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A quantum Heisenberg model with anisotropic coupling and all-to-all interaction has been analyzed using
the Bose-Einstein statistics. In F. Borgonovi, G. L. Celardo, M. Maianti, and E. Pedersoli, J. Stat. Phys. 116,
1435 �2004�, the existence of a disconnection in the classical phase space has been proved analytically. Such
topological disconnection occurs when the energy exceeds a suitable threshold value, called the topological
nonconnectivity threshold. We address here the problem of finding quantum signatures of such a threshold. An
independent definition of the quantum nonconnectivity threshold, motivated by considerations strictly valid in
the quantum regime, is given. We also discuss the dynamical relevance of the quantum border with respect to
the quantum magnetic reversal. Contrary to the classical case the magnetization can flip even below the
classical threshold through macroscopic quantum tunneling. We evaluate the time scale for magnetic reversal
from statistical and spectral properties for a small number of particles and in the semiclassical limit.
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I. INTRODUCTION

Anisotropic Heisenberg models are characterized by an
interesting feature depending on their energy value: below
some energy threshold their phase space is topologically di-
vided into two separate branches that cannot be connected by
dynamical paths. The existence of such an energy threshold,
called at the beginning the nonergodicity threshold,1 but
later2,3 the topological nonconnectivity threshold �TNT�, has
been proved for a class of classical Heisenberg models with
anisotropic coupling and infinite range of interaction. Below
the TNT the energy surface is disconnected into two compo-
nents characterized by an opposite sign of the total magneti-
zation. From a dynamical point of view this means that a
magnetized sample with a positive magnetization �residing in
one component� cannot demagnetize, since no dynamical
paths are allowed to reach the other component �with nega-
tive magnetization�.

Other dynamical consequences of the TNT in classical
Heisenberg models with infinite-range coupling have also
been investigated.2 In particular, it has been shown that
above the TNT and in a fully chaotic regime, a time scale for
the magnetic reversal—i.e., the time needed for the total
magnetization to reverse its direction—can be determined as
a random process. Magnetic reversal times also show an ex-
ponential growth with the number of spins sharing few pe-
culiarities with standard phase transitions, such as a power-
law divergence at the TNT itself.

The existence of this energy border is not limited to the
infinite-range coupling case and can be in general related to
the anisotropy of the coupling when it induces an easy axis
of magnetization, defined by the direction of the magnetiza-
tion in the minimal-energy configuration of the system. The
relation between the TNT and range of the interaction has
also been studied,3 introducing an interspin interaction po-
tential decaying as R−�, where R is the distance among the
spins. Defining r as the ratio of the disconnected portion of
the energy range with respect to the total energy range, it has

been proved that, for a d-dimensional system, r tends to zero
in the thermodynamic limit for ��d �short range� while it
remains finite for ��d �long range�.3

The results found in the classical model guided our inves-
tigations on the quantum side. We are mainly interested here
in the quantum signature of the classical TNT and in its
relevance with respect to the quantum reversal time of the
magnetic moment.

We consider here an infinite-range interacting system
since the explicit expression of the TNT has been obtained in
this case only. Despite its unphysical character, magnetic
systems can be realized, within modern experimental
techniques,4 described by Heisenberg-like Hamiltonians with
an infinite-range term, which could induce the presence of
the TNT. Moreover, when the range of the interaction is of
the same order of the size of the system, the all-to-all cou-
pling could be an important first-order approximation in the
understanding of their behavior.5,6 This could be the case for
small systems used in present nanotechnology7 or for mac-
roscopic systems with long-range interactions.

We first analyze the spectral properties and we establish
the existence of a quantum disconnection threshold in close
correspondence with the classical one. An analytical estimate
of this quantum threshold is given. We will then study the
system from a dynamical point of view, analyzing the time
scale for quantum magnetic reversal and comparing the
quantum magnetic reversal times with the classical ones.

II. MODEL

We consider a system of N particles of spin l, described
by the Hamiltonian
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�
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Ŝi
xŜj
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where −1���1 is the anisotropy constant. We define
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i
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as the components of the total magnetization of the system.
Due to the anisotropy of the coupling, the system has an easy
axis of the magnetization along the y direction. Quantization
of the Hamiltonian follows the standard rules. As in the clas-
sical case we fix the modulus of the spins to 1. This can be
achieved with an appropriate rescaling of the Planck con-
stant, �→� / �Si�=1/�l�l+1�. With this choice, in the classi-
cal limit l→� ��→0�, the spin modulus remains equal to 1.
Because of the infinite-range nature of the interaction, the
Hamiltonian �1� is a completely symmetric operator with re-
spect to particle exchange. It is thus natural to limit ourselves
to subspaces of definite symmetry. Specifically, we consider
the bosonic case �an ensemble of integer spins�, so we will
limit our analysis in the subspace of all possible completely
symmetric states, with dimension N= �N+2l�! / �N!�2l�!�.
This choice reduces considerably the dimension of the Hil-
bert space, allowing us to extend our analysis further in the
classical limit. An important property of the Hamiltonian �1�
is its invariance under a 	 rotation about the z axis: the

Hamiltonian commutes with the operator exp�i	� Ŝi
z�, and

its eigenstates can be labeled as odd ��� or even �
� accord-
ing to whether they change or do not change sign under such
rotation.

