
October 2009

EPL, 88 (2009) 27003 www.epljournal.org

doi: 10.1209/0295-5075/88/27003

Internal chaos in an open quantum system:
From Ericson to conductance fluctuations

S. Sorathia
1
, F. M. Izrailev

1,2(a)
, G. L. Celardo

3
, V. G. Zelevinsky

2 and G. P. Berman4

1 Instituto de F́ısica, Universidad Autónoma de Puebla - Apartado Postal J-48, 72570 Puebla, Mexico
2NSCL and Department of Physics and Astronomy, Michigan State University - East Lansing, MI 48824-1321, USA
3 Physics Department, Tulane University - New Orleans, LA 70118, USA
4 Theoretical Division and CNLS, Los Alamos National Laboratory - Los Alamos, NM 87545, USA

received 21 May 2009; accepted in final form 1 October 2009
published online 3 November 2009

PACS 73.23.-b – Electronic transport in mesoscopic systems
PACS 24.60.Lz – Chaos in nuclear systems
PACS 21.60.-n – Nuclear structure models and methods

Abstract – The model of an open Fermi system is used for studying the interplay of intrinsic chaos
and irreversible decay into open continuum channels. Two versions of the model are characterized
by one-body chaos coming from disorder or by many-body chaos due to the inter-particle
interactions. The continuum coupling is described by the effective non-Hermitian Hamiltonian.
Our main interest is in specific correlations of cross-sections for various channels in dependence on
the coupling strength and degree of internal chaos. The results are generic and refer to common
features of various mesoscopic objects including conductance fluctuations and resonance nuclear
reactions.
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Introduction. – The problem of quantum transport
is generic for all realistic quantum systems interacting
with environment. A transmission of a signal through a
many-body quantum aggregate of interacting particles is
essentially the main instrument in studying such systems
and using them for practical communication purposes.
Currently this is one of the crucial lines of development of
mesoscopic physics [1] with broad applications to quantum
information, electronics and material science.
Historically, many ideas nowadays defining mesoscopic

physics emerged in nuclear theory starting with Bohr’s
concept of reactions proceeding through compound
nucleus. Low-energy neutron resonances in heavy nuclei
present a typical example of exceedingly complex quasi-
stationary states in an open many-body system which
serve as intermediaries in reaction processes. Later these
states provided the statistical justification for the ideas of
quantum chaos based on random matrix theory [2]. The
detailed reviews of progressing knowledge on quantum
chaos in complex atoms and nuclei can be found in [3–6];
general features of mesoscopic systems of interacting
fermions were stressed in [7]. The theoretical concepts of
many-body quantum chaos are convincingly supported
by the large-scale diagonalization of Hamiltonian matri-
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ces. Although in mesoscopic condensed matter systems
one-body chaos often plays the main role, the interaction
effects are also important and the analysis has many
features parallel to the nuclear theory [8,9].
When the lifetime of quasistationary states is getting

small and the corresponding resonances overlap, the
openness of the system becomes a decisive factor. In
nuclear reactions this regime is called Ericson fluctua-
tions [10], where certain fluctuations and correlations of
cross-sections are predicted. An open system can be stud-
ied by the effective non-Hermitian Hamiltonian [11,12]
that describes the intrinsic dynamics coupled to the
continuum. It turns out [13] that transition from isolated
to overlapping resonances implies the collectivisation of
overlapped states interacting through continuum. For
a small number M of open channels, the restructuring
of the widths leads to the segregation of M short-lived
states while the remaining states acquire narrow widths
and long lifetime. This transition is similar to the optical
super-radiance [14].
One of the brightest examples of quantum phenom-

ena in open mesoscopic systems is given by the univer-
sal conductance fluctuations [15,16]. There exist well-
pronounced similarities and some differences between
them and nuclear Ericson fluctuations [17]. Some aspects
of this interrelation were studied in our previous work [18].
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Using the model of interacting fermions analogous to
the nuclear continuum shell model [19], we analysed the
behaviour of the system in function of the intrinsic inter-
action strength, coupling to the continuum, and number
of open channels. Below we study in detail how many-
body chaotic dynamics inside the system is translated into
observable features of many-channel signal transmission.

