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We analyze the influence of errors on the implementation of the quantum Fourier trans-
formation. Two kinds of errors are studied: (i) systematic errors due to off-resonant tran-
sitions and (ii) errors due to an external perturbation. The scaling of errors with system
parameters and the number of qubits is analyzed. To suppress off-resonant transitions,
we use correcting pulses while in order to suppress errors due to an external perturba-
tion, we use an improved quantum Fourier transformation algorithm. As a result, the
fidelity of quantum computation is increased by several orders of magnitude and is thus
stable in a much wider range of physical parameters.
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1. Introduction

Quantum information theory1 is a rapidly evolving field. It uses quantum systems
to process information thereby achieving things not possible with classical resources
alone. Quantum secure communication for instance is already commercially avail-
able. Quantum computation on the other hand is still far from being useful. Two
serious obstacles to overcome in building a large quantum computer are: (i) one must
be able to control the evolution in order to precisely implement quantum gates, and
(ii) one must suppress external influences. Errors in both cases are caused by the
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perturbation of an ideal quantum computer, either by internal imperfections or by
coupling to the “environment.” In the present paper, we study both kind of errors,
in particular their scaling with the number of qubits, in order to envisage the obsta-
cles and demands of building a large quantum computer. We also suggest possible
ways to minimize these errors.

We choose a concrete model of a quantum computer and a concrete algorithm.
As one of the main things we want to study is the scaling of errors with the size
of the computer, we do not limit ourselves to any of the existing experimentally
realizable models because their success for a large number of qubits is far from
guaranteed. Rather we choose a simple abstract Ising quantum computer model
(IQC),2 having all the essential properties of a future quantum computer: (i) it is a
universal quantum computer, (ii) it is scalable with the number of qubits, and (iii) it
is one of the simplest models having the first two properties. Multi-qubit gates are
possible through inter-qubit coupling; in fact, we choose the simplest possible one,
namely nearest-neighbor coupling. The pulses by which we perform quantum gates
are not ideal, thereby causing off-resonant transitions. Such unwanted transitions
are expected to be a generic feature of any experimental implementation of a quan-
tum computer. In adition, we also study the influence of external perturbations
on the algorithm stability. All these we feel, will be the necessary ingredents of
any large quantum computer, and we believe our results have relevance beyond the
specifics of the IQC model.

For the quantum algorithm we will discuss the quantum Fourier transformation
(QFT). The first reason to choose the QFT is that it is one of the most useful
quantum algorithms, giving an exponential speedup over the best classical proce-
dure known. Furthermore, it is also one of the ingredients of some other important
algorithms, e.g. Shor’s factoring algorithm.3 The second reason is that the QFT is
a complex algorithm, where by complex we mean it has more than O(n) number of
quantum gates as opposed to previously studied more simple algorithms, where the
number of gates scales only linearly with the size of the computer (e.g. the entan-
glement protocol4). It is easy to imagine that in most useful quantum algorithms,
the size of the program will grow faster than linearly with the number of qubits
n and therefore it is important to see how errors accumulate in such algorithms.
This importance is confirmed by our results showing that errors due to unwanted
transitions for the QFT grow as the square of the number of pulses and not linearly
as in algorithms with a linear O(n) number of gates, for a typical initial state.

For the QFT algorithm running on the IQC, we analyze errors due to spuri-
ous transitions caused by pulses (these we call intrinsic errors), and errors due to
the coupling with an external “environment” (called external errors), modeled by a
random Hermitian matrix from a Gaussian unitary ensemble (GUE).7 We minimize
intrinsic errors by applying some additional pulses to correct most probable errors6

and by doing this, we are able to suppress intrinsic errors by several orders of mag-
nitude. To suppress external errors due to a GUE perturbation, we use a previously
proposed improved quantum Fourier transformation (IQFT),8 which is more stable
against GUE perturbations in a certain range of parameters. We analyze in detail
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the dependence of errors on all relevant parameters. With this analysis, we can set
the limits between which parameters of the IQC should lay in order to preserve the
stability of computation and how this demands change with the size of the quantum
computer. In our approach to decrease errors, we do not use error correcting codes
for the following reasons: we want to remove as many errors as we can at the lowest
possible level and second, the intrinsic and particularly multi-qubit external errors
are not easily handled by the error correcting codes (see Ref. 10 and references
therein).

The outline of the paper is as follows. In Sec. 2, we repeat the definition of
the IQC and in Sec. 3, we summarize the linear response formalism, which is the
main theoretical tool for studying fidelity. In Sec. 4, we study intrinsic and external
errors, first separately and then simultaneously. In the appendix, we present the
pulse sequences used to implement the QFT and the IQFT algorithms.

2. The Ising Quantum Computer

The IQC consists of a one-dimensional chain of n equally spaced identical spin 1/2
particles coupled by a nearest neighbor Ising interaction of strength J , such that
parallel spins are favored over anti-parallel ones by an energy difference of J (we set
� = 1 throughout the paper). The quantum computer is operated via an external
magnetic field having two components. The first one is a permanent magnetic field
oriented in the z-direction with a constant gradient which allows the selective exci-
tation of individual spins, while the second one is a sequence of T circular polarized
fields in the x-y plane (which are called pulses), with different frequencies ν(m),
amplitudes (proportional to the Rabi frequencies Ω(m)), phases ϕ(m) and durations
τ (m) for the mth pulse, in which the protocol is encoded. A particular orientation of
the register allows one to suppress the dipole–dipole interaction between spins.11,12

