Topological nonconnectivity threshold in long-range spin systems

F. Borgonovi, G. L. Celardo, A. Musesti, R. Trasarti-Battistoni, and P. Vachal

1 Dipartimento di Matematica e Fisica, Università Cattolica, via Musei 41, 25121 Brescia, Italy
2 INFN, Sezione di Pavia, Italy
3 Dipartimento di Matematica e Fisica, Università Cattolica, via Musei 41, 25121 Brescia, Italy
4 Faculty of Nuclear Science and Physical Engineering, Czech Technical University, Prague, Czech Republic

(Received 14 April 2005; revised manuscript received 1 September 2005; published 16 February 2006; corrected 28 February 2006)

We demonstrate the existence of a topological disconnection threshold, recently found by Borgonovi et al. [J. Stat. Phys. 116, 1435 (2004)], for generic 1–d anisotropic Heisenberg models interacting with an interparticle potential $R^{-\alpha}$ when $0<\alpha<1$ (here R is the distance among spins). We also show that if α is greater than the embedding dimension d then the ratio between the disconnected energy region and the total energy region goes to zero when the number of spins becomes very large. On the other hand, numerical simulations in $d=2,3$ for the long-range case $\alpha<d$ support the conclusion that such a ratio remains finite for large N values. The disconnection threshold can thus be thought of as a distinctive property of anisotropic long-range interacting systems.

DOI: 10.1103/PhysRevE.73.026116

PACS number(s): 05.50.+q, 75.10.Pq, 75.10.Hk

I. INTRODUCTION

Despite the wide use in statistical physics, long-range interacting systems, that is those systems characterized by a pairwise interaction decaying as a power law of the mutual distance with an exponent α less than the embedding dimension, do not have a well-defined thermodynamic limit [2]. Also is it not at all clear whether their equilibrium properties can be described by the ordinary tools of statistical mechanics. For instance, the nonequivalence between the microcanonical and the canonical approach has been recently found in a long-range rotators model in the thermodynamic limit [3].

Besides these relevant implications in the foundation of statistical mechanics and in theoretical physics as well [4], the nonextensive behavior of long-range systems has nowadays become important for applications too, ranging from neural systems [5] to spin glasses [6].

Within the class of long-range interacting systems, classical spin models, widely investigated during the last years [7], are the most easy-to-handle both from the analytical and the numerical point of view. Within such class of systems (to be more precise, a class of anisotropic Heisenberg models) the existence of a threshold of disconnection in the energy surface has been demonstrated [1] for an interparticle interaction with infinite range. It has been called nonergodicity threshold for historical reasons [8], even if the term can generate some confusion. Indeed nonergodicity is only an obvious consequence: it simply means that the energy surface is topologically disconnected in two regions characterized by positive and negative magnetization. In other words it cannot exist a dynamical path connecting them and all trajectories starting from one region of the phase space stay there forever. For this reason we prefer here to call it Topological Nonconnectivity Threshold (TNT).

The presence of the TNT cannot be considered an exotic mathematical peculiarity of some toy model. Its dynamical relevance has been studied in Ref. [9], where an explicit expression for the reversal times of the magnetization (the time necessary to jump from one disconnected region to the other) has been given in the neighbors of the critical energy point. Reversal times diverge at the TNT as a power law with an exponent dependent on the number of the particles (and, probably, on the embedding dimension) as in ordinary phase transitions. Strictly speaking, even if in different context and for different models, the relationship between energy thresholds and topology transitions in the configuration space of classical spin models has been recently investigated in Ref. [10].

Also, while the threshold was explicitly found within a class of anisotropic classical Heisenberg models with an easy axis of magnetization and all-to-all constant interaction, at the same time systems with nearest neighbor interaction were found to have a different behavior. For instance, the portion of disconnected energy region grows with the number of particles N, less than the energy itself, thus resulting in a zero ratio in the thermodynamic limit. Needless to say, such ratio stays finite for anisotropic coupling and all-to-all interaction.

While this feature is surely due to the anisotropy of the coupling (such finite ratio disappears for isotropic coupling even in the case of infinite-range interaction), the question arises whether the presence of the TNT can be considered a pathological effect of the infinite interaction range or it is just somehow related with the long-range effects. This does not represent an academic question. Indeed, despite the possible applications of such model even in the case of all-to-all interaction [11], physical models require taking into account more realistic interactions, usually anisotropic [12] and depending generically from the interspin distance, as for the dipole-dipole coupling or when the spin is coupled with the electron spin of the conduction band of a metal, e.g., the RKKY model [13]. This leads quite naturally to Hamiltonians with an interparticle potential decaying as a generic power law with an exponent α of the relative distance R. The results found in Ref. [1] can thus be recovered by letting, respectively, $\alpha\to 0$ (all-to-all coupling) or $\alpha\to \infty$ (nearest-neighbor coupling).
Here, we extend the previous results to the whole class of models with an inverse power distance potential and show that if \(\alpha = 1\) is a critical exponent for nonconnectivity in \(d = 1\) chains.

