = 4 after the measurement

is presented in Fig. 7. After the measurement, the correlations between the two particles
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Fig. 6 Momentum probability density vs. p2 at t = 2.5, (a) without measurement, (b)

8 < x1 < 9, (c) −5 < x1 < −4.

Fig. 7 P x vs. x for the same case of Fig. 5 (c) at a time t = 4 after the position

measurement.

become very weak and the time evolution is therefore substantially governed by a one

particle Schroedinger equation.

We now analyze the case of an opaque barrier. In Fig. 8 the contour graph of the

modulus of the wave function is presented in the x1, x2 plane for a = 1, V0 = 5000,

σ1 = 1.5, σd = 0.5 at the instant of the interaction with the barrier at t = 1. Also in

this case we can recognize the formation of islands inclined in the x1, x2 plane. The

position measurement is made between the two white lines in the picture corresponding

to x1 = −7 and x1 = −6. Also in this case there is the possibility of connecting the

entanglement of the initial wave function with the behavior of the second particle after

the position measurement on the first.

In fact if we perform the Fourier transform of the conditional wave function we obtain



V. Petrillo et al. / Central European Journal of Physics 4(2) 2006 196–209 205

Fig. 8 Contour curves of the modulus of the wave function in the plane x1, x2 at t = 1

for V0 = 5000. The position of the barrier at x1 = 0 and the interval of the position

measurement between x1 = −6 and x1 = −7 are also drawn.

Fig. 9 Π vs p2 after the position measure between x1 = −6 and x1 = −7 for the same

case as Fig. 8.

for the integrated quantity Π vs p2 the result shown in Fig. 9, with the characteristic

two peaked shape. The time evolution of the system after the position measurement

is presented in Fig. 10, where the probability density P x of particle 2 is presented as

a function of x at the time instant immediately before the measurement (a), and after

Δt = 1 from the measurement (b). Also in this case the idler separates into two packets

that in time move away from eachother.

4 Momentum measurement

The momentum measurement implies a cut of the Fourier transform of the wave packet.

In Fig. 11 the spatial probability density conditioned by a momentum measurement P P

is shown as a function of x for three different cases. In Fig. 11(a) the measure is made
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Fig. 10 P x vs. x, for the same case as Fig. 8 and 9, (a) just after the measurement and

(b) after a time Δt = 1.

on p1 between −15 and 0, in Fig. 11 (b) p1 ranges between −7 and −3 and in Fig. 11(c)

p1 is between −9 and −8.5.

In Fig. 12 an analogous case is presented, but with measurements made on the

positive momentum component. In fact in Fig. 12 (a) p1 ranges from 0 to 15, in Fig. 12

(b) 3 < p1 < 7 and in Fig. 12 (c) p1 is between 5 and 5.5.

In analogy with the position measurement we can observe that the measurement made

on the transmitted part of the signal (in this case on particles with positive momentum)

produces a less important distortion on the idler, while the cut made on the reflected part

is felt strongly by particle 2.

5 Conclusions

We have simulated the time evolution and the process of position and momentum mea-

surements on an entangled two particles system interacting with a potential barrier. The

initial wave packet is constituted by couples of particles correlated in position and anticor-

related in momentum in a similar way as in EPR. In the physical space we see one particle

(called the idler) going freely towards the left and the other particle (the signal), that

propagates towards right, impinging on the barrier. If the insertion of a semitransparent

barrier on the trajectory of one particle is analyzed, the wave packet that encounters the

barrier separates into transmitted and reflected parts. On the contrary, in the case of

a completely reflecting barrier all the wave function is reflected. We can imagine per-

forming position measurements on the signal, either on the right of the potential barrier,

observing the particles transmitted, or on the left of the barrier intercepting the reflected
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Fig. 11 Spatial probability density conditioned by a momentum measurement P P vs. x

for a momentum measurement made on (a) p1 between −15 and 0, (b) p1 ranges between

−7 and −3 and (c) p1 is between −9 and −8.5.

Fig. 12 Spatial probability density conditioned by a momentum measurement P P vs. x

for a momentum measurement made on (a) p1 ranges from 0 to 15, (b) 3 < p1 < 7 and

(c) p1 is between 5 and 5.5.

particles.

The idler, which is supposed to travel freely towards the left far from the first particle
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and far from the barrier, strongly feels the position measurement on the first particle, as

predicted by EPR. Its reaction, however, is different if the transmitted or the reflected

wave packet is measured. In the first case a reshaping of the wave packet with a shrinking

of its width is achieved in agreement with the EPR predictions, while, if the reflected wave

packet is measured, a drastic upset of all the dynamics of the second particle occurs.

In fact, in this last case, we observe the formation of two separate wave packets with

different average momentum values that in time move away from one another. The same

phenomenon is seen if the wave packet collides with an opaque barrier. The observation

of more than one wave packet for the idler when a position measurement is made on

particle 1 is clearly a consequence of the non-local correlations present in the initial wave

function and can be used to evaluate its degree of entanglement.
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