The Hamiltonian of the system is

H = −1
2

n−1∑
l=0

ωlσ
z
l − J

2

n−2∑
l=0

σz
l σz

l+1 −
T∑

m=1

V (m)(t)Θ(m)(t) (1)

with

V (m)(t) =
Ω(m)

4

n−1∑
l=0

(σ−
l exp{−i(ν(m)t + ϕ(m))} + h.c.), (2)

where Θ(m)(t) is equal to one during the mth pulse and zero otherwise, σx,y,z
l are

the usual Pauli operators for lth spin and σ±
l = σx

l ± iσy
l . Due to the constant

gradient of the permanent magnetic field, the Larmor frequencies depend linearly
on l, ωl = (l + 1)a. By appropriately choosing the energy units, we fix J = 1 so the
only relevant energy scales are Ω(m) and a. The basis states are chosen such that
σz

l |0〉l = |0〉l.
We shall introduce the following notation. Let P ac

i indicate a pulse with fre-
quency νac

i resonant with the ith spin when its neighbors are in states “a” and “c”.
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This will induce the resonant transition | · · · ai+1bici−1 · · ·〉 → | · · ·ai+1b̄ici−1 · · ·〉,
named T ac

i , if the pulse is a π pulse (a, b, c ∈ {0, 1}). Note that for edge qubits, i.e.
i ∈ {0, n− 1}, only one superscript is needed.

Operating the IQC in the selective excitation regime, i.e. Ω(m) � J � a, allows
one to separate transitions induced by pulses into three sets: resonant, near-resonant
and non-resonant according to the detuning ∆ of the transition, which is the dif-
ference between the frequency of the pulse and the energy difference of the states
involved in the transition. If ∆ is exactly equal to zero, the transition is called
resonant (T ac

i induced by the pulse P ac
i ); if ∆ is of the order of J , it is called

near-resonant (T a′c′
i induced by the pulse P ac

i with {a′, c′} �= {a, c}); if ∆ is of
the order of a, it is called non-resonant transition (T a′c′

i′ induced by the pulse
P ac

i with i′ �= i). In the implementation of a protocol, resonant transitions are
the ones wanted, while near-resonant and non-resonant transitions are a source of
error.

In the two-level approximation,11 a given unwanted transition with detuning ∆
is induced with probability

p =
Ω2

Ω2 + ∆2
sin2

(
ρ
π

2

√
1 +

∆2

Ω2

)
, (3)

where ρ is the dimensionless duration of the pulse (e.g. for a π pulse ρ = 1 and for
π/2 pulse it is 1/2). The most probable unwanted transitions are the near-resonant
ones and these can be suppressed by a generalized 2πk method as briefly described
in the next paragraph.

For P 10
i (= P 01

i ) pulses, all near-resonant transitions have the same detuning ∆
and the transition probability p will be zero, provided we set the Rabi frequency to

Ω =
∆√

4k2 − 1
, (4)

with k an integer. Since for near-resonant transitions ∆ = O(J), for all pulses
the Rabi frequency is of the order of J/k. On the other hand, for P 00

i and P 11
i

pulses the near-resonant transitions have two different detunings. Therefore, it is
impossible to suppress both transitions with a single pulse. This problem can be
overcome adding an additional correcting P 10

i pulse. The combination of these
pulses in order to suppress all near-resonant transitions is called a Q-pulse, denoted
by Qac

iρ when doing a ρπ rotation of the ith qubit if neighbors are in states “a” and
“c”. This method to eliminate all near-resonant transitions is called the generalized
2πk method and is the best known procedure to induce transitions on the IQC. We
refer the interested reader to Ref. 6 for further details. A previous study of Shor’s
algorithm on the IQC5 did not use this method. Q-pulses are the basic building
blocks of gates, which in turn are the building blocks of algorithms such as the QFT
and the IQFT.

The QFT for n = 4 qubits can be written as

UQFT = TA0B01B02B03A1B12B13A2B23A3. (5)
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There are in total n Hadamard gates (Aj), n(n − 1)/2 two-qubit B gates, Bjk =
diag{1, 1, 1, exp (iθjk)} with θjk = π/2k−j, and one transposition gate T which
reverses the order of qubits (e.g. T|001〉 = |100〉). In total, there are n(n + 1)/2+ 1
gates. The IQFT algorithm,8 which is more stable in the presence of GUE pertur-
bations, for n = 4 qubits is

UIQFT = TA0R01R02R03G01G02G03

×A1R12R13G12G13A2R23G23A3, (6)

where Gij := R†
ijBij . The R gate is defined by Rij | · · ·ai · · · bj · · ·〉 :=

(−1)bj | · · · ai · · · (ai ⊕ bj) · · ·〉. In total, there are n2 + 1 gates in the IQFT, i.e.
roughly two times as many as for the QFT.

Each gate for the QFT or the IQFT [Eqs. (5) and (6)] must in turn be imple-
mented by several pulses (see appendix). The number of pulses for the QFT grows
as ∼ 18n3 whereas it grows as ∼ 54n3 for the IQFT. This number can become very
large, e.g. for the IQFT and n = 10 one has 44,541 pulses.

Note that the implementation of quantum gates on the IQC is easier in the
interaction picture since one can ignore large phases arising from the free evolution.
Here the interaction picture is defined by the transformation ψint = exp(iH0t)ψsch,
where H0 is time-independent part of the Hamiltonian H (1) and ψsch is the usual
solution of time-dependent Schrödinger equation with the full Hamiltonian H , i.e.
the Schrödinger picture.a Therefore, pulse sequences used in the paper implement
the intended gates in the interaction picture.

