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A novel approach is suggested for the statistical description of quantum systems of interacting particles.
We show that the occupation numbers for single-particle states can be represented as a convolution of a
classical analog of the eigenstate, with the quantum occupation number for noninteracting particles. The
latter takes into account the wave function symmetry and depends on the unperturbed energy spectrum
only. As a result, the distribution of occupation numbers ns can be found even for a large number of inter-
acting particles. Using the model of interacting spins, we demonstrate that this approach gives a correct
description of ns even in deep quantum regions with few single-particle orbitals.
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In many physical systems, such as complex atoms,
heavy nuclei, and interacting spins, highly excited eigen-
states in the unpertured many-particles basis, and for
a relatively strong interaction among particles, have
a large number of components that can be treated as
independent random numbers (see, e.g., [1–3]). This
randomness allows for a statistical treatment that takes
into account only the symmetry of the Hamiltonian and
the type of interaction, e.g., two-body. In Refs. [4,5], for
instance, a statistical description of closed systems with
a finite number of Fermi particles has been developed.
In particular, it was analytically shown that, for a strong
enough interaction, a smooth dependence of occupation
numbers on the energy occurs, which is directly related to
the statistical properties of chaotic eigenstates.

As is known, the direct numerical computation of ex-
cited eigenstates is a difficult task for a large number of
particles. On the other side, the mean values of occupa-
tion numbers turn out to depend on the average shape of
chaotic eigenstates in the unperturbed basis, not on exact,
specific values of their components [5].

In this Letter, we develop a novel approach to quan-
tum systems with chaotic behavior in the classical limit.
This approach takes into account both the chaotic prop-
erties of the classical system and the specific features of
the unperturbed single-particle spectrum. As a result, one
can avoid diagonalization of Hamiltonian matrices of huge
size which may be practically unfeasible. This kind of ap-
proach can be applied to generic Hamiltonian systems with
two-body interaction of the type

H � H0 1 V ; H0 �
NX

i�1
hi

0 ;

V �
NX

i�1

NX
j�i11

Vi,j .

(1)

Here H0 describes N noninteracting particles with hi
0

as single-particle Hamiltonians, and V stands for a long-
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range two-body interaction between the particles. In what
follows, we assume that the single-particle spectrum is
determined by a finite number L of single-particle energies
eh, h � 1, . . . , L; however, the approach is valid for more
generic systems with an infinite spectrum.

The unperturbed Hamiltonian H0 determines the
many-particle states jK� � ay

s1
. . . ay

sN
j0� (with ay

sj
, asj

as
creation-annihilation operators) that form the basis in
which the exact eigenstates of H are represented. As
usual, we assume that the basis is ordered according to
increasing unperturbed energy values E0 �

PL
h�1 ehnh,

nh being the number of particles with energy eh.
The distribution of occupation numbers (DON) for

single-particle states is defined by the relation

nE�h� �
MX

K�1

�Kjn̂hjK� jcE
K j

2, (2)

where n̂h � a
y
h ah is the occupation number operator

giving the occupation numbers nK
h � �Kjn̂h jK� equal to

0 or 1 for Fermi particles, and to 0, 1, 2, . . . , N for Bose
particles. These numbers nK

h indicate how many particles
in a many-particle basis state jK� occupy a particular
single-particle state jh�. Correspondingly, the occupation
numbers nE �h� give the probability that one of the N
particles in a many-particle exact state with the total
energy E occupies a particular single-particle state jh�.
The total number M of many-body states equals M �
L!��N !�L 2 N�!� for Fermi and M � �N 1 L 2 1�!�
�N!�L 2 1�!� for Bose particles.

One should note that while, in the above expression for
the DON, the components of the eigenfunctions c

E
K de-

pend on the total Hamiltonian H, the term nK
h depends on

the unperturbed spectrum only. This fact is crucial for our
semiquantal approach. Because of the chaotic structure of
exact eigenstates, one can make an average of the DON
over a small energy window DE around the fixed value E.
This averaging procedure is similar to that used in the con-
ventional statistical mechanics developed for systems with
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a finite number of particles in contact with a heat bath, or
for isolated systems of an infinite number of noninteract-
ing particles.