III. QUANTUM SIGNATURE OF THE TNT

The first aim of our analysis on the quantum system is to
assess the quantum signature of the classical disconnection
threshold.

Let us review the definition of the classical Etnt. The phase
space of the system is topologically disconnected below a
given energy Etnt, which can be obtained as in Ref. 1. From
symmetry considerations both positive and negative regions
of my exist on the same energy surface. Indeed the Hamil-
tonian is invariant under a rotation of 	 about the z axis for
which Si

y→−Si
y and Si

x→−Si
x. Switching dynamically from a

negative my value to a positive one requires, for continuity,
to pass through my =0. Hence, for all energy values above

Etnt = Min�H�my = 0�

magnetization reversal is possible, while it is not possible
below it.

Numerical diagonalization of Eq. �1� gives rise to a
quasidegenerate energy spectrum with an energy splitting in-
creasing with the energy E. It is a standard result8 that the
infinite time average of any quantum operator is zero in pres-
ence of a nondegenerate discrete spectrum when its diagonal
elements in the energy basis are zero. The operator m̂y satis-
fies this condition, and thus the total magnetization along the
easy axis can in principle change its sign for any energy.
What is physically relevant, of course, is the time scale at
which this happens. Such a time scale can be obtained by a
detailed study of the energy difference between close eigen-
states. Specifically, since the matrix elements of m̂y are dif-
ferent from zero only between energy eigenstates of different
parity, it will be important to study the characteristics of the

energy distance between even and odd eigenstates. The pos-
sibility for the magnetization to reverse its sign also in the
energy region where it would be classically forbidden can be
interpreted as a manifestation of macroscopic quantum
tunneling.9 �The total magnetization can be a macroscopic
quantity.�

The quantum fingerprint of the classical topological dis-
connection can be found in the analysis of the energy spec-
trum, which turns out to be characterized by the presence, in
the low-energy region, of quasidegenerate doublets; see Fig.
1�a�. Each ith doublet is composed by an even and an odd
eigenstate, with energy E+

i and E−
i whose difference is given

by

��Ei� = �E+
i − E−

i � . �2�

It is also useful to define the spacing between eigenstates
of the same parity as

��Ei� = �E+
i+1 − E+

i � . �3�

Of course doublets are well defined as soon as ��. Their
behavior as a function of the energy is shown in Fig. 1�b�. As
one can see, while the distance between eigenergies of the
same parity � decreases in a smooth way on increasing the
energy, the energy splitting � changes from an exponential
behavior to a constant plateau. From the same figure it is also
clear that this happens approximately at the classical energy
threshold. This is not surprising if one thinks of the quaside-
generation as an intrinsic feature of the classical topological
disconnection. Therefore we may identify, at least numeri-

FIG. 1. N=6, l=3, �=1. �a� Doublets structure of the low-
energy region of the spectrum. The different parity of the states
constituting the doublets is shown: solid circles are odd eigenval-
ues; open circles are even eigenvalues. The energy distance between
even and odd eigenvalues is �. We also indicated the level distance
among even eigenstates, � �distance between two neighbors, solid
circles�. �b� The splitting of the doublets, �, vs the energy E �solid
heavy line� and the nearest-neighbor level spacing ��E� �thin
dashed line�. Also shown as vertical lines: the quantum disconnec-
tion border, Etnt

q �dashed line�, computed analytically from Eq. �4�,
and Etnt �dash-dotted line�.
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cally, the quantum analog of the classical TNT as the energy
at which

��E*� � ��E*� .

In order to have a meaningful definition, we should require
such a quantum threshold to have the appropriate semiclas-
sical limit. The behavior of E* for different l values as a
function of the anisotropic coefficient � is reported in Fig. 2.
As one can see E*→Etnt as l increases, which confirms the
soundness of our definition.