Throughout the paper, our basic unit of time will be either a gate [as written for
instance in Eqs. (5) and (6)] or a pulse. A single exception will be the paragraph
discussing the correlation function of intrinsic errors, where the basic unit is a
Q-pulse, which is composed of one or two pulses. The reason is that Q-pulses are
the smallest unit of time, for which near-resonant transitions can be completely
suppressed.

3. Linear Response Theory

As a criterion for stability, we shall use the fidelity F (t), defined as an overlap
between a state ψ(t) obtained by the evolution with an ideal algorithm and ψδ(t)
obtained by the perturbed evolution:

F (t) = |〈ψδ(t)|ψ(t)〉|2, (7)

where |ψ(t)〉 = U(t)|ψ(0)〉 and |ψδ(t)〉 = U δ(t)|ψ(0)〉. To simplify matters, we shall
assume time t to be a discrete integer variable, denoting some basic time unit of an
algorithm. The quantity measuring the success of the whole algorithm is the fidelity
F (t) at t = T , where T denotes the total time. One of the most useful approaches to

aEven when we add an external perturbation to the Hamiltonian, we will refer to the interaction
picture as the one defined here.
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studying fidelity is using the linear response formalism in terms of the correlation
function of the perturbation; for a review see Ref. 13. This approach has several
advantages. First, it rewrites the complicated quantity fidelity in terms of a simpler
one, namely the correlation function, simplifying the understanding of the fidelity.
Second, the scaling of errors with the perturbation strength, Planck’s constant and
with the number of qubits is easily deduced. Furthermore, as in practice one is
usually interested in the regime of high fidelity, linear response is typically enough.

First, we shall shortly repeat linear response formulas as they will be useful for
our discussion later. Let us write an ideal algorithm up to time t as U(t):

U(t) = UtUt−1 · · ·U1, (8)

where Ui is the ith gate (pulse). If t = T , we have a decomposition of the whole
algorithm.

The perturbed algorithm can be similarly decomposed into gates

U δ(t) = U δ
t U δ

t−1 · · ·U δ
1 . (9)

Each perturbed gate U δ
j is now written as

U δ
j = exp(−iδVj)Uj , (10)

where Vj is the perturbation of jth gate and δ is a dimensionless perturbation
strength. For any perturbed gate, one can find a perturbation generator V , such
that relation (10) holds. Observe that the distinction between the perturbation
strength δ and the perturbation generator V in Eq. (10) is arbitrary. If one is given
an ideal gate U and a perturbed one U δ, one is able to calculate only the product
δV . This arbitrariness can always be fixed by demanding for instance that the
second moment of the perturbation V in a given state is equal to one.

To lowest order in δ, fidelity can be written as9

F (t) = 1 − δ2
t∑

t1,t2=1

C(t1, t2), (11)

where the correlation function of the perturbation is

C(t1, t2) = 〈Vt1 (t1)Vt2 (t2)〉 − 〈Vt1(t1)〉〈Vt2 (t2)〉 (12)

with Vj(t) = U †(t)VjU(t) being the perturbation of jth gate propagated by an ideal
algorithm up to time t. The brackets 〈·〉 denote the expectation value in the initial
state. Throughout the paper, we average over an ensemble of random Gaussian
initial states to reduce statistical fluctuations. Note that the time dependence of
the correlation function (12) is due to two reasons: one is time dependence due
to the propagation with the unperturbed Hamiltonian (time index in brackets)
and the second one is due to the time dependence of the perturbation itself (time
index as a subscript) since one can have different perturbations at different times.
Expression (11) is the main result of the linear response theory of fidelity. From this,
one can see that decreasing the correlation sum (or even making it zero, see Ref. 14)
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will increase the fidelity. In Ref. 8, stability of the QFT algorithm was considered
with respect to static GUE perturbation. Analyzing the correlation function, the
authors were able to design an improved QFT algorithm (IQFT) which increases
fidelity.

We are mainly interested in the fidelity F (T ) at the end of an algorithm. The
final time T in efficient quantum algorithms depends on the number of qubits in a
polynomial way, say as T ∝ np. The power p depends on the algorithm considered
and of course also on our decomposition of the algorithm into gates (pulses). For
the QFT and the IQFT algorithms with decomposition into gates, Eqs. (5) and
(6), one has p = 2. On the other hand, for the implementation of the QFT on the
IQC one needs T ∝ n3 (p = 3) basic electromagnetic pulses, as one is not able to
directly perform Bjk gates on distant qubits but has to instead use a number of
pulses proportional to the distance between the qubits |j − k|. If the correlation
function decays sufficiently fast, the fidelity will decay like 1 − F ∝ δ2np whereas
in the case of slow correlation decay, the fidelity will decay as 1 − F ∝ δ2n2p. In
the extreme case of perturbations at different times being statistically uncorrelated
(very fast decay of correlations) 〈VjVk〉 ∝ δjk, one can go beyond the perturbation
theory and obtains the exact formula F = exp(−δ2T ).8 Therefore, in the limit
of a large quantum computer (large n) strongly correlated static errors (implying
slow decay of correlations) will be dominant. When discussing errors caused by the
coupling to the environment, we shall focus on static perturbations, meaning the
same perturbation on all gates, Vk = Vj = V , as this component will dominate
the large n behavior.