In general, the extension to higher dimensions is far from trivial, both numerically and analytically. However, we prove that the TNT, if any, cannot “survive” (and we will specify the precise meaning below) when \(N \rightarrow \infty\), and \(a > d\). Numerical simulations in two dimensions (2D) and three dimensions (3D) also suggest that, for \(a < d\), the ratio between the disconnected energy region and the total energy range is finite in the thermodynamic limit. We thus conjecture that the TNT is a generic property of anisotropic long-range systems in any dimension.

II. THE MODEL

The Hamiltonian is a simple generalization of that considered in Ref. [1], and it is given by

\[
H = -\frac{1}{2} \sum_{j \neq i}^{N} c_{|i-j|} (S_i^x S_j^x - \eta S_i^y S_j^y),
\]

where \(S_i = (S_i^x, S_i^y, S_i^z)\) is the spin vector with continuous components and modulus 1, \(N\) is the number of spins, \(\eta (0 \leq \eta < 1)\) is an anisotropic coefficient, and \(c_{|i-j|} = |i-j|^{-\alpha}\), with \(\alpha > 0\). For definiteness we consider here only the case of an even number \(N\) of classical spins and \(0 \leq \eta < 1\). The case \(-1 < \eta < 0\) will be discussed separately in Sec. V.

Such kind of models are characterized by a minimal and maximal energy \(E_{\min}, E_{\max}\), and by a finite energy range \(E_{\max} - E_{\min}\) that we call energy spectrum (ES). In order to define properly the disconnection threshold, let us introduce the set \(\mathcal{A}\) of all spin configurations with a zero projection of the total magnetization along the \(y\) axis,

\[
\mathcal{A} = \left\{ C(\vec{S}_1, \ldots, \vec{S}_N) | m_y = \sum_{i=1}^{N} S_i^y = 0 \right\}.
\]

The TNT is thus defined as

\[
E_{\text{tnt}} = \min_{C \in \mathcal{A}} [H],
\]

and the spin configurations corresponding to \(E_{\text{tnt}}\) will be indicated as \(C_{\text{tnt}}\). Here, we are mainly interested in those cases where the TNT, if any, occupies a significant portion of the ES in the thermodynamic limit. For this reason let us define the disconnection ratio

\[
r = \frac{E_{\text{tnt}} - E_{\min}}{|E_{\min}|} > 0.
\]

A system will be considered disconnected only if \(r \rightarrow \text{const} > 0\), when \(N \rightarrow \infty\). Note that the definition of \(r\) given in Eq. (4) has a meaning only for systems with a bounded energy range.

A dynamical consequence of the TNT is that below it, a sample with a given initial magnetization \(m_y\), cannot change the sign of \(m_y\) for any time, since the constant energy surface is disconnected in a positive and a negative magnetization regions, thus no continuous dynamics can bring an isolated system from one region to the other.

Our proof will follow two steps: in the first part we find the minima of the \(x\) and \(y\) parts separately. Then we will show that the disconnected ratio goes to zero for short-range interaction, while it goes to some finite constant in the long-range case.

III. ONE DIMENSIONAL CASE

A. TNT, if any, is in the XY plane

Roughly speaking, since Hamiltonian (1) is independent of the \(z\) component of spins, the minimum will occur when the spins are as large as possible in (1), namely in the XY plane.

In order to prove that the configuration \(C_{\text{tnt}}\) effectively lies in the XY plane, let us assume that it has some \(S^z_i\) component different from zero. For definiteness assume \(S^z_i > 0\). It is then possible to define another configuration \(C'\) simply making a rotation around the \(y\)-axis clockwise or counterclockwise which puts the spin \(S^z_i\) onto the plane XY. The energy difference between these two configurations can be computed at glance,

\[
\Delta E = \sum_{i=2}^{N} c_{i-1} (\pm \sqrt{1 - (S^z_i)^2} - S^z_i).
\]

Here the different sign \(\pm\) indicates the different way (clockwise or counterclockwise) of rotation. Since \(S^z_i = \pm \sqrt{1 - (S^y_i)^2 - (S^x_i)^2}\), it is then clear that, according to this sign it is always possible to rotate in such a way to have \(\Delta E \leq 0\).

