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We analyze the statistics of resonance widths in a many-body Fermi system with open decay channels.

Depending on the strength of continuum coupling, such a system reveals growing deviations from the

standard chi-square (Porter-Thomas) width distribution. The deviations emerge from the process of

increasing interaction of intrinsic states through common decay channels; in the limit of perfect coupling

this process leads to the superradiance phase transition. The width distribution depends also on the

intrinsic dynamics (chaotic versus regular). The results presented here are important for understanding the

recent experimental data concerning the width distribution for neutron resonances in nuclei.
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Open and marginally stable quantum systems are of
great current interest in relation to numerous applications
in nuclear physics of exotic nuclei, chemical reactions,
condensed matter, astrophysics, and quantum informatics.
The general problem can be formulated as that of the signal
transmission through a complicated quantum system.
The complexity of theoretical description of such pro-
cesses is due to the necessity of a consistent unified theory
that would cover intrinsic structure, especially for many-
body systems, along with cross sections of various
reactions.

One of the best and historically advanced examples of
the manifestation of the interplay between intrinsic dynam-
ics and decay channels is given by low-energy neutron
resonances in complex nuclei [1]. The series of these
well-pronounced separated resonances were studied long
ago [2–4] and later gave rise to the ‘‘Nuclear Data
Ensemble’’ [5,6]. Interpreting these resonances as quasi-
stationary levels of the compound nucleus formed after the
neutron capture, agreement was found with predictions of
the Gaussian orthogonal ensemble (GOE) of random ma-
trices. With exceedingly complicated wave functions of
compound states, the statistical distribution of their com-
ponents is close to Gaussian. The neutron decay imple-
ments the analysis of a specific component related to the
channel ‘‘neutron in continuum plus a target nucleus in its
ground state.’’ The neutron width is proportional to the
squared amplitude of this component, and the width dis-
tribution then is �2

� with � ¼ 1 as appropriate for one
channel [Porter-Thomas distribution (PTD)].

The recent experiments with improved accuracy [7] give
evidence of significant deviations from the PTD so that the
attempts to still use the �2

� distribution for the fit invariably
require � < 1. A nonpure set of resonances, for example, a
sequence of mainly s resonances contaminated by p-wave

states, would shift the distribution to a higher number of
degrees of freedom, � > 1. The new result was interpreted
as a consequence of an unknown nonstatistical mechanism
or just a breakdown of nuclear theory as was claimed in the
related article in Ref. [8].
The goal of this Letter is to point out that a correct

description of unstable quantum states in a complicated
many-body system naturally leads to deviations from the
GOE and PTD, of the same type as observed in [7]. The
random matrix theory was formulated for local statistics in
a closed quantum system with a discrete spectrum gov-
erned by a very complicated Hermitian Hamiltonian. Its
predictions were repeatedly checked in systems like quan-
tum billiards [9] and their experimental embodiment in
microwave cavities [10,11], and in shell-model calcula-
tions for complex atoms [12] and nuclei [13].
However, the presence of open decay channels and

therefore the finite lifetime of intrinsic states unavoidably
lead to new phenomena outside of the GOE framework
[14,15] as it was clearly demonstrated by the first numeri-
cal simulations [16–18]. Two interrelated effects follow
from the fact that we deal with unstable rather than with
strictly stationary states: the level repulsion disappears at
the spacings comparable to the level widths and the grow-
ing widths undergo the redistribution with the trend to
collectivization and eventually formation of superradiant
(short-lived) states along with the narrow (trapped) states
[15,19]. The new dynamics modify the GOE predictions as
well as certain features of Ericson fluctuations [20] in the
regime of overlapping resonances [21]. The occurrence of
a superradiant transition has been also demonstrated out-
side the random matrix theory framework [22].
A quantum many-body system coupled to open decay

channels can be rigorously described by an effective non-
Hermitian Hamiltonian H [23],
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H ¼ H � i
2W: (1)

