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Interplay of superradiance and disorder in the Anderson model
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Using a non-Hermitian Hamiltonian approach to open systems, we study the interplay of disorder and super-
radiance in a one-dimensional Anderson model. Analyzing the complex eigenvalues of the non-Hermitian
Hamiltonian, a transition to a superradiant regime is shown to occur. As an effect of openness the structure
of eigenstates undergoes a strong change in the superradiant regime: we show that the sensitivity to disorder
of the superradiant and the subradiant subspaces is very different; superradiant states remain delocalized as
disorder increases, while subradiant states are sensitive to the degree of disorder.

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Nanoscopic systems in the quantum coherent regime are at the center of many research fields in physics,
ranging from quantum computing and cold atoms to transport in nanoscale and mesoscopic systems. Trans-
port in the quantum coherent regime can be considered one of the central subjects in modern solid state
physics [1,2] and in cold atom physics [3]. Transport properties depend strongly on the degree of openness
of the system.

As a consequence of quantum coherence many interesting features arise. Here we focus on two im-
portant effects induced by quantum coherence: Anderson localization [4] and Dicke superradiance [5].
Anderson localization is driven by intrinsic disorder and consists in a suppression of diffusion due to an
exponential localization of the eigenfunctions of the system. Dicke superradiance is driven by the fact that
the system is open, namely coupled to an external environment characterized by a continuum of states. To
explain the superradiance effect, consider a discrete quantum system coupled to an environment having
a continuum of states. The system-environment coupling alters the unperturbed energy levels: it causes
an energy shift and the appearance of a resonance width (inverse lifetime) for each level. For weak cou-
pling strength, all resonance widths are roughly equal. However, once the coupling strength reaches a
critical value, the widths start to overlap, and width segregation occurs. In this regime, almost the entire
(summed up) decay width is allocated to just a few short-lived “superradiant” states, while all other states
are long-lived (and effectively decoupled from the environment). We call this segregation the “superradi-
ance transition” (ST).

In the superradiant regime, the effect of the opening is large, and cannot be treated perturbatively. Thus,
a consistent way to take the effect of the opening into account for arbitrary coupling strength between
the system and the outside world is highly desirable. The effective non-Hermitian Hamiltonian approach
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to open quantum systems has been shown to be a very effective tool in addressing this issue [6]. Non-
Hermitian Hamiltonians have been already employed to study realistic open quantum systems, such as
transport through quantum dots [7], superradiance in cold atoms [3] and nuclear physics [8]. The superra-
diance effect has also been studied using random matrix theory [9, 10], in microwave billiards [11] and in
paradigmatic models of coherent quantum transport [12, 13]. As an example of the importance of the ST,
maximum transmission in a realistic model for quantum transport was shown to be achieved exactly at the
ST [12].

In this paper we analyze a one-dimensional Anderson model, where a particle hops from site to site
in the presence of disorder, and is also allowed to escape the system from any site. When the wavelength
of the particle is comparable with the sample size, an effective long-range hopping is created between the
sites. This coupling can induce the ST, which affects in a non-trivial way the transport properties of the
system. Similar models of quantum transport with coherent dissipation have been already considered in the
literature [14], but a detailed analysis of the interplay of localization and superradiance has been lacking.
This interplay has been recently analyzed in [12], but there the particle was allowed to escape only from
the end sites, while in the situation analyzed in this work, all sites are coupled to the external environment.
This situation occurs in many important physical situations, such as in cold atoms, where a single photon
is injected in the atomic cloud [3], or in quantum dots [15].

Intrinsic disorder and opening to the environment have opposing effects: while disorder tends to localize
the wave functions, the opening tends to delocalize them, since it induces a long range interaction. The aim
of this paper is to study the interplay of disorder and opening, and the relation to superradiance. We show
that while below the ST, all states are affected by the disorder and the opening in a similar way, above it,
the effects are quite different for superradiant and subradiant subspaces, the latter being more affected by
disorder than the former.

In Sect. 2 we introduce the model, in Sect. 3 we analyze the ST in our system, and in Sect. 4 we present
our main numerical results, which we partly justify in Sect. 5 using perturbation theory. Finally in Sect. 6
we present our conclusions.