4. Errors in the Quantum Fourier Transformation

Errors in an experimental implementation of the QFT algorithm on the IQC can
be of three kinds: (i) due to unwanted transitions caused by electromagnetic pulses,
(ii) due to the coupling with external degrees of freedom, and (iii) due to the
variation of system parameters in the course of algorithm execution. In the present
paper, we shall discuss only the first two errors. Errors due to electromagnetic pulses
are inherent in all algorithms on the IQC as we are presently unable to design pulse
sequences for quantum gates without generating unwanted transitions albeit with
small probabilities. These errors can in principle be decreased by going sufficiently
deep into the selective excitation regime, but one must keep in mind the limitations
of real experiments.b Coupling with the “environmental” degrees of freedom is
endemic in all implementations of quantum computers. As the environment will
usually have many degrees of freedom, we shall model its influence on the quantum
computer by using some effective perturbation Veff given by a random matrix from
a Gaussian unitary ensemble (GUE).7 Note that the coupling with the environment
will generally cause non-unitary evolution of the central system. We expect quantum

bA new method for dealing with intrinsic errors has been proposed recently in Ref. 15.
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computation to be stable only on a time scale where the evolution of the quantum
computer is approximately unitary, i.e. for times smaller than the non-unitarity
time scale. Therefore, we limit ourselves to unitary external perturbations. The
third kind of errors due to the variation of system parameters, e.g. variation of
Larmor frequencies due to changes of the magnetic field are not considered in this
paper. This does not mean they are not important. Let us consider a systematic
error in the gradient of the magnetic field throughout the protocol (a → a + δa).
Demanding that the error in the largest eigenphase at the end of the algorithm
is much smaller than 1, one gets the condition a/δa ≈ anp+2/Ω. If one is in the
selective excitation regime, this ratio can become very large and this puts stringent
demands on experiment.

To ease understanding, we shall first discuss intrinsic errors only, then external
ones and finally both combined.

4.1. Intrinsic errors

For near-resonant and non-resonant transitions we have ∆ � Ω and the probability
given by perturbation theory is p ∝ (Ω/∆)2. In the 2πk method, the Rabi frequency
Ω is approximately J/k [see Eq. (4)] so the probabilities for near-resonant (∆ ∼ J)
and non-resonant (∆ ∼ a) transitions are

pnear ∝
(

1
k

)2

pnon
jl ∝

(
J

ka(j − l)

)2

,

(13)

respectively. pnon
jl denotes the probability of a non-resonant transition with ∆ ≈

a|j − l| involving the jth spin (resonant with the transition) and the lth spin
(erroneously flipped due to the unwanted transition). The dependence of near and
non-resonant errors on system parameters is therefore different.

In pulse sequences implementing the QFT or the IQFT, we always use the
generalized 2πk method by which one can get rid of all near-resonant transitions.
Therefore, the only errors that remain are non-resonant ones. We first checked
numerically that this is indeed the case by studying dependence of errors on sys-
tem parameters by which one is able to distinguish near and non-resonant errors,
Eq. (13).

One can observe from Fig. 1 that agreement with the theoretical pnon [Eq. (13)]
is excellent thereby confirming that the only errors left are the non-resonant ones.
By using the generalized 2πk method, we decreased intrinsic errors by a factor of
(a/J)2 as compared to the ordinary 2πk method, where there are still some near-
resonant errors present. In order to have a complete understanding of fidelity decay
due to intrinsic errors, we have to understand scaling of these with the number
of qubits. As we already discussed in Sec. 3, this depends on two things: how
strong the errors are correlated, giving possible scalings from np to n2p and on the
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Fig. 1. Dependence of fidelity for the QFT on physical parameters of the system. Empty points
indicate variation of k with a = 100 and filled points indicate variation of a with k = 128, both
for n = 6. The full line is the theoretical dependence of pnon on system parameters given by
Eq. (13). The agreement with the theoretical dependence confirms that the only errors left are
non-resonant ones.

dependence of the perturbation strength with the number of qubits. Let us first
discuss the latter.

Under the assumption that the average transition probability (i.e. perturba-
tion strength) for a non-resonant transition is the sum of all possible non-resonant
transitions averaged over all possible resonant qubits, we can estimate

δ2 ∝ 1
n

n−1∑
j �=l=0

pnon
jl

n→∞−−−−→
[

J

ka

]2(
π2

3
− α

log n

n

)
, (14)

with α some n independent constant. We can see that the perturbation strength
approaches a fixed value as n grows, but the convergence to its limit is logarith-
mically slow. For small n, the perturbation strength therefore will grow with n,
whereas it will saturate for large n.

The second contribution to the n-dependence of fidelity comes from the
dynamical correlations between errors given by the correlation function (12) of
the perturbation generator for non-resonant errors. We numerically calculated this
correlation function in order to understand how the correlation sum, and therefore
fidelity behaves as a function of n.

In Fig. 2, we show C(t1, t2) averaged over all Hilbert space. One can see that
there are large two-dimensional regions of high correlations in all parts of the pic-
ture. Thus, there are strong correlations between errors at different pulses and the
correlation sum will grow as ∼n6 as the number of pulses scales as n3 for our
implementation of the QFT. Similar results are also obtained for the IQFT as can
be inferred from Fig. 4. Note that during the application of the transposition gate
at the end of the protocol, the correlation sum starts to decrease, nicely seen in
Fig. 3 and also visible in the correlation picture in Fig. 2 as there are more neg-
ative than positive areas towards the end of the algorithm. This very interesting
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Fig. 2. Correlation function for intrinsic errors in the QFT for k = 128, a = 100 and n = 4. The
shading on the time axes denotes the duration of different gates, Eq. (5), and the time going from
1 to 543 runs over all Q-pulses. The light/dark areas give a positive/negative contribution to the
fidelity.