Intrinsic chaos. – Our model describes n interacting
fermions that occupym single-particle levels of energies εs.
The intrinsic many-body Hamiltonian can be written as

Hλ =H0+ λ̃V, (1)

where H0 stands for the mean-field part describing
non-interacting particles (or quasi-particles), and V
contains the two-body interaction between the particles
with the variable strength λ̃. The matrix Hλ of size N =
m!/[n!(m−n)!] is constructed in the many-particle basis
|k〉 of the Slater determinants, |k〉= a†s1 . . . a†sn |0〉, where
a†s and as are the creation and annihilation operators,

H0 =
m∑
s=1

εs a
†
sas; V =

1

2

∑
Ṽs1s2s3s4 a

†
s1
a†s2as3as4 . (2)

Each many-body matrix element Vlk = 〈l|V |k〉 is a sum of
a number of two-body matrix elements Ṽs1s2s3s4 involving
at most four single-particle states |s〉. For this reason,
many matrix elements Vlk vanish, and the matrix V is very
different from random matrices of the Gaussian orthog-
onal ensemble (GOE); for details, see, for example, [2,7].
The ordered single-particle energies, εs, are assumed
to have a Poissonian distribution of spacings, with the
mean level density 1/dλ, implying regular dynamics of
the non-interacting system. The interaction V belongs to
an ensemble that is characterised by the variance of the
normally distributed two-body random matrix elements,
〈Ṽ 2s1s2s3s4〉, and normalised in such a way that 〈V 2l,k〉= 1.
It is known [7–9] that chaotic properties of the two-
body random interaction (TBRI) Hamiltonians of the

type (2) are determined by the control parameter λ= λ̃/df
where df is the mean energy spacing between many-
body states directly coupled by the two-body interaction.
Note that df �D0 where D0 is the mean level spacing
between many-body states. The properties of the spectra,
eigenstates and observables in the model (1) have been
thoroughly studied in [7]. In particular, it was shown that
the critical value for the onset of strongmany-body chaos is
determined by the condition λ> λcr ≈ 2(m−n)/Nf where
Nf = n(m−n)+n(n− 1)(m−n)(m−n− 1)/4.
To compare with the above model of many-body chaos,

we also consider the standard random matrix model
typically used to describe the onset of one-body chaos. The
corresponding Hamiltonian has the form,

Hµ =H
◦+ µ̃HGOE. (3)

Here H◦ is a diagonal matrix with the Poissonian distri-
bution of spacings between its ordered eigenvalues, and
HGOE is a N ×N matrix belonging to the GOE. In such

a description, the Hamiltonian Hµ can be treated as a
generic model describing an electron in a quantum dot,
or as a model of optical or electromagnetic waves in a
closed cavity with bulk disorder. The control parameter,
µ= µ̃/dµ

√
N , determining degree of one-body chaos is the

ratio of the variance of matrix elements of HGOE to the
mean energy level spacing dµ between the eigenstates of
H◦. The transition to strong chaos occurs for µ> µcr ≈ 1.
Coupling to continuum. – Our aim is to study the

statistical properties of open systems with internal dynam-
ics described by above two Hamiltonians. According to the
well developed formalism [12,20,21], scattering properties
of an open system can be formulated with the effective
non-Hermitian Hamiltonian H,

H=H − i
2
W ; Wij =

M∑
c=1

AciA
c
j , (4)

where H is either Hλ or Hµ. Here we neglect an additional
Hermitian term (the principal value of the dispersion
integral) that appears in the elimination of the continuum
[19,22]. We consider the middle of the energy spectrum,
where this term vanishes. The non-Hermitian part, W ,
describes the coupling between N intrinsic states |i〉, |j〉,
through M open decay channels labelled as a, b, c, . . . .
The factorised structure of W is dictated by the unitarity
of the scattering matrix. We restrict ourselves by time-
invariant systems, thus the transition amplitudes Aci
between intrinsic states |i〉 and channels c are real.
The amplitudes Aci are assumed to be random indepen-

dent Gaussian variables with zero mean and variance

〈AciAc
′
j 〉= δijδcc′

γc

N
. (5)