2 Model

Our starting point is the standard one-dimensional Anderson model [2, 4], for the motion of a particle in a
disordered potential. The Hamiltonian of the Anderson model can be written as:

H0 =
N∑

j=1

Ej |j〉〈j| + Ω
N−1∑

j=1

(|j〉〈j + 1| + |j + 1〉〈j|) , (1)

where Ej are random variables uniformly distributed in [−W/2,+W/2], W is a disorder parameter, and
Ω is the tunneling transition amplitude (in our numerical simulations we set Ω = 1). For W = 0 the
eigenstates are extended and we have for the eigenvalues:

Eq = −2Ω cos
(

πq

N + 1

)
, (2)

and the eigenstates:

ψq(j) =

√
2

N + 1
sin
(

πq

N + 1
j

)
, (3)

where q = 1, . . . , N is a quantum number and j = 1, . . . , N is a discrete coordinate. In this case, the
eigenvalues lie in the interval [−2Ω, 2Ω], so the mean level spacing can be estimated as D = 4Ω/N . For
W �= 0, the eigenstates of the one-dimensional Anderson model are exponentially localized on the system
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sites, with exponential tails given by |ψ(j)| ∼ exp(−|j− j0|/ξ), where for weak disorder, the localization
length ξ can be written as:

ξ ≈ 96 (1 − (E/2Ω)2)
(

Ω
W

)2

. (4)

For E = 0, Eq. (4) has to be modified and we have [16]:

ξ ≈ 105.2
(

Ω
W

)2

.

The phenomenon of Anderson localization was studied in a closed disordered chain, while in our case
we can vary the degree of openness of the system. In particular we consider the model in which all the
sites are coupled to a common channel in the continuum, with equal coupling strength γ. This situation can
arise when the wavelength of the decaying particle is much larger than the size of the system. This results
in a coherent dissipation, which differs from the usual dissipation where every site decays independently
to a different channel in the continuum. A comparison between these two different mechanisms will be the
subject of a future work. The continuum coupling can be taken into account with the aid of an effective
non-Hermitian Hamiltonian [12], which in general can be written as,

Heff(E) = H0 + Δ(E) − iQ(E) ,

where H0 is the Hermitian Hamiltonian of the closed system decoupled from the environment and Δ(E)
andQ(E) are the induced energy shift and the dissipation, respectively. Neglecting the energy dependence
and the energy shift we have

(Heff)ij = (H0)ij − i

2

∑

c

Ac
i (A

c
j)

∗ , (5)

where Ac
i are the transition amplitudes from the discrete states i to the continuum channels c.

In the case under study, we have only one decay channel, c = 1, and all couplings are equal, so that
A1

i =
√
γ. Thus the effective Hamiltonian can be written as:

Heff = H0 − i
γ

2
Q , (6)

where H0 is the Anderson Hamiltonian with diagonal disorder, Eq. (1), and Qij = 1 ∀i, j.
In order to study the interplay of Anderson localization and superradiance we analyze the participation

ratio (PR) of the eigenstates of Heff , defined as,

PR =
〈

1∑
i |〈i|ψ〉|4

〉
, (7)

where the average is over disorder. For completely extended states we have PR = N and for completely
localized states we have PR = 1.

3 Superradiance transition

ST can be analyzed by studying the complex eigenvalues Er = Er − iΓr/2 of Heff defined in Eq. (6). As
the coupling between the states and the continuum increases, one observes a rearrangement of the widths
Γr. ST is expected to occur for 〈Γ〉/D 	 1 [6, 12]. The average width 〈Γ〉 is γ, so we can define

κ = γ/D (8)
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as the parameter controlling the coupling strength to the continuum. In the deep localized regime where
disorder is strong (W 
 Ω) we can write D ≈W/N , so that the effective coupling strength can be written
as:

κ =
γN

W
. (9)

In Fig. 1 we show that the ST occurs at κ ∼ 1 for different values of W/Ω and N .
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Fig. 1 (online colour at: www.fp-journal.org)
The average width of the N − 1 subradiant
states, normalized by the mean level spacing D,
versus the effective coupling strength κ for dif-
ferent values of N and W , and Ω = 1. Here we
average over 100 disordered configurations.