The same procedure can be applied \(n\) times for any other \(S^z_i \neq 0\), so that we will end with a configuration \(C^{(n)} \in \mathcal{A}\) (the rotation does not change the constraint) with energy \(E^{(n)} \leq E_{\text{tnt}}\). We can therefore consider the configurations in the XY plane. This choice has the main advantage that it is sufficient to consider as independent variables the angles \(\theta_i\) of the \(i\)th spin with respect to the \(x\) axis, thus satisfying automatically the conditions on the unit spin modulus, \(S^z_i = \cos \theta_i\) and \(S^y_i = \sin \theta_i\). Therefore we have to minimize the following expression:

\[
H = \frac{1}{2} \sum_{j \neq i} c_{|i-j|} (\eta \cos \theta_i \cos \theta_j - \sin \theta_i \sin \theta_j) = \eta H_x + H_y,
\]

under the constraint \(\sum_{i=1}^{N} \sin \theta_i = 0\). Since

\[
E_{\text{tnt}} = \min (H|m_y = 0) \geq \min (\eta H_x + \min (H_y|m_y = 0)),
\]

a lower bound of \(E_{\text{tnt}}\) can be provided finding the minima of the two terms in the right-hand side of Eq. (7). Note that the first term on the right-hand side of Eq. (7) does not contain constraints, indeed we will show in the next section that the absolute minimum of \(H_y\) automatically satisfies the constraint \(m_y = 0\).
Let us notice that such a result is far from being obvious. Indeed a decreasing nonconvex function c_s could give rise to a different minimal configuration.

C. Minimum of H_y

Let us now switch to the more difficult task (due to the constraint) of computing $E_r = \min(H_y/m_i = 0)$. Physically, due to the overall minus sign in front of H_y, one can expect that clusters of aligned spin with unit modulus (ferromagnetic order) will decrease the energy with respect to other configurations. This is surely true for nearest-neighbor interaction ($\alpha = \infty$) but it cannot be true for all α values. For instance, when $\alpha = 0$, the energy corresponding to the configuration with one-half of the spins equal to 1 and one-half equal to −1 (the order is irrelevant) is $E_0 = N/2 > 0$, while the true minimum $E = 0$ is attained when all spins are 0.

Then, the question arises of what can be the minimum in the presence of a generic α.

Applying the standard Lagrange multipliers formalism, one must minimize the function

$$H = -\frac{1}{2} \sum_{i,j} c_{ij} \sin \theta_i \sin \theta_j - \lambda \sum_i \sin \theta_i,$$

where λ is the Lagrange multiplier associated to $m_i = 0$.

Taking the derivatives, we get, for each spin, two possible solutions,

$$\cos \theta_i = 0,$$

$$(11)$$

$$\sum_{j \neq i} c_{ij} \sin \theta_j - \lambda = 0.$$

$$(12)$$

However, solving the system (11) and (12) is more difficult than finding directly the minimum.

We have therefore calculated the minimal configuration under constraint, using an iterative optimization approach based on the FFSQP solver [14] and also developing the following approach outlined here below.

(i) Start with a random configuration with $m_i = 0$.

(ii) Chose for the kth spin a new value between -1 to 1 and compute the energy. This generally produces a change in magnetization $\Delta m_i \neq 0$.

(iii) Distribute equally $\Delta m_i \neq 0$ among the other spins taking into account the constraint about their modulus. Specifically subtract and/or add to every spin the minimum of its distance from the values ± 1 and the mean of Δm_i.

(iv) Iterate over all spins up to an energy variation less than some fixed value (from 10^{-3} to 10^{-8} in our simulations).

The two approaches give the same result: for any initial random configuration the algorithm described above converges to some smooth configuration, for any finite N and $\alpha > 0$, as indicated in Fig. 1. There, we considered, respectively, the case of α fixed varying N [Fig. 1(a)], and N fixed varying α [Fig. 1(b)]. Within the numerical errors the spins in the minimal energy configuration are distributed monotonically and antisymmetrically with respect to the center of the chain. Then we assume that E_s is given by an antisymmetric distribution of the spin with a nondecreasing (or non-
increasing) monotonic dependence of the y spin component along the chain.

An interesting feature is the presence of a finite domain wall (defined by those spins having length less than 1) between two clusters with $S'_1 = +1(\uparrow)$ and $S'_2 = -1(\downarrow)$, respectively. With decreasing range of interaction [increasing α, Fig. 1(b)] or increasing number of spins [Fig. 1(a)], the interface region between the clusters (\uparrow) and (\downarrow) decreases. This agrees, at least qualitatively, with the results obtained for the nearest-neighbor model ($\alpha = \infty$) where the minimal configuration is given by

$$C_{\uparrow\downarrow} = (\uparrow \cdots \uparrow; \downarrow \cdots \downarrow).$$

Thus, due to long-range interaction, an interface region between the two clusters with opposite magnetization is produced. It is, of course, physically relevant to understand if the size of the interface region goes to zero in the $N \to \infty$ limit.