Fig. 3. The correlation sum of the same data as in Fig. 2. Note the decrease of the sum when
the transposition gate is applied. The fidelity is in this linear response regime simply given by
Eq. (11). Vertical lines indicate the beginning of each gate [Eq. (5)].

phenomenon means that applying the transposition gate is advantageous as it will
increase fidelity. Note that this would not occur if we would do the transposition
operation digitally after the readout. We checked that this principle cannot be
exploited further by repeating the transposition many times and by this decreasing
correlation sum even more. Still, this surprising behavior suggests that it might be
possible to decrease non-resonant errors in a systematic way.
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Fig. 4. Dependence of fidelity on the number of qubits. Empty symbols indicate data for k = 128
and a = 100 while filled symbols are for k = 1,024 and a = 1,000. Circles indicate the QFT and
squares the IQFT. In the presence of intrinsic errors only, the IQFT does not improve fidelity.
Full lines show the asymptotic n6 dependence.

To further confirm the predicted ∼n6 growth of the correlation sum, we calcu-
lated the dependence of intrinsic errors on n. This can be seen in Fig. 4, where we
plot 1 − F (T ) as a function of n for the QFT and the IQFT, for two different sets
of parameters, one for k = 128, a = 100 giving large errors and one for k = 1,024,
a = 1,000. One can see that asymptotically for large n the dependence is indeed n6,
but one needs of the order of n = 7 or more qubits for convergence. This slow conver-
gence we believe is due to the logarithmic convergence of the perturbation strength
[Eq. (14)]. To get exact coefficients in front of the n6 dependence term, we fitted
dependences of errors in Fig. 4 with a polynomial in n using at most two nonzero
terms. Defining polynomials in the linear response regime as sin = (1−F )(ka/J)2,
one gets for the QFT and the IQFT:

sin
QFT(n) = 280n6 − 660n5

sin
IQFT(n) = 1300n6 − 2100n5.

(15)

Both expressions are good for n ≥ 5 and superscript “in” denotes intrinsic errors.
Beyond the linear response, the exponential dependence is frequently justified9 and
one has

F = exp

(
−
[

J

ka

]2
sin(n)

)
. (16)

The large coefficients of the polynomials in Eqs. (15) are due to the large number of
pulses. The maximum possible dependence in the case of no decay of the correlation
function (see discussion at the end of Sec. 3) could be T 2 and therefore the leading
terms in the polynomials (15) expressed in terms of the total number of pulses are
sin
QFT ∼ 0.8T 2

QFT and sin
IQFT ∼ 0.5T 2

IQFT. Therefore, relative to the number of pulses
the IQFT slightly decreases non-resonant errors but in the absolute sense the QFT
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is better simply because it has only one third as many pulses as the IQFT and
the coefficient in front of n6 [Eq. (15)] is thereby smaller. If only intrinsic errors
in the generalized 2πk method are concerned, the QFT is always more stable than
the IQFT. Note that the intrinsic errors due to non-resonant transitions for the
QFT grow as ∼T 2 (∼n6) whereas in previously studied “simple” algorithms, such
as the entanglement protocol,4 they grow only as the first power of the number of
gates ∼T . This means that the QFT is much more sensitive to intrinsic errors.

4.2. External errors

In order to study external errors only, we set throughout this section k = 1,024 and
a = 1,000, for which the intrinsic errors are much smaller than external ones in the
range of qubits and perturbation strength considered.

External errors will be modeled with the perturbation V [Eq. (10)] chosen to be
a random Hermitian matrix from a GUE ensemble. To facilitate comparison with
previous results on the IQFT,8 we shall apply the perturbation after each quantum
gate, except for the last transposition gate T after which we do not apply the
perturbation. So for the QFT, we apply n(n + 1)/2 perturbations, while for the
IQFT, we apply n2 perturbations. Another possible choice would be to apply the
perturbations after each pulse. We shall discuss this possibility at the end of this
section. For now, let us just say that qualitatively the results are the same as if
doing the perturbation after each gate — one just has to rescale the perturbation
strength like δgate ∝ nδpulse as there are effectively O(n) perturbations (pulses)
per gate.

From the linear response expression for fidelity, we argued that the static per-
turbations are the worst ones. Hence, we will consider only static perturbations, i.e.
the same perturbation for all gates. As the QFT is implemented in the interaction
picture, one expects that the worst perturbation has to be static in the interaction
picture and not in the Schrödinger one. Remember that the transformation between
the interaction and the Schrödinger picture is given by a unitary transformation
W (t) = exp(−iH0t) generated by the time independent part of the whole Hamil-
tonian H in Eq. (1), ψint(t) = W †(t)ψsch(t). To verify this, we compared the error
growth for a static perturbation applied in the interaction picture (i.e. the wave
function after one application of error is ψδ

int = exp(−iδV )ψint) with the errors for
a static perturbation in the Schrödinger picture (ψδ

sch = exp(−iδV )ψsch). Let us
first consider the latter.

If we apply a static perturbation in the Schrödinger picture, we can transform
it to the interaction picture by W (t). This transformation, using

exp(−iδVint(t)) := W †(t) exp(−iδVsch)W (t), (17)

will result in the perturbation in the interaction picture Vint(t) being time depen-
dent. As this transformation involves large phases in the selective excitation regime,
perturbations at different gates will tend to be uncorrelated due to averaging
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10

Fig. 5. Dependence of 1−F in the QFT algorithm on the number of qubits for static perturbation
in the interaction picture (empty points) and in the Schrödinger picture (full points), with δ = 0.04.
Lines are the best fitting polynomials [see Eq. (18)]. We can see that static perturbations in the
interaction picture are more damaging than static perturbations in the Schrödinger picture.

of widely oscillating factors in the correlation function (12). Therefore, to first
approximation one can assume C(t1, t2) = δt1,t2 so the fidelity will decay as
F (T ) = exp(−δ2T ).8 On the other hand, if we select the perturbation to be static
in the interaction picture the correlation function will not be a Kronecker delta in
time, so the fidelity will decay faster.