For κ 
 1, we can treat the matrix Q as the leading term in Eq. (6), and H0 as a perturbation. The
superradiant state |SR〉 is given to zeroth order by the only eigenstate of Q with nonzero eigenvalue:
|d〉 = 1√

N
(1, . . . , 1)T , and the energy of |SR〉 is evaluated at first order as

〈d|Heff |d〉 = ε− i
γ

2
N , (10)

where

ε =
1
N

N∑

i=1

Ei + 2Ω
N − 1
N

and Ei are the random diagonal elements of H0. Averaging over disorder and taking into account that Ei

are distributed uniformly in [−W/2,W/2] we obtain,

〈ε〉 = 2Ω
N − 1
N

(11)

and

Var(ε) = 〈ε2〉 − 〈ε〉2 =
W 2

12N
. (12)

These results agree with our numerical simulations for different values of N and allow one to know the
position in the energy band of the superradiant state in the limit κ 
 1. From Eq. (11) we deduce that the
mean energy 〈ε〉 of the superradiant state is independent of W .

4 Numerical results

In order to study the interplay of superradiance and disorder we have analyzed the PR of the eigenstates
of the non-Hermitian Hamiltonian, Eq. (6). As explained in the previous section, as the coupling with the
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continuum is increased we have the formation of one superradiant state (the one with the largest width)
and N − 1 subradiant ones. In Fig. 2 (upper panel) we analyze the PR as a function of κ for the states that
become subradiant for κ > 1, and in Fig. 2 (lower panel) we analyze the case of the state with the largest
width, which becomes superradiant for κ > 1. As the opening, determined by the parameter κ, increases,
the PR of both superradiant and subradiant states increases, showing that the opening has a delocalizing
effect. But the consequences of the opening are very different for superradiant and subradiant states. For
the latter, the PR reaches a plateau value above the ST (κ ≈ 1), which is slightly higher than the PR
for κ � 1. Moreover on increasing the disorder, the PR of the subradiant states decreases, both below
and above the ST, see Fig. 2 upper panel. The situation is different for the superradiant states. Above the
ST these states become completely delocalized (PR = N ) and their delocalization is not affected by an
increase in W , see Fig. 2 lower panel.
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Fig. 2 (online colour at: www.fp-journal.org) The
participation ratio PR is shown as a function of κ
for different disorder strengths. In the upper panel we
consider states with −1.5 ≤ E/Ω ≤ −0.5, which
become subradiant for large κ, while in the lower
panel we consider the state with the largest width,
which corresponds to the superradiant state for large
κ. Here N = 100, Ω = 1, and the PR is averaged
over 4000 disorder realizations.

We now look more closely at how the subradiant and superradiant states are affected differently by
increasing the disorder strength W . In Fig. 3, we consider the case of N = 100 and γ = Ω = 1. For small
disorder we have D ≈ 4Ω/N , so that

κ = γ/D = γN/4Ω ≈ 25 
 1 .

This implies that we are in the superradiant regime. Moreover for sufficiently small disorder we have that
the localization length is larger than the system size, ξ ≈ 100 Ω2/W 2 > N , so that both superradiant
and subradiant states are delocalized. For larger disorder, here W > 1, we enter the localized regime,
for which ξ < N . In this regime the PR of the subradiant states starts to decrease, while the PR of the
superradiant state remains unchanged (PR = N ), signaling a superradiant state that remains completely
delocalized. As we increase disorder further, κ decreases according to Eq. (9). The ST occurs at W ≈ γN ,
here W ≈ 100, and above this value the superradiance effect disappears. Summarizing, we have a critical
value of disorder (W ≈ 100 indicated as a full vertical line in Fig. 3) separating the superradiant regime
(κ > 1), from the non-superradiant one (κ < 1). Only forW > 100, i.e., below the ST, do the superradiant
states begin to localize, and, for very large disorder, corresponding to very small κ, they behave the same
as the subradiant states.

5 Discussion

In this section we will justify (using perturbation theory) and briefly discuss the interesting results pre-
sented previously: for small κ (below the ST) all the states are affected in a similar way by the opening
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Fig. 3 The participation ratio is shown as a function of the disorder strength W . Open circles stand for the
subradiant states, while full circles indicate the superradiant state. Each point is obtained by averaging over
100 disorder realizations for the superradiant state, while for the subradiant states, an additional average over
all the subradiant states is performed. The right and left vertical lines indicate the ST and the delocalization
transition, respectively. Here N = 100 and γ = Ω = 1.

and disorder, while for large κ (above the ST), the superradiant states remain completely delocalized, in-
dependent of the degree of disorder, while the subradiant states are still sensitive to disorder, and their PR
decreases with increasing disorder.