Here H is the Hermitian Hamiltonian of the closed system
that in general includes virtual (off-shell) coupling to the
continuum, while the anti-Hermitian (on shell) part
ð�i=2ÞW is constructed in terms of the amplitudes A ¼
fAc

i g coupling intrinsic states jii to the open channels c,

W ¼ AAT ) Wij ¼
XM

cðopenÞ
Ac
i A

c
j : (2)

We consider a time-reversal invariant system, when the (in
general depending on running energy) amplitudes Ac

i can
be taken real. The factorized form of W is an important
property that follows from unitarity of the scattering ma-
trix. The complex eigenvalues, E ¼ E� ði=2Þ�, of the
Hamiltonian (1) coincide with the poles of the scattering
matrix and determine the positions and the widths of the
resonances in cross sections of various reactions.

The factorized matrix W has M nonzero eigenvalues,
corresponding to M open channels. The matrix H has
dimension N that in the nuclear case should include a large
number of shell-model many-body states important for the
dynamics in the energy range under consideration; in
the region of neutron resonances, N � 105–6 � M. With
the trace of W equal to �, the parameter defining the
dynamics is the ratio of typical ‘‘bare’’ widths �=N of
individual states to the energy spacings D. At small value
of this parameter, an open channel serves as an analyzer
that singles out a specific component of the exceedingly
complicated intrinsic wave function. The resonance widths
in such a system obey the PTD.With widths increasing, the
system moves to the regime of overlapping resonances.

Let us consider the single-channel case, M ¼ 1, having
in mind the s-wave elastic neutron resonances. With a high
level density of intrinsic states at relevant energy, their
local spectral statistics is close to the predictions of the
GOE. Then, owing to the central limit theorem, the indi-
vidual components of a typical intrinsic state are Gaussian
distributed uncorrelated quantities, and the neutron widths,
being proportional to the absolute magnitudes of those
components, display the PTD. However, the correct de-
scription of the dynamics with the continuum coupling
shows the limited character of this prediction. The imagi-
nary part (2) works similar to the collective multipole
forces and creates the interaction between intrinsic states
through continuum. When the coupling is weak, � ¼
�=ND � 1, we indeed expect to see well isolated reso-
nances with the PTD of the widths. With growing contin-
uum coupling (increase of energy from the threshold), the
deviations becomemore and more pronounced. At �� 1, a
kind of a phase transition occurs with the sharp redistrib-
ution of widths and the segregation of a superradiant state
accumulating the lion’s share of the whole summed width,
an analog of a giant resonance along the imaginary energy
axis. The mechanism is clear from the factorized structure
of W that, for M ¼ 1, has only one nonzero eigenvalue

equal to the trace of W. Similar to superradiance in optics
[24], this mechanism works independently of the regular or
chaotic nature of intrinsic dynamics.
In the case of the GOE-type dynamics of the closed

system andM ¼ 1, the distribution of complex eigenvalues
can be found analytically. The Ginibre ensemble [25] of
complex Gaussian matrices is not applicable here. The
exact result [15] is given by the Ullah distribution [26],

P ðfEn; �ngÞ ¼ CN

Y

m<n

jEm � Enj2
jEm � E�

nj
Y

n

1
ffiffiffiffiffiffi
�n

p expð�NFÞ:

(3)

Here CN is a normalization constant; the preexponential
factor describes the correlations which are reduced to the
usual GOE level repulsion for stable states but for complex
energies En contain the interactions with their ‘‘electro-
static images’’ E�

n. Along with the Porter-Thomas factor

��1=2, this guarantees that the widths are positive. The
‘‘equilibrium’’ distribution of complex energies is deter-
mined by their ‘‘free energy,’’