To numerically confirm these arguments, we show in Fig. 5, the dependence
of fidelity on the number of qubits n for the two cases discussed: static perturba-
tion in the interaction picture and static perturbation in the Schrödinger picture.
Polynomial fitting of the n dependence for the QFT gives

sgue
sch (n) = 0.47n2 + 1.41n− 2.42,

sgue
int (n) = 0.45n3 − 0.42n2 + 0.58n.

(18)

The fidelity due to external GUE errors is then given as

F = exp(−δ2sgue(n)), (19)

with the appropriate sgue(n) from Eq. (18). Note that sgue
int (n) grows faster than

sgue
sch (n), thereby confirming our expectations. Observe also that for static perturba-

tions in the Schrödinger picture, using the assumption of completely uncorrelated
errors in the interaction picture, we predicted sgue

sch ≈ T ≈ n2/2 for the QFT, which
is remarkably close to the numerically observed value 0.47n2 in Eq. (18). For the
IQFT and the application of GUE perturbation in the Schrödinger picture, one gets
a similar result with the leading term sgue

sch (n) ∼ 1.12n2. One can write an arbitrary
time dependent perturbation in the interaction picture as a Fourier series and for
large n the static component will always prevail. Therefore, from now on we shall
exclusively discuss only static perturbations in the interaction picture.
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Fig. 6. Dependence of the fidelity on the number of qubits for the QFT (empty symbols) and the
IQFT (filled symbols) algorithms (δ = 0.04). Curves indicate the theoretical prediction Eq. (19)
using the polynomials from Eqs. (20) and (18).

The dependence of errors due to GUE perturbations in the case of the QFT and
the IQFT has already been derived.c For the IQFT numerical fitting in our case
gives dependence

sgue
IQFT(n) = 1.31n2 + 0.86n− 3.73. (20)

Dependence of fidelity in both cases can be seen in Fig. 6, together with the theo-
retical prediction [Eq. (19)] using the polynomials (18) and (20).

Observe that the IQFT for n > ncrit = 3 is better than the QFT despite having
more gates and therefore applying the perturbation on it more times (for n = 3 the
QFT is slightly better). What is important is that the dependence of errors on n

is also different: ∼n3 for the QFT, but only ∼n2 for the IQFT. This means that
asymptotically the IQFT is much more stable against GUE perturbations than the
ordinary QFT.

Finally, let us discuss what happens if we apply static GUE perturbations after
each pulse, instead of after each gate as done so far.

Let Uj denote a single pulse, (Ur · · ·U1) the whole gate and V (j) =
(Uj · · ·U1)†V (Uj · · ·U1). To the lowest order in δ, we can rewrite the perturbed
gate as

exp(−iδV )Ur · · · exp(−iδV )U1 ≈ Ur · · ·U1 exp (−iδ[V (1) + · · · + V (r)]), (21)

where we moved all the perturbations to the beginning of the gate. This means
that the application of the perturbation after each pulse is to the lowest order in δ

equivalent to the application of the effective perturbation δ
∑r

j V (j) after the gate.
Of course now the perturbation is explicitly time dependent. But individual pulses

cTaking into account the different definition of fidelity in Ref. 8, polynomials are almost the same
with the slight difference due to the different number of applied perturbations.
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will do transformations on an exponentially small subspace of the GUE matrix
(i.e. on one qubit) and therefore one might expect that effectively

∑r
j V (j) ≈ rVeff ,

where Veff is some effective random matrix independent of the gate and very similar
to V . As in our case of the QFT, on the IQC we have on average∝ n pulses per gate,
we can predict that applying a perturbation with strength δpulse after each pulse
is approximately equal to applying a perturbation of strength δgate ≈ nδpulse after
each gate. In order to confirm these expectations, we did numerical experiments
with the results shown in Fig. 7. Fitting a polynomial in the dependence of fidelity,
Eq. (19), for the QFT and the IQFT gives in this case

sgue
QFT(n) = 4.86n5 + 35.8n4,

sgue
IQFT(n) = 25.6n4 + 606n3.

(22)

The leading dependence of n5 for the QFT and n4 for the IQFT agrees nicely with
our rescaling prediction δgate ≈ nδpulse. The IQFT is asymptotically again better
than the QFT as the errors grow slower with the number of qubits. The crossing
point between the two in this case happens at ncrit = 10, whereas in the case
of perturbation after each gate we had ncrit = 3. This confirms that doing GUE
perturbation after each pulse is qualitatively the same as doing it after each gate:
only the crossing point between the QFT and the IQFT is shifted. The dependence
of errors on n changes simply due to the different number of applied perturbations.
If the perturbation strength δ is properly rescaled, the n dependence is the same
in both cases.

Up to now, we have discussed intrinsic errors and external errors separately.
The next question is of course, what happens if both errors are present at the same
time and are of similar strength?

Fig. 7. Dependence of F on the number of qubits for the static GUE perturbation after each
pulse with δ = 5×10−4. Empty symbols are for the QFT and filled symbols are for the IQFT. For
large n, the IQFT is again better than the QFT. Curves are the theoretical prediction Eq. (19)
using the best fitting polynomials given by Eq. (22).
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4.3. Intrinsic and external errors combined

If both kinds of errors are present, a first naive guess would be that they just add,

F both ≈ F inF gue = exp

(
−
[

J

ka

]2
sin(n) − δ2sgue(n)

)
, (23)

with the appropriate polynomials sin(n) and sgue(n) given in Eqs. (15), (18) and
(20). In the linear response regime, this formula means that both errors are uncor-
related, i.e. their cross-correlations are zero. This is easy to prove using properties
of GUE matrices. Let us calculate the cross-correlation function between intrinsic
perturbation, V in(t1), and external perturbation, V gue(t2), averaged over the GUE
ensemble. Written explicitly, one has to average products of the form V in

ij V gue
jk .