This is compatible with the GOE or TBRI models where
generic intrinsic states coupled to continuum have a very
complicated structure, while the decay probes specific
simple components of these states related to a finite
number of open channels (see discussion in [18]). Below
we neglect a possible energy dependence of the amplitudes
that is important near thresholds and is taken into account
in realistic shell model calculations [19]. The effective
parameter determining the strength of the continuum
coupling can be written as

κc =
πγc

2ND
, (6)

and we consider M equiprobable channels, γc = γ, κc = κ.
All scattering properties of the system with the non-

Hermitian Hamiltonian (4) are determined by the scatter-
ing matrix, Sab = δab− iT ab, with

T ab(E) =
N∑
i,j

Aai

(
1

E−H

)
ij

Abj . (7)

The complex eigenvalues E of H coincide with the poles
of the S-matrix and, for small γ, determine energies
and widths of isolated resonances. In the critical region
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κ≈ 1 with crossover to overlapping resonances, the width
distribution displays sharp segregation of broad short-
lived (super-radiant) states and very narrow long-lived
(trapped) states [13,23]. Correspondingly, the distribution
of poles of the scattering matrix undergoes a transition
from one to two “clouds” of poles in the complex plane
of resonance energies [24]; the number of broad states
coincides with the number M of open channels (the rank
of the matrix W ). For the model (1), the statistical
properties of resonances as a function of the interaction
between particles and the coupling to continuum have
been thoroughly studied in earlier papers [18,25].
Our main interest is in the dependence of fluctuation

and correlation properties of scattering on the degree of
internal chaos and strength of continuum coupling. The
average values of reaction cross-sections, σab(E), are fully
defined by the transition amplitudes T ab(E),

σab(E) = |T ab(E)|2. (8)

In our notations the cross-sections are dimensionless
since we omit the common factor π/k2. We will use the
terminology borrowed from nuclear physics referring to
the b= a process as “elastic” and b �= a as “inelastic”
although all reactions are considered within the fixed
energy window; in what follows we study both types of
cross-sections. We ignore the smooth potential phases
irrelevant for our purposes leaving only properties due to
the compound resonances and therefore to the intrinsic
dynamics. According to the theory of Ericson fluctua-
tions [10], the scattering amplitude of any process can be
written as the sum of the average and fluctuating parts,
T ab(E) = 〈T ab(E)〉+ T abfl (E), with 〈T abfl (E)〉= 0. The
average cross-section, σ= |T |2, can be also divided into
two contributions, 〈σ〉= 〈σdir〉+ 〈σfl〉. Here the direct
reaction cross-section, 〈σdir〉, is determined by the average
scattering amplitude only, while 〈σfl〉 is the fluctuational
part also known as the compound nucleus cross-section.

Cross-section correlations. – The fluctuations of
both elastic and inelastic cross-sections strongly depend on
the coupling to the continuum. According to the standard
Ericson theory, in the region of strongly overlapping
resonances, κ≈ 1, the variance of both elastic and inelastic
cross-sections for large M � 1 can be expressed via the
average cross-sections, Var(σ) = 〈σfl〉2. Our data for the
many-body Hamiltonian (1) confirm this expectation for
M � 10 for inelastic cross-sections and any strength of
interaction between particles. As for the elastic cross-
sections, a slight dependence on an internal chaos has been
found and explained in [18].
Of special interest is the problem of correlations between

different cross-sections. The commonly used quantity that
is discussed in nuclear and solid state physics, is the
covariance Cfl of fluctuational cross-sections,

Cfl = 〈σabfl σa
′b′
fl 〉− 〈σabfl 〉〈σa

′b′
fl 〉. (9)

0.1 1 10
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Fig. 1: (Colour on-line) Dependence of EE correlations on the
coupling strength, κ. Two limiting cases are shown for weak
(circles) and strong (triangles) chaos. Lines and open symbols
refer to the many-body model and full symbols to the one-body
model, for N = 924 andM = 4 channels. The average was done
over 1000 realisations of random matrices and the error bars
(not shown) are of order of the symbol size.