FðfEn;�ngÞ ¼
X

n

�
E2
n

a2
þ �n

2�

�
þ X

m<n

�m�n

2a2
; (4)

that includes the interaction between the widths, the last
term in Eq. (4). The mean level spacing in the closed
system is D ¼ 2a=N, where 2a is the spectral interval of
real energy. The Gaussian ensemble of the decay ampli-

tudes is defined by the mean values An ¼ 0, AnAm ¼
ð�=NÞ�mn. Here, a regular evolution of the widths as a
function of energy of the resonance is excluded as it is
usually done with the rescaling to the reduced widths; we
do not discuss here the way of practical rescaling that may
depend on the specific nucleus. Our purpose is to show that
systematic deviations from the PTD occur even for the set
of reduced widths, and the effects are caused by the inter-
action (4).
For very small widths, � � 1, the width interaction is

negligible, the first product in (3) reduces to the standard
level repulsion, and the distribution (3) is factorized into
the product of the GOE distribution of real energies and the
PTD for the widths. While the usual Hermitian perturba-
tion causes level repulsion and width attraction, the anti-
Hermitian interaction through the continuum relaxes the
level repulsion but leads to the collectivization through
the common decay channel and width repulsion [27].
For � ’ 1, the width repulsion becomes critical, and the
most probable configuration is the one where this repulsion
is small because the total width is going to concentrate in
a single superradiant state [15,19]. With the increase of
� � 1 and fixed number of open channels, the broad state
becomes a smooth envelope, and we return to the set of
(N � 1) narrow resonances. Below we show the typical
evolution of the width distribution studied in a large-scale
numerical simulation.
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First, we considered H as a member of the GOE [28]
where the matrix elements are Gaussian random variables,
hH2

iji ¼ ð1þ �ijÞ=N. This corresponds to the limiting case

of fully chaotic intrinsic dynamics. Then, we modeled H
by the two-body random ensemble (TBRE) for n fermions
distributed over m single-particle states; the total number
of many-body states is N ¼ m!=½n!ðm� nÞ!�; in our simu-
lations n ¼ 6, m ¼ 12, N ¼ 924. The TBRE can be writ-
ten as H ¼ H0 þ V, where the mean field part H0 is
defined by single-particle energies, �j, with a Poissonian

distribution of spacings and the mean level spacing d0. The
interaction V [29] is fixed by the variance of the two-body
random matrix elements, hV2

1;2;3;4i ¼ v2
0. While at v0 ¼ 0

we have a Poissonian spacing distribution PðsÞ of many-
body states, for d0 ¼ 0 (infinitely strong interaction,
v0=d0 ! 1), PðsÞ is close to the Wigner-Dyson distribu-
tion typical for a chaotic system. The critical interaction
for the onset of strong chaos is given [29] by vcr=d0 �
2ðm� nÞ=Ns, where Ns ¼ nðm� nÞ½1þ ðn� 1Þ�
ðm� n� 1Þ=4� is the number of directly coupled many-
body states in any row of the matrix Hij. In our model,

vcr=d0 � 1=20.
We computed the complex eigenvalues of the effective

Hamiltonian, Eq. (1), for 103 random realizations, select-
ing the states at the center of the energy band where their
density is almost constant. The distribution of widths,
normalized to their average value, was obtained for differ-
ent strengths of continuum coupling. The numerically
obtained distributions were fitted, using a standard �2

test, with a �2
� distribution for � degrees of freedom,

following a common practice in nuclear data analysis. As
a measure of quality of the fit we used the criterion �2

r � 1,
where �2

r is the reduced chi-square value [30]. Figure 1
shows the normalized width distribution for the GOE case
with M ¼ 1, 2 for different coupling to the continuum, �.
The standard distributions, PTD for M ¼ 1, and �2

�¼2 for

M ¼ 2, are valid only when the coupling to the continuum
is very weak, while strong deviations from �2

�¼M appear,
both for large and small �, as we increase the coupling. In
Fig. 1 we also show the best fit possible for a �2