Together with the numerical definition we may give an
analytical expression of the quantum threshold as a quantum
correction to the classical TNT. Indeed, since in the classical
case, Etnt had been obtained1 computing the minimum of
−�� /2���Si

x�2 when ��0 and of �� /2�N2mx
2− �� /2���Si

x�2

when ��0, we may assume that the lowest eigenvalues of
the corresponding quantum operator could give an analytical
estimate of the quantum threshold. Computing the lowest
eigenvalue, Etnt

q , one gets

Etnt
q 	 −

�N

2
��l�2 for � � 0,

Etnt
q 	

�N

2
�N − 1���l�2 for � � 0. �4�

Of course, the question arises if the two definitions of quan-
tum threshold are equivalent. The nice agreement between
the numerical values E* and our analytical estimate Etnt

q pre-
sented in Fig. 2 �compare symbols with lines� shows that this
is the case.

The exponential behavior of the level splittings � with the
energy is generally characterized by wide fluctuations.
Therefore, it is convenient to perform a suitable average over
a small energy bin. This allows us to understand in greater
detail how the semiclassical limit is recovered in terms of
spectral properties.

As shown in Fig. 3, on increasing the semiclassical pa-

rameter l, the �exponential� rate of growth becomes the
steepest. Linear fits allow us to extract the value of the
exponent �, obtained from the standard regression

ln����=�E+C. It turns out that � depends linearly on the
semiclassical parameters l, as shown in the inset of Fig. 3.
That way the classical picture is recovered since, when
l→�, ��E��0 for E�Etnt.

For E�Etnt level splittings for systems with different l
values have generally different average values. Normalizing
them with respect to the average energy spacing

D =
size of the energy spectrum

total number of levels

allows us to get the same plateau in the semiclassical limit.
Although a detailed study of the differences between the

mean-field single-spin model usually used in literature9,10

and our many-spin model will be presented elsewhere,11 the
two models differ substantially. Let us consider, for instance,
the mean-field approximation of our Hamiltonian �1�, in a
similar way as what has been done for the classical model:2

Hmf =
�

2
N2mx

2 − N2my
2; �5�

then, for ��0, the classical TNT is zero for the mean-field
model while is equal to −� /2 for Hamiltonian �1�. This
clearly shows how different the two models can be.

IV. TIME SCALE FOR MAGNETIC REVERSAL

Let us now analyze the time scale for magnetic reversal in
the quantum system, comparing the results with the classical
ones.2 Since in the classical case the reversal times have been
determined at a fixed energy �microcanonical approach�, we
adopt here the same procedure and compute the reversal time

FIG. 2. Comparison between Etnt
q �lines� and E* �symbols� for

different l values vs � and N=6 particles. Open circles stand for E*

and l=2. Solid circles stand for E* and l=4. The dashed line rep-
resents Etnt

q for l=2. The dotted line is Etnt
q for l=4. Also shown, as

the solid line, the classical TNT: Etnt.
FIG. 3. �Color online� Average �over energy bins� of 
ln�� /D��

vs the energy E, for N=6, �=1, and different l values: l=1: dash-
dotted �blue� line, l=2: dashed �red� line, l=3: dotted �green� line,
and l=4: heavy �black� line. Here D is the average level spacing.
Inset: the linear dependence of the slopes � obtained from the ex-
ponential fit. A linear fit gives �=−1.3+6l.
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of the quantum average magnetization starting from an
ensemble of initial states, ���, obtained choosing randomly
energy eigenstates in a narrow energy interval
���=�E

E+�ECE�E�. The coefficients CE have been randomly
chosen in modulus and phase and such that �E

E+�E�CE�2=1.
Since the total magnetization along the easy axis, m̂y, con-
nects only energy eigenstates with different parity, we have


my�t�� = 2Re �
E+,E−=E

E+�E

CE+

* CE−
e−it/T
E+�m̂y�E−�� , �6�

where T=� / �E−−E+�. From 
my�t�� we compute the time of
first passage through zero for each initial state of the en-
semble. From these times we obtain the average magnetic
reversal time �q. Before presenting the results of our analysis
let us recall that in the quantum case, at variance with the
classical one, it is legitimate to ask what is the time scale for
magnetic reversal in the whole energy range. Indeed, since
the energy spectrum is nondegenerate, from Eq. �6�, the av-
erage magnetization will soon or later reverse its sign, even
below the TNT.

Quantum �and classical� magnetic reversal times versus
energy in the region above Etnt

q are shown in Fig. 4. As one
can see there is good agreement between classical and quan-
tum times. Note that the classical times diverge at Etnt, at
variance with the quantum ones which are systematically
smaller, in the region between Etnt and Etnt

q . This is not sur-
prising since the possibility of tunneling will enhance the
probability for the magnetization to reverse its sign.