Strictly speaking the configuration $E_{\uparrow\downarrow}$ is not an absolute minimum for any $\alpha > 0$ and finite N. In order to prove that, consider the configuration

$$C_s = (\uparrow \cdots \uparrow; s; \downarrow \cdots \downarrow),$$

with $N-2$ spins satisfying condition (11) and the two central ones satisfying the condition (12). The energy E_s corresponding to C_s can be written as

$$E_s = \bar{E} + c_1 s^2 - 2s(c_1 - c_{N/2}),$$

where \bar{E} is independent of s. The minimum is thus obtained when $s = 1 - c_{N/2}/c_1 \neq 1$. The energy difference to $E_{\uparrow\downarrow}$ is

$$\Delta E = E_s - E_{\uparrow\downarrow} = -s^2 c_{N/2}/c_1 = -\left(\frac{2}{N}\right)^{2\alpha} < 0.$$

Therefore, for any finite chain and finite α, $E_s < E_{\uparrow\downarrow}$.

Physically, C_s has an energy less than $C_{\uparrow\downarrow}$ due to border effects. Indeed the energy of two opposite spins of length 1 is $E = c_1$, while it is only $c_1 s^2$ for two shorter spins $|s| < 1$. On the other hand, the interaction between the spin with $S_s = \pm s$ and the spins with $S_t = \mp 1$ is canceled one to one but the interaction with the closest spin ($-s c_1$) and with the last opposite one ($s c_{N/2}$) gives Eq. (13).

The same procedure can be applied taking a trial configuration with energy E_{st}

$$C_{st} = (\uparrow \cdots \uparrow; s; \downarrow \cdots \downarrow; t \cdots \downarrow).$$

In this case a minimum with $s < t < 1$ can be found only for $N < N_{cr}(\alpha) = (2e^{1/4} - 1)/\alpha$. Asymptotically, for large N, this implies that for $N > 2^{1/\alpha}$, where $C = 2e^{-1/4} > 1$ the minimal solution has energy E_s. In Fig. 2 we show the graph of $N_{cr}(\alpha)$, and the two regions in the plane (N, α), where E_s is the minimal solution, and where another minimal solution with four (or more) spins with length less than 1 is possible (E_{st}). Since $N_{cr}(\alpha) \to \infty$ for $\alpha \to 0$, for any $\alpha \neq 0$ a sufficiently large $N > N_{cr}(\alpha)$ value exists (thus in the thermodynamic limit) such that E_s is the minimal solution. Then, for $N > N_{cr}(\alpha)$:

$$E_s = E_{\uparrow\downarrow} - \left(\frac{2}{N}\right)^{2\alpha},$$

where $E_{\uparrow\downarrow}$ can be written in closed form as

$$E_{\uparrow\downarrow} = \left(\frac{2}{N}\right)^{-\alpha} + \sum_{k=1}^{N/2-1} \frac{3k - N}{k^\alpha} + \frac{N/2 - k}{(N/2 + k)^\alpha}.$$

We thus proved that, for $\alpha > 0$ and $N > N_{cr}(\alpha)$,

$$E_{\uparrow\downarrow} \geq E_{st} \geq \eta E_s + E_y,$$

where the expressions for $E_{\uparrow\downarrow}$, E_{st}, and E_s, are given, respectively, by Eqs. (9), (15), and (16).

D. Thermodynamic limit

Let us now show that, in the long-range case $0 < \alpha < 1$, the ratio r between the disconnected ratio, defined by Eq. (4),

1. Figure 1 shows the spin values along the chain vs the spin index (only the central part of the chain has been shown) for the Hamiltonian H_c: (a) for fixed $\alpha = 0.1$ and different N values as indicated in the legend; (b) for fixed $N = 20$ and different α values (see the legend).
goes to a nonzero constant when the number of spins goes to infinity, while, for short-range interaction $\alpha>1$, it goes to zero, thus revealing the intrinsic long-range nature of the TNT.

In the ground state all spins are directed along the y axis as shown in the Appendix. The minimum energy, having as a configuration $c_{\text{min}}=\{S_y=1\}_{i=1}^{N}$ (all spins aligned along the y direction) can be easily found

$$E_{\text{min}} = \sum_{k=1}^{N-1} \frac{k-N}{k^\alpha}. \quad (18)$$

Let us also define the quantities,

$$r_1 = \frac{E_x + \eta E_y - E_{\text{min}}}{|E_{\text{min}}|},$$

$$r_2 = \frac{E_{1}\text{tnt} - E_{\text{min}}}{|E_{\text{min}}|}. \quad (19)$$

Due to Eq. (17), $0 \leq r_1 \leq r \leq r_2$.

1. Long range

Consider first the long-range case $0<\alpha<1$. The following asymptotic expression, for $N \to \infty$, can be found by substituting sums with integrals:

$$E_{\text{min}} \approx -\frac{N^{2-\alpha}}{(2-\alpha)(1-\alpha)} + O(N), \quad (20)$$

$$E_{1}\text{tnt} \approx N^{2-\alpha} \frac{1-2^\alpha}{(1-\alpha)(2-\alpha)} + O(N), \quad (21)$$

$$E_x \approx -b_\eta N + O(N^{1-\alpha}), \quad (22)$$

where $b_\eta > 0$ is a constant independent of N.