� distribu-
tion; always the corresponding value of � is <M; more-
over, the quality of the fit decreases as � increases. The
data in Fig. 1 also demonstrate that at the super-radiance
transition, � ¼ 1, the tail of the widths distribution is
described by a power law [see discussion in Ref. [31]]
meaning that no �2

� distributions would be a good fit.
The dependence of the best fitted value of � on the

coupling strength is shown in Fig. 2 for M ¼ 1, 2. Along
with the data for the GOE intrinsic Hamiltonian (circles),
the data for the TBRE intrinsic dynamics are shown by
crosses for the case v0 ¼ d0=50 and by squares for
v0 ¼ 0 (no intrinsic chaos). Regardless of intrinsic dynam-
ics, the best value of� steadily decreases as� increases. It is
clear that a family of�2

� distributions is not appropriate to fit
our numerical data, except for very weak continuum cou-
pling. Indeed, the �2

r criterion steeply increases with the

coupling strength [see insets in Fig. 2]. For weak internal
chaos, the departure from the �2

�¼M distribution is stronger
than for chaotic intrinsic dynamics, even atweak continuum
coupling. The absence of intrinsic chaos and corresponding
level repulsion implies a stronger sensitivity to continuum
coupling.
When analyzing empirical neutron s-wave resonances,

one of the main difficulties is the p-wave contamination. In
order to analyze this problem we considered the case of
two nonequivalent channels, with 10% of the states
coupled to the additional channel by a smaller coupling
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FIG. 1 (color online). Normalized distribution of the widths
for one open channel, M ¼ 1 (left panels), and for M ¼ 2 (right
panels) for the GOE intrinsic Hamiltonian and different contin-
uum coupling strength, �. Numerical results are given by histo-
grams; the expected PTD for M ¼ 1 and �2

�¼2 distribution for

M ¼ 2 are shown by a smooth curve in all panels. Full squares
stand for the best fit to a �2

� distribution. In the lowest panels, a
straight line shows the power law Pð�=h�iÞ / ð�=h�iÞ�2. In this
Figure, the resonances in the energy interval 	0:5 for 103

different ensemble realizations were considered.
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strength. When another channel is included, the best fit
value of � at weak coupling is always larger than 1; again
this value decreases as the continuum coupling grows. We
also observed the evolution of the level spacing distribution
PðsÞ along the real axis, which manifests the decrease of
repulsion at spacings comparable with the level widths
[17]; for example, at � ¼ 0:5, Pð0Þ � 0:2.

Wemade an approximate estimate of the coupling� from
experimental data given in [7]. From Fig. 1 of this reference
one can see that there are about 40 s-wave resonances
between 8 and 12 keV. A rough evaluation gives h�i=D ¼
0:03, which implies � � 0:05. From Fig. 2, one can already
notice a deviation from PTD for such a small �.

To summarize, the width distributions were analyzed for
a system withM ¼ 1, 2 open channels as a function of the
continuum coupling strength. As this coupling increases,
the best fit value of � for a �2

� distribution decreases below
M, in accordance with recent experimental findings [7]. At
the same time, the fit quality becomes poor, showing that
the standard PTD (and in general any �2

� distribution) is
applicable only for extremely narrow resonances. The low-
energy neutron resonances in a heavy nucleus correspond
to the very beginning of the process of width collectiviza-
tion. However, already here the deviations from the
(GOE� PTD) factorized distribution are noticeable.
These deviations are more pronounced for regular intrinsic
dynamics than for chaotic intrinsic dynamics. Therefore,
the interpretation of the width as a strength of the pure
neutron component in the compound wave function fails
due to the coupling through continuum that has to be
accounted for in a proper statistical description. The phe-
nomenon under discussion is of general nature and it may
influence all processes of signal transmission through a
quantum system.

While preparing this Letter, a preprint appeared [32]
dealing with a complementary aspect of the problem dis-
cussed here, namely, a possible influence of single-particle
resonances upon the energy dependence of the widths.
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