Expression (2) for the mean values nE�h� can be con-
siderably simplified by introducing the so-called shape of
eigenfunctions (SE) (envelope of eigenstates in energy rep-
resentation). The form of the SE has been studied in detail
both in the model with random two-body interaction [5]
and in dynamical models of interacting particles [6–8].
The introduction of the average quantity SE (thus neglect-
ing correlations between different components c

E
K ) repre-

sents the key point of our approach.
We assume that the unperturbed many-body energy

spectrum has an intrinsic degeneracy. This situation is
typical for spin systems, and is more complicated in
comparison with those studied previously [6,7]. Below we
show how this difficulty can be overcome. Let us redefine
the state jK� by means of an indices pair jj, l�, where
j labels the “unperturbed energy” E0

j of the many-body
state, while l � 1, . . . , Nj labels its degeneracy Nj. If
there are N0 different “unperturbed” energies, one can
write

PM
K�1 �

PN0
j�1

PNj

l�1; therefore, one has

nE�h� �
N0X

j�1

NjX
l�1

�j, ljn̂h jj, l� jcE
j,l j

2. (3)

According to Ref. [7], the SE is given by

WE�E0
j � �

NjX
l�1

jcE
j,l j

2. (4)

By substituting jc
E
j,lj

2 � �jcE
j,lj

2�l � WE�E0
j ��Nj with

�· · ·�l as an average over l, we obtain an approximate
expression for the DON in terms of the SE:

nE�h� �
N0X

j�1

1
Nj

NjX
l�1

�j, ljn̂hjj, l�WE �E0
j � . (5)

Needless to say, if an unperturbed spectrum has no degen-
eracy, Eq. (5) can be written in a similar way by taking an
average over a small window of energy around E0

j .
As one can see, expression (5) depends on two terms

of different nature. The first one, �j, ljn̂hjj, l�, refers to
the unperturbed many-particle spectrum and reflects the
specific properties of a single-particle spectrum, as well as
quantum features related to Fermi-Dirac or Bose-Einstein
statistics. In contrast, the second term, WE�E0

j �, refers to
global properties of eigenstates and describes interaction
effects. Therefore, the basic idea of our “semiquantal”
approach is to substitute the latter term (SE) by its classical
analog which can be easily found from classical equations
of motion.

Classical analogs of the SE have been studied in differ-
ent models; see, for example, [6–8]. In practice, one has
to derive the distribution WE�E0� � P�H0 � E0jH � E�
for the probability to find the unperturbed energy E0 for
H0, given the conserved total energy E. This can be ob-
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tained by generating many different initial classical con-
figurations on the energy surface H � E or sampling the
H0�t� values generated by one single trajectory onto the
energy surface and computing the correspondent distribu-
tion of H0 � E0 [9]. The two procedures have been found
to give the same results in the chaotic region [8]. In or-
der to facilitate the comparison with the quantum SE, in
our numerical simulations the bin size of E0 equals the en-
ergy distance between neighbor values of E0

j . In the same
way, one can define the classical distribution of occupa-
tion numbers, nE�h� � P�hi

0 � hjH � E� (see also [8]).
For the quantum-classical comparison, the bin size of h
is taken to be equal to the spacing between close single-
particle energy levels eh.

Let us stress that in this semiquantal approach (SA) it
is possible to study specific systems of, for example, 1000
interacting particles occupying 10–20 single-particle lev-
els. Surely, one expects this approach to be valid for highly
excited chaotic states. However, by direct numerical simu-
lations, we have found that the SA gives correct results
even for energy values close to the ground state.

Our model consists of N 3D interacting spins placed in
a magnetic field B directed along the z axis. In order to
have a proper many-body operator, one should require a
coupling between all spins (not only between neighbors).
The Hamiltonian thus reads

H � B
NX

i�1

Sz
i

1

N21X
i�1

NX
j�i11

�JxSx
i Sx

j 1 JyS
y
i S

y
j 1 JzSz

i Sz
j � . (6)

This model is known in literature as the anisotropic
Heisenberg model in a magnetic field with an all-to-all spin
interaction (infinite range coupling). The case of nearest
neighbor coupling has not been taken into account here
since it cannot describe a quantum system with the sym-
metry or the antisymmetry of the global wave function
included.