As this expression is linear in V gue, it averages to zero, 〈V in
ij V gue

jk 〉gue = 0, thereby
explicitly confirming a simple addition of both errors. Of course in real experiments,
we are not averaging over a GUE ensemble but we are taking one definite repre-
sentative member of it. For large Hilbert space, the expectation value of a typical
random state and one particular GUE matrix is “self-averaging” and will be equal
to the ensemble average.

Let us check the theoretical prediction for fidelity Eq. (23) with a numerical
experiment. The results together with the theoretical prediction Eq. (23) are in
Fig. 8. The agreement between theory and experiment is good even beyond the
linear response regime. Please note that we deliberately choose parameters such
that both the QFT and the IQFT give similar fidelity in order to also see the
crossing of the two curves within the shown range of n. Given a fixed δ and ka, the
QFT is always better for large n because intrinsic errors will prevail over external

Fig. 8. Fidelity for the QFT (empty symbols) and the IQFT (filled symbols) algorithm with
GUE perturbation after each gate. System parameters are k = a = 200 and δ = 0.04 (intrinsic
and external errors are comparable in size). Full curves are theoretical predictions for F given by
Eq. (23). With both errors present, the QFT is always better than the IQFT for large enough n.
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Fig. 9. The dependence of fidelity on system parameter ka and GUE perturbation strength δ for
n = 5. Full curves of constant fidelity are composed of two parts corresponding to the QFT or the
IQFT. To the right of the thick line for δcrit, the IQFT is better and below the QFT is better.
Dotted curves of constant fidelity below this line are for the IQFT and dashed lines above are for
the QFT. The shaded region corresponds to the region of fidelity larger than 0.9. The plus symbol
shows the position of parameters for Fig. 8.

ones, due to their fast n6 growth. But still, for intermediate n’s, the IQFT can be
better than the QFT as seen in Fig. 8.

Equipped with the understanding of errors in the QFT and the IQFT due to
external GUE perturbations and intrinsic errors, we can make some predictions
regarding ranges of experimental parameters ka, δ, n for which the fidelity will be
high enough. An interesting question is, when is the IQFT better than the QFT?
Setting FQFT = FIQFT with F ’s given by Eq. (23) results in the condition

δcrit =
J

ka

√
sin
QFT − sin

IQFT

sgue
QFT − sgue

IQFT

. (24)

For δ > δcrit, the IQFT is better than the QFT. In Fig. 9, we show curves of
constant fidelity for n = 5. They are composed of two parts. To the right of the
line for δcrit, the IQFT is better than the QFT, and vice versa. Two characteristic
features are also vertical and horizontal asymptotes of curves of constant fidelity.
Vertical asymptotes mean that for a fixed n, even if δ = 0, we must have ka larger
than some critical value determined just by intrinsic errors, in order to have a given
fidelity. Horizontal asymptotes for high ka mean that if δ is larger than some critical
value, increasing ka will not help to improve fidelity. In Figs. 10 and 11, we show
similar plots, only now one of the axes gives the dependence on n. For instance, from
Fig. 10 on can see that fixing ka = 105, the maximum number of qubits is n ≈ 12
if we want to have fidelity larger than 0.9 (even if δ = 0). This unfavorable growth
of required ka ∝ n3 in order to have a fixed fidelity is due to the ∼n6 growth of
intrinsic errors. It would therefore be advantageous to find a way to suppress errors
due to non-resonant transitions.16
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Fig. 10. Fidelity dependence on δ and number of qubits n for ka = 105. IQFT is better above
the thick line. For the explanation of the curves, see the caption of Fig. 9.
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Fig. 11. Fidelity dependence on ka and n for δ = 0.01. IQFT is better above the thick line. For
the explanation of the curves see the caption of Fig. 9.

5. Conclusions

We have analyzed two possible errors in the implementation of an algorithm on a
quantum computer. In particular, we discuss the implementation of the QFT on the
IQC. We consider: (i) intrinsic errors due to unwanted transitions caused by pulses,
and (ii) external errors due to the coupling with the external degrees of freedom.
We carefully analyze their dependence on system parameters, particularly on the
number of qubits. To diminish intrinsic errors, we use the generalized 2πk method by
which we are able to suppress all near-resonant transitions, with only much smaller
non-resonant transitions remaining. We then study these non-resonant errors in the
QFT algorithm and by using a correlation function formalism explain their growth
with time as ∼ T 2, in contrast to existing “simple” algorithms (having O(n) gates),
where the growth is linear in time. This very fast growth with n is a consequence of
strong correlations between non-resonant errors at different pulses. In view of this,
it would certainly be desirable to find a way to suppress non-resonant errors, e.g.
to uncorrelate or anti-correlate them.
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Two interesting questions immediately impose themselves: Is this behavior gen-
eral also for other models of quantum computers where the pulses (gates) are not
perfect and whether this fast growth of errors is general for all algorithms having
more than O(n) gates? This is very important as the ∼ T 2 growth would mean that
the problem of actually building a large quantum computer executing a complex
algorithm is much harder than previously thought, since the correlations of errors
at different time steps can significantly influence the stability.