Since both $r_1 \to [2-2^\alpha]$ and $r_2 \to [2-2^\alpha]$ for $N \to \infty$, it follows $r \to [2-2^\alpha]$ too, so that the disconnected energy region remains finite with respect to the ES in the thermodynamic limit. This prove the disconnection of the system below the TNT. It is interesting to note that, as $\alpha \to 1$, $r \to 0$.

2. Short range

In the short-range case, $\alpha>1$, one can write the following asymptotic expression (by substituting sums with integrals)

$$E_{\text{min}} \approx c_\alpha N + O(N^{2-\alpha}), \quad (23)$$

where

$$-1 + \frac{1}{1-\alpha} < c_\alpha < -1 + \frac{2^{1-\alpha}}{1-\alpha}. \quad (24)$$

Let us first show that, as $N \to \infty$,

$$\lim_{N \to \infty} \frac{E_{1}\text{tnt} - E_{\text{min}}}{N} = 0. \quad (25)$$

Computing explicitly the lhs of (24) one gets

$$0 \leq \lim_{N \to \infty} \frac{2}{N^{\frac{1}{\alpha}}} \left(\sum_{k=1}^{N/2-1} \frac{1}{k^{\alpha-1}} + \sum_{k=N/2+1}^{N-1} \frac{N-k}{k^{\alpha}} \right)\leq \lim_{N \to \infty} \frac{2}{N^{\frac{1}{\alpha}}} \left(\int_{1}^{N/2} dx x^{\alpha-\eta} + \int_{N/2+1}^{N} dx \frac{N-x}{x^\alpha} \right) = 0. \quad (25)$$

Then, $r_2 \to 0$ and, since $r_2 \to r \to 0$ it follows $r \to 0$ and the system is not disconnected. This concludes our proof.

E. 1D, numerical solution for the full model

Even if the proof of the existence of the TNT did not require the explicit knowledge of the spin configuration, it may have some interest to find it.

Finding analytically the spin configuration of the full model under the constraint $m_0=0$ for any α, η, and N is a complicated task. Indeed, depending on the different values of the parameters, the minimal configuration can completely change its shape, for instance from all spins along the x axis with alternating signs (giving rise to the energy E_x) to all spins along the y axis (first half positive, second half negative) giving rise to $E_{1}\text{tnt}$. For instance, when $\alpha=0$, $E_x<0<E_{1}\text{tnt}$, while for $\alpha \to \infty$ and N sufficiently large $E_{1}\text{tnt}<E_x<0$ (for small N it is also possible to have $E_x<E_{1}\text{tnt}<0$).

This is explicitly shown in Fig. 3, where E_x, $E_{1}\text{tnt}$, and $E_{1}\text{tnt}$ obtained numerically for two different N values have been plotted as a function of α. As one can see, for α less than some value depending on η and N, say $\alpha_0(N, \eta)$, one has $E_x<E_{1}\text{tnt}$, while for $\alpha > \alpha_0(N, \eta)$, one can have different possible situations depending on the η and N values. For instance for $N=10$ and $\eta=0.9$, $E_x<E_{1}\text{tnt}$ [Fig. 3(a)] for $\alpha \to \infty$, while $E_{1}\text{tnt}<E_x$ for $\alpha \to \infty$ and $N=100$ [Fig. 3(b)].

It is also instructive to describe the behavior of $E_{1}\text{tnt}$ as a function of α. As one can see [Fig. 3(a)], for relatively small α, $E_{1}\text{tnt}$ closely follows E_x while for large α values, $E_{1}\text{tnt}$ even if different from both, is closer to $E_{1}\text{tnt}$ than to E_x. This is the rule, at least for large N values, and the difference between the configurations given by $E_{1}\text{tnt}$ and $E_{1}\text{tnt}$ is only restricted to
we define the energy domain as under a change in the parameters of the system. To this end

\[\text{E}_{\text{domain}} = |E_{\text{int}} - E_{11}|. \]

Its behavior for different \(N \) and \(\alpha \) values has been shown in Fig. 5. As one can see, in the large \(N \) limit, the energy dom-

\[
 s_{\text{min}} = \frac{c_1 - c_{N2}}{c_1 (1 + \eta)}.
\]

Then, for \(N \rightarrow \infty \), \(s_{\text{min}} \rightarrow 1/(1 + \eta) \), which is independent from \(\alpha \). This value can be compared with our numerical results. The energy difference to \(E_{11} \) in the limit \(N \rightarrow \infty \) is

\[
 \Delta E' = E_{11} - E_{\text{int}} = E_{11} = -\frac{\eta^2}{1 + \eta} < 0.
\]

Its absolute value has been indicated as a horizontal dashed line in Fig. 5. As one can see, all curves are close to \(|\Delta E'| \) even at \(N \sim 100 \). While we cannot exclude that other con-

The asymptotic behavior of the domain wall can be understood as follows: consider the trial configuration

\[
 C_{xy} = \begin{cases}
 S'_{ij} = \{0, \ldots, 0, + \sqrt{1 - s^2}, \sqrt{1 - s^2}, 0, \ldots 0\} \\
 S''_{ij} = \{1, \ldots, 1, + s, - s, - 1, \ldots, -1\}.
\end{cases}
\]

The energy \(E_{11} (s) \) of this configuration is given by

\[
 E_{11} (s) = \tilde{E} + c_1 s^2 - 2s(c_1 - c_{N2}) - \eta \tilde{c}_2 (1 - s^2),
\]

where \(\tilde{E} \) is independent of \(s \) and \(\eta \).