Using the relations S6
j � Sx

j 6 iS
y
j and assuming

Jz � 0, one can write

H � B
NX

i�1
Sz

i

1
1
4

�Jx 2 Jy�
N21X
i�1

NX
j�i11

�S1
i S1

j 1 S2
i S2

j �

1
1
4

�Jx 1 Jy�
N21X
i�1

NX
j�i11

�S1
i S2

j 1 S2
i S1

j � . (7)

The interaction can be further simplified by the par-
ticular choice Jx � 2Jy � J and B � 1. Thus, our
Hamiltonian H � H0 1 V has the following form:

H �
NX

i�1

Sz
i 1

J
2

N21X
i�1

NX
j�i11

�S1
i S1

j 1 S2
i S2

j � . (8)
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For simplicity, the N classical constants of motion
j �Si j have been set to 1; therefore, the only free classical
parameters are the total conserved energy E and the inter-
action J. The classical model has been studied in [8] and
it was numerically found to be chaotic and exponentially
unstable in a wide energy range. More precisely, in order
to have strong chaos, one needs the interaction J between
particles to be strong enough. A convenient choice is
to take the interaction strength J � 1�N . One should
stress that this situation is the most difficult for theoretical
studies; see discussion in [8].

Quantization follows the standard rules: S2
i �

h̄2m�m 1 1� and Sz
i � h̄s with 2m # s # m, and

creation and annihilation operators are defined by

S6
i j . . . , si , . . .� � h̄

q
m�m 1 1� 2 si�si 6 1�

3 j . . . , si 6 1, . . .� ,

where js1, . . . , sN � are the nonsymmetrized states (first
quantization states).

There are L � 2m 1 1 single-particle energy levels
eh � 2h̄h with h � 2m, . . . , m. Therefore, the un-
perturbed many-particle energy spectrum consists of a
number of degenerate levels with the spacing equal to
h̄. Note that both the ground state Eg � 2mNh̄ and the
upper level Eu � mNh̄ are nondegenerate. The classical
limit is recovered when spins are allowed to have any
possible orientation, that is, m ! ` and h̄ ! 0.

The choice we have made �Jx � 2Jy � J� allows us
to reduce the dimension of the Hilbert space by, approxi-
mately, one-half. This happens because the operator V in
Eq. (8) connects only those unperturbed many-body states
that are separated by the spacing 2h̄. In what follows,
we consider the subset of the many-body states containing
the ground state. From these states we construct the com-
pletely symmetrized states js1, . . . , sN �S � jn2m, . . . , nm�,
where the right-hand side refers to their second quantiza-
tion representation. Note that for the symmetrized states
the distribution of occupation numbers is expected to be
described, for a large number of particles, by the Bose-
Einstein statistics.

In second quantization Eq. (8) can be written as

H � H0 1 V ; H0 �
mX

h�2m

ehn̂h , (9)

with

V �
m21X

h�2m

hhâ
y
h11â

y
h11âhâh 1

m22X
h�2m

jhâ
y
h12âh .

Here n̂h � â
y
h âh, with â

y
h and âh the creation-annihilation

operators satisfying the standard relation �âh, ây
k � � dhk.

As for the coefficients hh, jh, they can be easily computed
numerically.

The procedure we have used in our numerical simu-
lations consists of the following steps: (i) compute the
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classical values nE�h� and WE�E0� as described above;
(ii) compute the quantum values nE�h� and WE�E0� by di-
agonalization of the total Hamiltonian (9); (iii) compute
nE �h� and WE�E0� by using the semiquantal approxima-
tion according to expression (5).