5.1 Perturbative approach for κ� 1

In the limit κ� 1, the eigenstates of Heff at first order in perturbation theory can be written as:

|n〉 =
1√
Cn

⎡

⎣|n0〉 − i
γ

2

∑

k0 �=n0

〈k0|Q|n0〉
En0 − Ek0

|k0〉
⎤

⎦ , (13)

where |n0〉 are the eigenstates of the closed system, i.e., of the Anderson model. Of course, the perturbation
expansion makes sense only when each coefficient in the sum in Eq. (13) is much less than one. This cannot
be true in general since the eigenvalues En0 are random numbers uniformly distributed in the interval
[−W/2,W/2]. Thus perturbation theory cannot be applied tout court, but only for those states whose
energies are not too close.

This simple observation has deep consequences for the structure of the eigenstates. Indeed we observe
numerically that on the one hand many single-peaked eigenstates become double- or multiple-peaked as γ
increases, while on the other hand, they all develop a constant plateau proportional to (γ/W )2, see Fig. 4.

This last fact can easily be explained using first-order perturbation theory as given by Eq. (13): in
the deep localized regime W 
 Ω, the matrix elements 〈k0|Q|n0〉 are of order unity and the average
distance between two random energies is W/3, so the typical coefficients 〈k0|n〉 in Eq. (13) are ∼ γ/W .
Furthermore, the mean level spacing is D ≈ W/N , and thus the few largest coefficients in Eq. (13) are
typically ∼ γN/W ∼ κ (using Eq. (9)). Thus for weak opening (κ� 1), the typical eigenstate consists of
a single Anderson model eigenstate with a O(κ2) admixture of other states, and therefore the typical PR
for small κ differs only by O(κ2) from the PR of the Anderson model.
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Fig. 4 (online colour at: www.fp-journal.org) The averaged probability distribution of all eigenstates of
the non-Hermitian Hamiltonian that are strongly peaked in the middle of the chain is shown for different
coupling strength γ and disorder strength W , as indicated in the caption. Specifically, we average over all
eigenstates having a probability > 0.9 at the site n = N/2 + 1 in order to avoid double-peaked states, and
also average over disorder. Moreover, to reduce fluctuations, we average the logarithm of the probability
distribution. In all cases we fix N = 100 and Ω = 1. Dashed horizontal lines are proportional to (γ/W )2

in agreement with the perturbative approach.

As already remarked previously, the perturbative approach cannot always work, because for arbitrarily
small κ there is a small but finite probability that two energy states are too close together. This clustering be-
havior has important consequences for the localization properties. Specifically, since the nearest-neighbor
level spacing distribution of uniform random numbers En0 is Poissonian: P (s) = (1/D) e−s/D, where s
is the energy difference between nearest-neighbor levels and D = W/N is the mean level spacing, we can
evaluate the probability to have two levels closer than γ/2 as 1 − e−γ/2D ≈ κ/2 for small κ. This means
that there are κN states out of N , for which perturbation theory cannot be applied. When this happens,
the Anderson states mix strongly and the PR increases by anO(1) factor. Thus, even though this behavior
is rare, it makes an O(κ) contribution to the average PR of the weakly open system, which exceeds the
O(κ2) contribution from the typical states. Indeed the average PR can be evaluated as follow:

PR =
NκPR2 + (1 − κ)NPR1

N
= PR1 + κ(PR2 − PR1)

where PR1 and PR2 refer to the PR of the states for which perturbation theory can and cannot be applied.
Since PR1 	 PR(γ = 0) + O(κ2), and PR2 	 O(1), we have that PR(γ) − PR(γ = 0) 	 κ. The
numerical results in Fig. 5 confirm that the effect of the opening on the PR grows as κ, instead of the
κ2 growth predicted by first-order perturbation theory. Here we present the average (over disorder) of
PR(γ) − PR(γ = 0), as a function of κ = Nγ/W for fixed disorder strength and different values of the
system size. In any case this is quite a delicate point and we postpone its full analysis to a future work.