We also consider perturbations due to the coupling with the external degrees of
freedom modeled by a random GUE matrix. To suppress this kind of error, we show
that it is advantageous to use an improved QFT algorithm, even in the presence of
intrinsic errors. For the IQFT, these external errors grow only as ∼n2, whereas they
grow as ∼n3 for an ordinary QFT. The improvement of quantum Fourier transfor-
mation by using an IQFT algorithm is independent of the specific model used for
the quantum computer as it depends only on the sequence of gates (algorithm) and
on the external perturbation being a random GUE matrix. This result is particu-
larly appealing as some argue that the external influences will be the main limiting
factor in the construction of quantum computers and therefore using the IQFT can
significantly improve performance in the limit of a large number of qubits.
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Appendix. QFT and IQFT Implementation on the Ising
Quantum Computer

To implement the protocol with high fidelity, we use Qab
iρ pulses derived in Ref. 6,

which completely suppress all near-resonant errors. Phases of Q-pulses composing
a gate must be chosen such that the gate works on an arbitrary state. The pro-
tocols implementing CNij (control not gate) and Nj (not gate) can be found in
Secs. 7.1–7.3 of Ref. 6.

In order to complete the QFT and the IQFT, we still need to implement the
R†, R, A, B and T gates. We can decompose R, R† and T gates into simpler pieces:

Rij = NiCNijNiZj , (A.1)

R†
ij = NiZjCNijNi, (A.2)

T =
q∏

i=1

q−i∏
j=1

Sq−j,q−j−1 (A.3)
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with Sij = CNijCNjiCNij the swap gate, Z = diag{1,−1} the σz gate, and each
term in the product in Eq. (A.3) is placed on the left of the sub-product (e.g.∏2

i=0 Di = D2D1D0). Therefore, the only gates left to design are A, B and Z.
The phases of Q-pulses can be expressed in terms of angles θρ, αρ, Θρ, βρ

and γρ,6 which are given by

θρ = π
√

k2
ρ − ρ2/4, (A.4)

αρ =
π

2

√
k2

ρ + 3ρ2/4, (A.5)

tanΘρ = − θρ

2αρ
tan αρ, (A.6)

tan βρ = − π

2αρ
tan αρ cosΘρ, (A.7)

γρ =
√

(πkρ)2 − (π + βρ)2. (A.8)

We use notation of angles without subscripts denoting angles for π pulses, i.e. θ ≡ θ1

and set k1/2 = 2k.
The Hadamard gate can now be expressed as

Aj = Q00
j (ϕ1)Q10

j (ϕ2)Q11
j (ϕ3)Q00

j 1
2
(ϕ4)Q10

j 1
2
(ϕ5)Q11

j 1
2
(π/2), (A.9)

for intermediate qubits and

Aj = Q0
j(ϕ6)Q1

j (ϕ7)Q0
j 1

2
(ϕ8)Q1

j 1
2
(π/2), (A.10)

for edge qubits, with

ϕ1 = −2
(
θ + γ 1

2
+ θ 1

2

)
, ϕ2 = −θ − 2Θ,

ϕ3 = −2
(
θ + γ − γ 1

2
− θ 1

2

)
, ϕ4 = π/2 − 2γ − 4θ 1

2
,

ϕ5 = π/2 − θ 1
2
− 2Θ 1

2
, ϕ6 = −θ − θ 1

2
,

ϕ7 = −θ + θ 1
2
, ϕ8 = π/2 − 2θ 1

2
.

(A.11)

For neighboring qubits (|i − j| = 1), the B gate can be written as

Bij = Q11
i (0)Q10

i (0)Q00
i (0)Q10

j (0)Q10
j (ϕ1)Q00

j (0)

×Q00
j (ϕ2)Q11

i (ϕ3)Q10
i (ϕ3)Q00

i (ϕ3)Q10
j (0)

×Q10
j (ϕ4)Q11

j (0)Q11
j (ϕ5), (A.12)

for intermediate qubits and for edge qubits (i or j ∈ {0, n − 1}) it is

Bij = Q1
i (0)Q0

i (0)Q10
j (0)Q10

j (0)Q00
j (0)

×Q00
j (ϕ6)Q1

i (ϕ7)Q0
i (ϕ8)Q10

j (0)

×Q10
j (ϕ9)Q11

j (0)Q11
j (ϕ10). (A.13)
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Angles for B gates are

ϕ1 = −2γ − 3θ + 2Θ, ϕ2 = φ/2 − 2γ − 6θ,

ϕ3 = φ/4 − π/2, ϕ4 = −ϕ1,

ϕ5 = φ/2 + 2γ + 6θ, ϕ6 = φ/2 − 6γ − 12θ + 4Θ,

ϕ7 = ϕ3 − ϕ1, ϕ8 = ϕ3 + ϕ1,

ϕ9 = −2ϕ1, ϕ10 = φ/2 − 2γ + 4Θ,

(A.14)

and φ = π/2. For distant qubits (|i − j| > 1), it is necessary to use swap gates
to bring ith and jth qubits to neighboring positions, then apply B protocol for
neighbor qubits and finally take them back to their original positions using swap
gates. The angle φ in Eq. (A.14) is in this case φ = π/2|j−i|. Finally, the Z gate is
expressed as

Zj = Q11
j (0)Q10

j (0)Q00
j (0)Q11

j (π/2)Q10
j (π/2)Q00

j (π/2) (A.15)

for intermediate qubits and

Zj = Q1
j(0)Q0

j(0)Q1
j(π/2)Q0

j(π/2) (A.16)

for edge qubits. Counting the number of all pulses for QFT and IQFT, one gets

TQFT = 18n3 − 16n2 − 49n + 57, (A.17)

TIQFT = 54n3 − 86n2 − 105n + 191. (A.18)
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