The minimum, as a function of \(s \), is

\[
 0 \leq s \leq 1.
\]

As a last remark, let us stress that the connected system (defined by \(r \rightarrow 0 \) for \(N \rightarrow \infty \)) can have a TNT at finite \(N \), even for short-range interaction. To this end let us consider the strongest short-range coupling, namely the nearest neighbor one \((\alpha = \infty) \) and compute numerically the TNT. Results are presented in Fig. 6. As one can see, the numerically computed \(E_{\text{int}} \) is different from \(E_{\text{min}} \) for \(\eta \neq 1 \) so that a finite range of energies \(E_{\text{min}} < E < E_{\text{int}} \) exists for finite \(N \) and nearest-neighbor interaction. Increasing \(N \), the size of this energy range remains constant, while \(E_{\text{min}} \sim N \). That is why the ratio \(r \rightarrow 0 \) for large \(N \) values. From the same Fig. 6, it is also clear that \(C_{\text{int}} \) goes continuously from a configuration close to \(C_{11} \) when \(\eta \ll 1 \) to one close to \(C_{s} \) when \(\eta \approx 1 \).
IV. MULTIDIMENSIONAL CASE

The results obtained in the preceding sections for \(d = 1\) can be extended in greater dimension \(d \geq 2\).

While it can be easily shown that, in the short-range case \(d < \alpha\), the system cannot be disconnected in the thermodynamic limit, the proof of the disconnection for the long-range case is essentially based on the assumption that the minimum energy with the constraint \(m_r = 0\) is given by an obvious extension of what we have found in \(d = 1\). This assumption has been verified by our numerical simulations.

Let us consider a \(d\)-dimensional hypercube of side \(L\), such as \(L^d = N\) and divide it in two equal halves. Let us then put half of the spins with \(y\) component in one region and the other half in the remaining with opposite \(y\) component and call \(E_{\uparrow\downarrow}\) the resulting energy for such configuration. Surely the TNT has an energy value less or equal to \(E_{\uparrow\downarrow}\), that is \(E_{\text{int}} \leq E_{\uparrow\downarrow}\).

Let us then write

\[E_{\text{min}} = E_{\uparrow} + E_{\downarrow} + V_{\uparrow\downarrow}, \]
\[E_{\uparrow\downarrow} = E_{\uparrow} + E_{\downarrow} + V_{\uparrow\downarrow}, \]

where \(E_{\uparrow}, E_{\downarrow}\) are the energies of the respective halves and \(V_{\uparrow\downarrow}\) are the interaction energies between the two halves with, respectively, antiparallel and parallel spins.

Since \(E_{\uparrow} = E_{\downarrow}\) and \(-V_{\uparrow\downarrow} = V_{\uparrow\downarrow} > 0\), one has

\[0 \leq r_{\uparrow\downarrow} = \frac{2V_{\uparrow\downarrow}}{E_{\text{min}}} = \frac{2E_{\uparrow} - E_{\text{min}}}{|E_{\text{min}}|}. \]

We will make use of the results found in Ref. [16], that in our variables read as

\[\lim_{N \to \infty} E_{\text{min}} = \frac{E_{\text{min}}(d, \alpha, N)}{N^{d-\alpha/d}} = C_\alpha(\alpha), \]

for \(\alpha \neq d\) and where the constant \(C_\alpha(\alpha) > 0\) for \(d < \alpha\) and \(C_\alpha(\alpha) < 0\) for \(d > \alpha\) depends only on \(d\) and \(\alpha\).

A. Short range

Let us discuss the short-range case \(\alpha > d\). In this case we have

\[\lim_{N \to \infty} \frac{E_{\text{min}}(d, \alpha, N)}{N} = C_\alpha(\alpha), \]

and, since \(E_{\uparrow\downarrow} = E_{\text{min}}(d, \alpha, N/2)\), we can write

\[0 \leq r_{\uparrow\downarrow} = \frac{2E_{\uparrow}/N - E_{\text{min}}/N}{|E_{\text{min}}/N|} \to 0 \quad \text{for} \quad N \to \infty. \]

This proves that, in the short-range case, \(r \to 0\) for \(N \to \infty\).

B. Long range

In the long-range case, \(\alpha < d\), let us assume that, for large \(N\) values, \(E_{\text{int}} \to E_{\uparrow\downarrow}\).