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.fp-journal.org



Fortschr. Phys. 61, No. 2 – 3 (2013) 257

10
-4

10
-3

10
-2

10
-1

10
0

κ=Nγ/W

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

PR
(γ

)-
PR

(0
)

N=50
N=100
N=200
N=300

Fig. 5 (online colour at: www.fp-journal.org) The average increase in the participation ratio, compared
with the closed system, is calculated as a function of κ, for fixed disorder W = 20 and different system
sizes N as indicated in the legend. In each case the average is performed over 50000 different eigenstates.
The line is PR(γ) − PR(0) = 2κ.

5.2 Perturbative approach for κ
 1

In the limit κ 
 1 we consider two cases. First, we consider the situation where the nearest neighbor
tunneling coupling is Ω = 0, in which case we can follow the approach explained in [17]. This approach
will be very useful also for the case Ω �= 0, which we treat below.

5.2.1 Ω = 0 and κ
 1

If Ω = 0 the Anderson Hamiltonian is diagonal in the site basis |j〉 with eigenvalues Ej distributed uni-
formly in the interval [−W/2,W/2]. The eigenstates of the non-Hermitian part −i γ

2Q of the effective
Hamiltonian are |d〉 = 1√

N
(1, . . . , 1)T (the superradiant state) with eigenvalue −i γ

2N , and N − 1 degen-

erate eigenstates |μ〉 with eigenvalue 0 (the subradiant states). We will choose |μ〉 in a convenient manner
later. Following [17] we can rewrite Heff in the basis of these eigenstates using the transformation matrix
V , which has as its columns the eigenstates of Q:

H̃eff = V TH0V − i
γ

2
VTQV =

(
−i γ

2 N �hT

�h H̃

)
. (14)

Here �h is a vector of dimension N − 1 with components

hμ =
1√
N

N∑

j=1

Ej〈j|μ〉 , (15)

while the matrix elements of the (N − 1) × (N − 1) submatrix H̃ are

H̃μν =
N∑

j=1

Ej〈μ|j〉〈j|ν〉. (16)

Now, we can diagonalize H̃,

H̃μν =
N∑

j=1

Ej〈μ|j〉〈j|ν〉 = 〈μ|H0|ν〉 = ε̃μ〈μ|ν〉. (17)
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Following [17] we obtain

|μ〉 = hμ
1

ε̃μ −H0
|d〉 =

hμ√
N

N∑

j=1

1
ε̃μ − Ej

|j〉 , (18)

where the normalization coefficients hμ are given by

hμ =
(
〈d| 1

(ε̃μ −H0)2
|d〉
)−1/2

. (19)

In the limit κ
 1, the eigenstates |μ〉 of the non-Hermitian part of Heff are also eigenstates of Heff . Since
〈d|μ〉 = 0 we have,

N∑

j=1

1
ε̃μ − Ej

= 0. (20)

Therefore each eigenvalue of H̃ lies between two neighboring levels En, so that the values ε̃μ are also
confined in the interval [−W/2,W/2].

Let us now estimate the magnitude of the mixing matrix elements hμ. To do this we compute

�h · �h =
1
N

N−1∑

μ=1

N∑

i=1

N∑

j=1

EiEj〈μ|i〉〈j|μ〉 , (21)

and using the completeness relation
∑N−1

μ=1 〈j|μ〉〈μ|i〉 = 〈j|i〉 − 1/N we have

�h · �h = 〈E2〉 − 〈E2〉 = ΔE2 . (22)

This leads to

|hμ| ∼ ΔE√
N − 1

=
W√

12(N − 1)
. (23)

Each eigenstate |μ〉 in Eq. (18) is a superposition of all the site states |j〉 with amplitudes hµ√
N(ε̃µ−Ej)

∼
W

N(ε̃µ−Ej)
that depend only on the energies Ej and not on the site positions j. Nevertheless, each state |μ〉

is quite localized, since the amplitudes are of order unity for the O(1) number of sites whose energy is
within a few mean level spacings of ε̃ (i.e., when |ε̃μ−Ej | ∼ D = W/N ), and small otherwise. This small
value of the PR for the subradiant states should be compared with PR = N of the superradiant states.