In our case without direct processes we have 〈σ〉= 〈σfl〉,
therefore, below we omit the subscript “fl”. The analy-
sis of the covariance C shows that its value strongly
depends on the type of correlations. Specifically, there are
5 types of correlations: EE —elastic-elastic, when both
cross-sections are elastic, EI1 and EI0 —elastic-inelastic
correlations with one and no common channels in the scat-
tering, and II1 and II0 —inelastic-inelastic correlations
with one and no common channels, respectively.
One should stress that the theoretical analysis of the

covariance (9) encounters serious problems even for the
GOE case in place of H in eq. (4) (see also ref. [26] for
different model). The second term in eq. (9) is defined
by the second moments of the scattering matrix. The
corresponding expressions were obtained in ref. [21] with
the use of the super-symmetry method. In the limit M �
1, they are reduced to the Hauser-Feshbach formula, see in
ref. [2]. It is much more difficult to evaluate the first term
that is determined by the four-point correlation function
for matrix elements. The only analytical expressions for
this term can be found in ref. [27]. However, the result
obtained there is inconsistent with our numerical data,
as well as with the analysis of the universal conductance
fluctuations performed in ref. [28].
In order to understand how the cross-section correla-

tions depend on the strength of coupling to continuum and
degree of internal chaos, we performed a detailed numeri-
cal study of the correlations (9) for two models (1) and (3).
All data are obtained with averaging over energy E at the
band centre, −0.4<E < 0.4, and over a large number of
different cross-sections belonging to one of the five groups
defined above.
In fig. 1 we show the correlations (EE) between two

different elastic cross-sections, σaa and σbb with a �= b, as
a function of the coupling parameter. We consider here
two limiting cases, λ, µ= 0.2; 2.8, for weak and strong
internal chaos, respectively. A noticeable dependence on
the degree of chaos is clearly seen for both models. There
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Fig. 2: (Colour on-line) Dependence of the EI0 and II0
correlations on κ for the parameters of fig. 1.
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Fig. 3: (Colour on-line) Dependence of the EI1 and II1
correlations on κ for the parameters of fig. 1.

is an excellent agreement between λ= 2.8 and µ= 2.8 for
all values of κ. However, for weak coupling there is a small
difference between the λ and µ models. Still, the general
trend of the EE correlations is the same for both cases. It
is interesting that the symmetry between weak and strong
coupling that is known for the GOE models, and clearly
seen here for strong chaos, is destroyed for weak chaos, the
effect lacks an analytical explanation.
Next, we consider the correlations EI0 between different

elastic-inelastic fluctuating cross-sections with no common
channel index, and the II0 correlations between two
different inelastic-inelastic cross-sections. These are shown
in fig. 2 for the same limiting cases as above, λ, µ=
0.2; 2.8. The EI0 and II0 correlations have a difference
by a factor close to 2 in amplitude but follow a simi-
lar trend for all three cases of internal chaos. Compar-
ing the results for the two models we arrive at a simi-
lar result as before: an excellent agreement between λ=
2.8 and µ= 2.8, and small deviations between the cases
λ� 1 and µ� 1 for weak coupling. This is more evident
for the EI0 than for the II0 correlations. The anal-
ogous case, when there is one common channel index
between the fluctuating cross-sections involved in the
correlation function, is shown in fig. 3. Here the EI1
and II1 correlations differ by a factor close to 5 in
amplitude but behave similarly for both limiting cases
of internal chaos, λ, µ= 0.2 and 2.8. Furthermore, EI1
correlations are independent of the degree of internal
chaos whereas II1 correlations become slightly smaller at
stronger chaos. For the EI1 correlations the correspon-
dence between the two models is excellent for all values

Table 1

Number of terms, N
Elastic-elastic (EE) M2−M
Elastic-inelastic (EI0) 2(M3− 3M2+2M)
Elastic-inelastic (EI1) 4(M2−M)
Inelastic-inelastic (II0) M4− 6M3+11M2− 6M
Inelastic-inelastic (II1) 4(M3− 3M2+2M)

of κ. We have to stress that the correlations for strong
chaos with λ, µ= 2.8, are in a good agreement if the
Hermitian part of the Hamiltonian (4) is taken from the
GOE.
From our data one can see that the strongest corre-