Estimate (33) becomes in this case

\[\lim_{N \to \infty} \frac{E_{\text{min}}(d, \alpha, N)}{N^{d-\alpha/d}} = C_\alpha(\alpha), \]

so that, for \(N \to \infty\),

\[r \approx r_{\uparrow\downarrow} = \frac{2}{|E_{\text{min}}/N^{d-\alpha/d}|} \to 2 - 2^{\alpha/d}. \]

That way, \(r \to \text{const} \neq 0\) for \(N \to \infty\) and \(\alpha \neq d\), and a finite disconnected energy range exists in the thermodynamic limit.

It is also interesting to note that, as \(\alpha \to d\), \(r \to 0\), so that the result (35) is recovered.

The disconnection of the system in the long-range case can thus be proved if we assume \(C_{\text{int}} \sim C_{\uparrow\downarrow}\). Numerical simulations confirm this assumption. Indeed, let us define \(\alpha_0(\eta, N)\) as the smallest value such that,

\[E_{\downarrow}(\alpha_0, \eta, N) = E_{\uparrow\downarrow}(\alpha_0, \eta, N). \]

Its general dependence on parameters has been presented in Fig. 7 for \(d=2, 3\). As one can see, \(\alpha_0 \sim 1/N \to 0\) when \(N \to \infty\). In the same picture we indicate the regions where \(E_{\uparrow}\) or \(E_{\downarrow}\) are, respectively, the minimal energies satisfying the constraint \(m_r = 0\). Also, \(\alpha_0 = d\) is plotted as a horizontal line, showing that the short-range case (above the line) is characterized by \(E_{\uparrow\downarrow}\), while the long-range case (below the line) can have different behaviors (\(E_{\uparrow}\) or \(E_{\downarrow}\)), even if physically interesting long-range interactions are generally characterized by \(E_{\uparrow\downarrow}\).

As for the spin configuration \(C_{\text{int}}\), both for \(d=2\) and \(d=3\), all physically significant cases can be represented by \(C_{\uparrow\downarrow}\). Deviations occur for \(\alpha < d\), where a domain wall appears, see for instance Fig. 8. As one can see, \(C_{\text{int}}\) is generically represented by two macroscopic blocks, with opposite sign of the \(y\) magnetization, with a domain wall at their interface. In the domain wall the \(y\) components increase in absolute value toward the center and the \(x\) components are more or less distributed with alternating signs, see Fig. 8.

Defining the domain energy, as the difference between the numerically found TNT and the energy \(E_{\uparrow\downarrow}\) given by Eq. (26), one has that with increasing \(N\) it goes to some constant
V. NEGATIVE η

In this last part we briefly discuss the case $\eta<0$. First of all $\eta>0$ is not a necessary condition for the existence of a finite disconnection region.

Let us first consider the 1–d case. In Eq. (7) ηH_x becomes ferromagnetic as H_x, and the configuration

$$C_x' = \{ s_x = 1 \}_{i=1}^N \in A,$$

has an energy $E_x' < E_x$ [which is the energy of the configuration C_x', see Eq. (8)]. Moreover, since the number of parallel spins in C_x' is larger than in C_1, we will expect that the energy E_x', even if decreased by a factor η, will become sooner or later less than E_1.

While this has no consequences in the case $\alpha>1$ (we still have $r_2 \rightarrow 0$ and the TNT does not exist), in the long-range case ($0<\alpha<1$) some interesting features appear.

From Eq. (19) one has $r_1 \rightarrow [2+\eta-2^\alpha]/2$ for $N \rightarrow \infty$ and a finite disconnection energy region still exists for $2^\alpha-2<\eta<0$.

In the other case $-1<\eta<2-2^\alpha$ nothing can be said, even if, according to our numerical simulations $C_{\text{int}} \sim C_x'$. This effectively happens in all dimensions $d=1, 2, 3$, as indicated in Fig. 10, where E_{int} is a function of η as shown in a long-range case. As one can see E_{int} is close to E_x' (equal, within numerical accuracy, according to our simulations) for $\eta < \eta_\alpha(\alpha, N)$, while it becomes close to E_1, for $\eta > \eta_\alpha(\alpha, N)$. That holds true in any dimensions.

Let us note that, as a realistic η_{int}, we can assume the intersection point between E_x' and E_1, see Fig. 10. An estimate, that holds only in the thermodynamic limit can be obtained following the considerations made in Sec. IV giving $\eta_{\text{int}} \sim 1-2^{-\alpha d}$.

FIG. 7. Critical α_0 as a function of the number of spins for different η: $\eta=0$ (dotted line), $\eta=0.5$ (dashed line), $\eta=1$ (dashed-dotted line). (a) $d=2$, (b) $d=3$. Horizontal lines are $\alpha_0=d$.