The results for the DON are summarized in Fig. 1. For
the sake of comparison, symbols refer to the quantum and
SA results, while the classical data are presented as histo-
grams. Note that the energy of each particle belongs
to the interval �21, 1�. In order to make the quantum-
classical comparison as close as possible, we took the
classical bin size equal to h̄. All distributions have been
normalized in such a way that

Pm
h�2m nE�h� � N . In

cases 1(a) and 1(b), we choose the same energy, close
to the ground state but two different m values. Instead,
in 1(c) and 1(d), we take a higher energy value that cor-
responds to a more classical situation. One can see that
while classical and quantum data disagree only in the deep
quantum region 1(a) [energy close to the ground state and
small m (big h̄)], there is a very nice correspondence be-
tween quantum and SA data in all cases.

These results confirm our expectation that for excited
chaotic states correlations inside eigenstates as well as be-
tween the two different terms in Eq. (5) can be indeed ne-
glected. Remarkably, we have found that our approach
works well for very low energy states that are definitely
nonchaotic. We explain this phenomenon by the fact that in
this case most of the probability is concentrated in a single
many-body state, and, therefore, correlations are practi-
cally absent. On the other side, a problem could arise in an
intermediate situation when eigenstates have many compo-
nents but they are not chaotic. For instance, for N � 10,
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FIG. 1. Occupation number distribution obtained in three dif-
ferent ways. Crosses correspond to the quantum data, open
circles stand for the SA approach, and histograms refer to the
classical quantities. The data are given for three interacting par-
ticles: (a) E � 22.75, DE � 0.15, m � 5; (b) E � 22.75,
DE � 0.15, m � 13; (c) E � 20.91, DE � 0.09, m � 5; and
(d) E � 20.91, DE � 0.09, m � 11.
054101-3



VOLUME 88, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 4 FEBRUARY 2002
−1 −0.5 0 0.5 1
h

10
−3

10
−2

10
−1

10
0

10
1

n E
(h

)/
N

SA
BE

−1 −0.5 0 0.5 1
h

10
−4

10
−3

10
−2

10
−1

10
0

10
1

n E
(h

)/
N

 

(a)

(b)

FIG. 2. Distribution of occupation numbers for N � 10 par-
ticles. Open circles indicate the BE distribution while crosses
stand for the SA data: (a) E � 28, DE � 0.2, m � 3; (b) E �
26.5, DE � 0.2, m � 13.

m � 3, J � 0.2, and E � 26.5, the agreement between
the SA and quantum data was found to be less accurate
than for the ground state.

It is very interesting to explore the occurrence of the
Bose-Einstein (BE) distribution in our model. A similar
problem has been studied in detail for the model of two-
body random interaction [5] where the conditions for the
appearance of Fermi-Dirac distribution have been found
for few interacting Fermi particles.

By assuming, a priori, the validity of the BE distribution
nBE

E �i� � �eb�ei2m� 2 1�21 in our closed system, one can
find the “temperature” 1�b and the “chemical potential”
m via the standard relations,

mX
i�2m

nBE
E �i� � N ;

mX
i�2m

nBE
E �i�ei � E0. (10)

Here E0 is the numerically computed energy obtained
from the single-particle quantum distribution (see details
in [10]), and N is the number of particles. Notice that,
due to interaction, E0 fi E.

The comparison between BE and SA distributions is
shown in Fig. 2. As one can see, even for relatively small
N � 10, the distribution nE�h� is closely approximated by
the BE distribution. This confirms the expectation that
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a strong enough interaction between particles plays the
role of an internal heat bath [5]. Therefore, the standard
quantum distribution can be used, with a corresponding
renormalization of the energy E0 (see [5]).

We stress that an exact quantum treatment of the last
example calls for a diagonalization of a huge matrix of size
8008 3 8008, while, with the semiquantal approach, all
computations required few minutes on a standard portable
personal computer.

In conclusion, we suggest an effective semiquantal ap-
proach to closed systems of interacting particles, based on
the chaotic structure of eigenstates. In this approach, the
computation of the distribution of occupation numbers can
be easily performed by making use of the classical ana-
log of the shape of eigenstates in the unperturbed many-
particle basis. We demonstrate the effectiveness of this
approach using the model of 3D spins with anisotropic
Ising interaction. The data show that semiquantal compu-
tations give results which are very close to the exact ones.
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