lations occur at perfect coupling to continuum, κ≈ 1.
Another remarkable property is that the correlations are
either negative or positive depending on whether there is a
common channel in the correlating cross-sections or such
channels are absent. Indeed, both EI1 and II1 correla-
tions are negative around κ= 1, whereas the EI0 and II0
correlations are positive.
For a large number of channels, M � 1, these correla-

tions are very weak, and they are ignored in the stan-
dard Ericson theory. However, they turn out to be very
important when considering the properties of conductance
fluctuations, see below. Also, in nuclear physics there are
situations when the number of open channels is relatively
small, and one can expect that the effect of different signs
of correlations can be observed experimentally. One of the
new applications of such experiments can be the calibra-
tion of internal chaos with the use of scattering data.
Therefore, it is important to know the dependence

of the correlations (9) on the number of channels. Our
analysis has revealed that the value of the covariance C is
inversely proportional to the number N of terms in each
group specified by the type of correlations, over which the
averaging is performed in eq. (9), see table 1. Our extensive
numerical data has confirmed this dependence, C =X/N
with some constants X that we extracted by fitting the
data with the above dependence. This rule works perfectly
starting from M = 2 or 3.

Conductance fluctuations. – One of the most
intriguing effects of mesoscopic physics is the universality
of conductance fluctuations. In order to study this effect
in the framework of our models (1) and (3), one should
treat M/2 b-channels as left channels corresponding to
incoming electron waves, and other M/2 a-channels,
as right channels for outgoing waves. Then, we define
the Landauer conductance G in the standard way [15]
(omitting the common factor of 2e2/h),

G=

M/2∑
b=1

M∑
a>M/2

σab. (10)

The properties of the conductance are entirely deter-
mined by the inelastic cross-sections, b �= a, and for

27003-p4



Internal chaos in an open quantum system: From Ericson to conductance fluctuations

0.5 1 2 4 6 10
0.11

0.12

0.13

0.14

0.15
λ

cr
 ~ 1

2/15

1/8

Var (G)

λ

Fig. 4: (Colour on-line) Var(G) vs. λ for n= 7, m= 14, N =
3432 and M = 20 channels for the many-body model (1).

equivalent channels the average conductance (10) reads

〈G〉= M
2

4
〈σab〉= M

2

4

T

F +M − 1 →
MT

4
. (11)

Here T = 4κ/(1+κ)2 is the transmission coefficient, and
F = 〈σaafl 〉/〈σabfl 〉 is the elastic enhancement factor [29].
Our data show that the value of F changes from
F = 2 to F ≈ 3 when decreasing the strength of chaos
from λ, µ=∞ to λ, µ= 0. The last expression in eq.
(11) is written for M � 1. As one can see, the influ-
ence of internal chaos is due to the enhancement
factor F only. Since there is no theory relating the
enhancement factor to the degree of chaos, we used
this factor as the fitting parameter. Our data mani-
fest an excellent agreement with the expression (11)
for various values of parameters λ and µ, as well as
M . Note that for a very large number of channels the
influence of internal dynamics on fluctuations disappears.
As for the variance Var(G), the analytical results are

available for the GOE case only, corresponding to very
large values of λ and µ. According to different approaches
(see, for example, in ref. [5]), for perfect coupling, κ= 1,
and very large number of channels, M � 1, this variance
takes the famous values 2/15 and 1/8 for diffusive and
ballistic transport, respectively. This result is commonly
considered as a striking effect of universal conductance
fluctuations. Our data reported in fig. 4 clearly manifest
that, in both models (1) and (3), for κ= 1 and strong
internal chaos the value of Var(G) is close to 1/8. A small,
however, clear difference from 1/8 is explained by the
correction due to a finite value M = 20. A more general
expression for a finite number of channels (for κ= 1 and
the GOE) can be found in refs. [1,15],

Var(G) = 2
(M/2)2[(M/2)+1]2

M(M +3)(M +1)2
, (12)

and our data perfectly agree with this result.
One can see from fig. 4 that the variance Var(G)

increases when λ and µ decrease, and crosses the ballistic
value 2/15 close to the critical value at which the transi-
tion from weak to strong chaos occurs in closed models.
One of the most interesting and new results of our

study is how the internal chaos influences the variance
of the conductance, Var(G). As one can see from fig. 5,
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0.2