FIG. 8. TNT for the 2D square lattice with $N=16 \times 16=256$ spins. Parameters are $\alpha=0.1$ and $\eta=0.5$. Numerical values are $E_{\text{int}}=-655.968997$, while $E_1=654.7308$.

FIG. 9. (Color online) Domain energy as a function of the number of lattice spins, for the 2D square lattice and $\eta=0.5$, asterisks ($\alpha=0.1$), circles ($\alpha=1$). For $\alpha>1$, E_{domain} becomes smaller than the computer precision.

FIG. 10. E_{int} (symbols) as a function of η for the long-range case $\alpha=0.5$ and $N=64(d=1)$, $N=8 \times 8(d=2)$, $N=4 \times 4 \times 4(d=3)$. Also shown as the dotted horizontal lines E_1, and, as dashed transverse lines E_x'.
It is also clear that assuming

$$E_{\text{int}} = \eta E_x = - \eta E_{\text{min}}$$

one has $r \to 1 + \eta$, and the system is disconnected even for negative η in all dimensions.

VI. CONCLUSIONS

Summarizing, we have studied the occurrence of a topological nonconnectivity threshold (TNT) in anisotropic Heisenberg models in $d=1, 2, 3$ with an interaction strength depending on a power law of their relative distance with the exponent α. We have found that the system, in the thermodynamic limit, is disconnected only in presence of a long-range interaction $0 < \alpha < d$. On the other side, in the short-range case, the ratio between the disconnected energy region and the total energy region goes to zero when $N \to \infty$. The anisotropy represents in this class of systems a necessary condition: indeed, in the isotropic case, the TNT coincides with the minimal energy, thus there is no disconnected energy region.

Future investigations concern the experimental evidence of TNT, for instance by looking for the divergence of demagnetization times [9] as a function of energy in small magnetic samples.

Finally, let us point out that from a quantum mechanical point of view the classical disconnection does not exclude the flipping of the magnetization through macroscopic quantum tunneling [17]. Thus the existence of TNT could give the possibility to study the emergence of macroscopic quantum phenomena in a wide energy range (for macroscopic long-range interacting systems), as has been shown in Ref. [18], where the quantum signatures of the TNT in an anisotropic Heisenberg model with all-to-all interaction have been studied, and the relevance of the TNT with respect to macroscopic quantum phenomena addressed.

ACKNOWLEDGMENTS

The authors acknowledge useful discussion with J. Barre, F. M. Izrailev, R. Loubere, D. Mukamel, and S. Ruffo.

APPENDIX

Consider the Hamiltonian

$$H(\bar{S}) = \frac{\eta}{2} \sum_{i+j} S_i^x S_j^x - \frac{1}{2} \sum_{i+j} |S_i^x S_j^x|^2,$$ \hspace{1cm} (A1)

where $|S_i^x| = 1$ for $i=1, \ldots, N$ and $|\eta| < 1$.

We want to prove that

$$\min H = \frac{1}{2} \sum_{i+j} |S_i^x S_j^x|^2,$$ \hspace{1cm} (A2)

which is achieved in the configuration $S_i^x = 0, S_i^y = 1, S_i^z = 0$ $(i = 1, \ldots, N)$.

It can be easily shown that a minimum configuration lies in the XY plane, hence we can set $S_i^y = \cos \theta_i$ and $S_i^y = \sin \theta_i$, obtaining

$$H = \frac{\eta}{2} \sum_{i+j} \cos \theta_i \cos \theta_j - \frac{1}{2} \sum_{i+j} \sin \theta_i \sin \theta_j.$$ \hspace{1cm} (A3)

In particular $H = \frac{1}{2} \sum_{i+j} H_{ij}$, where

$$H_{ij} = \frac{1}{2} |i-j|^a (\eta \cos \theta_i \cos \theta_j - \sin \theta_i \sin \theta_j).$$ \hspace{1cm} (A4)

Now, each H_{ij} is a two-variable function and the critical points are given by

$$\eta \sin \theta_i \cos \theta_j + \cos \theta_i \sin \theta_j = 0,$$

$$\eta \cos \theta_i \sin \theta_j + \sin \theta_i \cos \theta_j = 0,$$ \hspace{1cm} (A5)

hence $(1-\eta^2) \sin \theta_i \cos \theta_j = 0$. Choosing $\theta_j = \pi/2$ we get a minimum for H_{ij} (the other choices give maximum or saddle points) and

$$\min H_{ij} (\theta_j = \pi/2) = - \frac{1}{2} |i-j|^a.$$ \hspace{1cm} (A6)

Finally, we have

$$- \frac{1}{2} \sum_{i+j} |i-j|^a = \frac{1}{2} \sum_{i+j} \min H_{ij} (\theta_j = \pi/2)$$

$$\leq \min H \leq H(\theta_j = \pi/2)$$

$$= - \frac{1}{2} \sum_{i+j} |i-j|^a.$$ \hspace{1cm} (A7)