In the classical case2 we successfully evaluated the rever-
sal times from the entropic barrier, �S, between the most
probable value of the magnetization and its zero value,
�	e−�S= Pmax / P0. Following the classical case we also com-
puted Pmax / P0 from the quantum probability distribution of

the magnetization, P�my�, and compared the dynamical times
�q with the probabilistic ones given by cPmax / P0, where c is
a constant. As one can see from Fig. 4 the agreement be-
tween probabilistic and dynamical times is fairly good where
classical and quantum times agree, while is less accurate in
the crossover region, between Etnt and Etnt

q .
Let us now discuss, in detail, the behavior of the quantum

reversal times below Etnt
q . In the low-energy region of the

spectrum, due to the intrinsic quasidegeneracy, the dynamics
can be entirely characterized by the energy difference �. This
occurs if the energy bin �E of the initial state is sufficiently
small so that one single doublet belongs to it. The dynamics
is thus oscillatory with a period given by 2	� /�. Indeed,
under this condition, the magnetization oscillates coherently
between states with opposite sign, a phenomenon known as
macroscopic quantum coherence.10 This period also repre-
sents, within a numerical factor, the time for the first passage
to zero of 
my�t��. One thus can assume

�q 	 	�/�2�� .

The agreement, over many orders of magnitude, is shown in
Fig. 5. Also, below Etnt

q , we checked the proportionality of
the reversal times with Pmax / P0. It is quite surprising that
Pmax / P0 turns out to be proportional to the tunneling rates
and then, when properly defined, to the reversal times, even
in the region classically forbidden �below Etnt� where the
only mechanism allowing the jumping of the barrier is
through macroscopic quantum tunneling; see Fig. 5. This
suggests that the mechanism producing this proportionality
can also have a nonclassical origin. One should also note that
the constant of proportionality is different below Etnt and
above Etnt

q . This explains the poor agreement between the
statistical and dynamical times in the crossover region
�Etnt�E�Etnt

q �.

FIG. 4. �Color online� The quantum average reversal time �q

�circles� as a function of E is shown for the case N=6, �=1, and
l=4 and is compared with the classical one �dashed black line�,
showing good agreement above Etnt

q and a deviation near Etnt �both
indicated as vertical arrows�. Also shown, as a solid �red� line,
4Pmax / P0 averaged over close eigenfunctions.

FIG. 5. �Color online� Comparison between dynamical and tun-
neling splittings in the classically forbidden energy region. Circles:
dynamical quantum reversal times. Solid �blue� line: tunneling
splittings �q		� / �2�� for the case N=6, l=4. Dashed �red� line:
Pmax /4P0. Vertical arrows indicate classical and quantum
thresholds.
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From the results presented here we can address the prob-
lem of the dynamical signature of the classical TNT. In the
semiclassical limit the crossover region becomes very nar-
row �Etnt

q →Etnt�; thus, we can expect a crossover of the re-
versal time from a power law, like in the classical case,2 to
an exponential. Moreover, Fig. 3 suggests how the classical
limit is recovered: indeed ��0 as l→�, for energies below
Etnt, which is consistent with the fact that the magnetization
cannot reverse its sign below Etnt in the classical system.

V. CONCLUSION

In conclusion we have found a quantum signature of the
classical TNT in the spectral properties of the system leading
to the definition of a quantum disconnection threshold, Etnt

q ,
with the correct classical limit. Below Etnt

q the spectrum is
characterized by the presence of quasidegenerate doublets,
whose energy difference ��E� depends exponentially on E.
The quantum reversal times of the total magnetization have
been studied and compared with the classical ones above
Etnt. We have also shown that the total magnetization can flip
in the energy region classically forbidden. Quite surprisingly,
quantum reversal times �and thus the tunneling rates� are still
proportional to Pmax / P0 even below Etnt.

The existence of the classical TNT allows us to address an
energy region where to look for macroscopic quantum phe-

nomena, which have recently raised much interest.12 Indeed
the fact that the total magnetization can reverse its sign even
below the TNT can be seen as a manifestation of macro-
scopic quantum tunneling, a well-known phenomenon in mi-
cromagnetism, also found experimentally.13,14 Nevertheless,
macroscopic quantum tunneling of magnetization arises in
the literature,9,10 from phenomenological single-spin Hamil-
tonians, where the single spin describes the total magnetic
moment of the system, and no reference to the range of the
interaction has been explicitly pointed out. On the other
hand, we presented here a many-particle system in which
this phenomenon clearly arises, in connection with the exis-
tence of the disconnection border and with the long-range
nature of the interaction.

Let us notice that while in this paper we consider the case
where the ground state is determined by a ferromagnetic cou-
pling among the spins, it would be interesting to study the
case with an antiferromagnetic ground state15 to see if the
TNT could be found also in that case.
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