0.25
µ = 0.2
µ

cr
 ~ 1

µ = 2.8

0.1 1 10

λ = 0.2
λ

cr
 ~ 1

λ = 2.8
(OB)(MB)Var(G)

κ κ

Fig. 5: (Colour on-line) Variance of the conductance for the
many-body model (3), left panel, as compared to the one-body
model, right panel. The average was done over 700 realisations
of random matrices with N = 924 and M = 10.

in the region with small or moderate continuum coupling,
κ≈ 0.1–0.5, the value of Var(G) strongly depends on the
strength of inter-particle interaction, λ, in the model (1)
of many-body chaos, and on the perturbation parameter
µ in the model (3) of one-body chaos. The strongest
influence of chaos occurs for κ≈ 0.2, and the results
are practically the same for both models, provided the
appropriate normalisation of λ and µ is made. This
important result may find various applications in theory
of conductance fluctuations. In particular, one may try
to extract information about internal dynamics from
experimental data when changing the degree of coupling
to continuum (for example, the degree of openness of
quantum dots).
An important feature of the data in fig. 5 is that for

κ≈ 1 the influence of intrinsic chaos is weak. This can
be explained as follows. When coupling is perfect, an
interaction with the continuum through forming broad
states in various channels is very strong in comparison
with an internal process of chaotization, therefore, the
latter may be neglected. We found that for κ≈ 1 the
sensitivity of the conductance fluctuations to the degree of
chaos decreases with an increase of number of channelsM .
It is instructive to show that the main properties

of conductance fluctuations cannot be explained if one
neglects cross-section correlations discussed above. For
the first time, the role of these correlations in applica-
tion to conductance fluctuations has been discussed in
refs. [30–32]. The variance Var(G) can be rewritten as

Var(G) =
M2

4

(
T

F +M − 1

)2
+N1C1+N0C0, (13)

where N1 =L(M − 2), N0 =L(L−M +1), L=M2/4
and the terms C1 and C0 stand for the II1 and II0
correlation functions, respectively, see above. If one
neglects the correlations, the first term gives 1/4 (for
T = 1 and M � 1), instead of 1/8. Our analysis shows
that for the strong interaction and M � 1 one obtains
C1 ≈−M−3 and C0 ≈ 2M−4. Therefore, in the limit of
a large number of channels, the first term in r.h.s. of
eq. (13) that equals 1/4, is cancelled by the second term,
and the third term tends to 1/8 resulting in Var(G) = 1/8.
This result clearly demonstrates the crucial role of cor-

relations determining the conductance fluctuations (see,
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also, ref. [28]). Remarkably, the II1-correlations cancel
the first term 1/4, and the value 1/8 is due to the II0-
correlations (term C0) only. A highly non-trivial role of the
C1 and C0 terms can be also manifested in the correlations
of speckle pictures [31].

Conclusions. – To conclude, we studied the interplay
of complicated intrinsic dynamics and coupling to the
outside world for typical quantum systems with one-body
or many-body intrinsic chaos, the first one coming from
the disordered single-particle spectrum and the second
one emerging as a result of inter-particle interactions. The
openness of the system is described by the effective non-
Hermitian Hamiltonian that fully respects the unitarity
requirements and allows to calculate, in the same frame-
work, cross-sections of various processes, their fluctua-
tions and correlations. As a manifestation of the general
features of underlying physics, the models are equally
valid for description of nuclear reactions with the tran-
sition from isolated to overlapping resonances and for
conductance fluctuations in mesoscopic condensed matter
devices. We found that the correlations of inelastic cross-
sections are very different for the processes with and with-
out a common channel, being negative in the latter case
in the region of perfect coupling when the typical decay
widths and resonance spacings are of the same magnitude.
Another important result is that for the conductance fluc-
tuations the dependence on the degree of intrinsic chaos
is strong at intermediate continuum coupling, in contrast
with the region of perfect coupling, for which the contin-
uum dominates, and the fluctuations are known to be inde-
pendent of internal dynamics. Many results of the conduc-
tance theory are numerically confirmed being explained by
the specific correlations of partial cross-sections of very
general origin.
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