The values obtained above for the subradiant and the superradiant states correspond to zeroth-order
perturbation theory. On the other hand first-order perturbation theory gives:

|SR〉 =
1√
C

⎡

⎣|d〉 +
W√

12(N − 1)

N−1∑

μ=1

rμ
−i γ

2N − ε̃μ
|μ〉
⎤

⎦

=
1√
C

⎡

⎣|d〉 − 1
κ
√

3(N − 1)

N−1∑

μ=1

rμ
i+ 2ε̃μ/γN

|μ〉
⎤

⎦

|SUBμ〉 =
1√
C′

μ

[
|μ〉 +

W√
12(N − 1)

rμ
ε̃μ + i γ

2N
|d〉
]

=
1√
C′

μ

[
|μ〉 +

1
κ
√

3(N − 1)
rμ

i+ 2ε̃μ/γN
|d〉
]
, (24)
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where rμ are random coefficients with 〈r2μ〉 = 1. We see that the exact superradiant state |SR〉 is a com-
bination of the unperturbed superradiant state |d〉 and a small admixture of the unperturbed subradiant
states |μ〉, and the mixing probability decreases as 1/κ2 for large κ. Similarly, the admixture of the un-
perturbed superradiant state |d〉 in each exact subradiant states |SUBμ〉 decreases as 1/(κ2N). This shows
that PR ≈ N for the superradiant state and PR ∼ 1 for the subradiant states when κ
 1.

5.2.2 Ω �= 0 and κ
 1

As a first step we write the Anderson Hamiltonian H0 in terms of its eigenstates |n〉. Obviously the form
of |n〉 will depend on the degree of disorder W . In the following we limit our considerations to the large
disorder regime, so that in the basis of the eigenstates ofH0, the matrix elements ofQ remain of order one,
Qnm ∼ 1, and we can use the results of Sect. 5.2.1, with the site states and energies |j〉 and Ej replaced
by the Anderson eigenstates and eigenenergies |n〉 and En.

In Fig. 3 we see that for κ > 1 (corresponding to W < 100), the superradiant state remains unaffected
by the increase of disorder, while the subradiant states become more localized as the disorder strength is
increased. The results of the previous section can be used to understand this strongly asymmetric behavior
of the PR between the subradiant states and the superradiant state. Indeed at zeroth order in perturbation
theory we can see that the superradiant state |SR〉 ≈ |d〉 is completely delocalized, PR = N , while
subradiant states |SUBμ〉 ≈ |μ〉 become more and more localized as we increase disorder. Specifically, the
site states |j〉 in Eq. (18) are replaced with Anderson eigenstates |n〉, with localization length ξ ∝ 1/W 2.
This difference persists in first-order perturbation theory, since the mixing probability between the super-
and sub-radiant states decreases as 1/κ2 for large κ, see Eq. (24).

Our perturbative approach justifies the results presented in Fig. 3, where we can see that the subradiant
states become increasingly localized as we increase disorder. At the same time Fig. 3 shows that the super-
radiant state remains completely delocalized even as W is increased, until we reach the value W ≈ 142.8
(κ = 0.7) where we find numerically that the ST takes place. The perturbative approach shows that super-
radiant states are much less sensitive to disorder because their complex energies are at a distance greater
than γN/2 = Wκ/2 from the subradiant states.

6 Conclusions

We have studied a 1-D Anderson model with all sites coupled to a common decay channel (coherent dis-
sipation). Our main motivation was to understand the interplay of opening and disorder. Increasing the
disorder tends to localize the states. Increasing the opening, on the other hand, reduces the degree of local-
ization, and in particular induces a superradiance transition, with the formation of a subradiant subspace
and a superradiant state completely delocalized over all the sites. Our results show that, while for small
opening all the states tend to be similarly affected by the disorder, for large opening the superradiant state
remains delocalized even as the disorder increases, while the subradiant states are much more affected by
disorder, becoming ever more localized as the disorder increases. We have explained these effects qual-
itatively, mainly guided by perturbation theory. Indeed we have shown that the superradiant state is not
affected by disorder, since its energy is very distant, in the complex plane, from the energies of the subra-
diant states.
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