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An open multi-branch quantum circuit is considered from the viewpoint of coherent electron or
wave transport, both with and without intrinsic disorder. Starting with the closed system, we give
analytical conditions for the appearance of two isolated localized states out of the energy band. In
the open system, using the method of the effective non-Hermitian Hamiltonian, we study signal
transmission through such a circuit, with an important result of a long lifetime of localized states.
When the average level width becomes comparable to the mean level spacing, the super-radiant
transition occurs. In the case of on-site disorder we find an analytical estimate, confirmed by
numerical data, for the robustness of the isolated states and their role in transport processes.

PACS numbers: 05.20.-y, 05.10.-a, 75.10.Hk, 75.60.Jk

INTRODUCTION

The development of quantum informatics requires bet-
ter understanding of the general problem of quantum sig-
nal transmission through discrete structures of interact-
ing quantum elements, such as quantum dots [1–3], or
molecular [4, 5] and Josephson junctions [6]. There is
growing theoretical and experimental interest in arrange-
ments more complicated than a simple one-dimensional
chain, including Y - and T -shaped structures [7, 8], tetra-
hedral qubits [9], connected benzene rings [10], crossed
chains [11], two- and three-dimensional lattices [12, 13],
as well as graphs with the violation of time-reversal in-
variance at the junctions, supposedly with the aid of mag-
netic fields [14]. In all cases, one has to deal with a quan-
tum system with intrinsic stationary states that become
unstable when the system “opens” to the external world
as a part of a transmission network.

The method of the effective non-Hermitian Hamilto-
nian, borrowed from nuclear physics [15], is a powerful
and efficient tool for theoretical analysis of open quantum
systems, as was shown by applications to one-dimensional
structures [13, 16–20], covering both regular and chaotic
internal dynamics; see the recent review of the method
and its various adaptations [21]. In this work we con-
sider the M -branch circuit in the form of M > 2 one-
dimensional tight-binding chains with a common vertex
at the central point. This system is a simple discrete ex-
ample of quantum mechanics in a non-trivial space with
self-crossings, singular points or surfaces where quasi-
bound states (evanescent waves) may emerge even for
open boundary conditions. Our interest is not only in
the structure of the energy spectrum and eigenfunctions

for closed samples, which was earlier discussed for differ-
ent purposes, see for example, the applications to Bose-
Einstein condensation and temperature effects in optical
networks [22], but mainly in the transport characteris-
tics for the case when the chains are connected to an
environment.
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Figure 1: (Color online) The M -branch circuit with the coupling

at the origin.

MODEL

We start with the discussion of the closed system and
its energy spectrum. In our model (see Fig. 1), each
of the M branches consists of Na sites (a = 1, ...,M)
along which a particle/wave can propagate through the
structure. The hopping amplitude va between nearest
neighbor sites is constant within each branch, while the
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coupling to the origin is given by tava. Thus, the Hamil-
tonian of the closed system is

H =

M
∑

a=1

Na−1
∑

n=1

va

(

|a, n〉〈a, n+ 1|+ |a, n+ 1〉〈a, n|
)

+
M
∑

a=1

tava

(

|0〉〈a, 1|+ |a, 1〉〈0|
)

.

(1)

In what follows, unless stated otherwize, we set va = v
and Na = N , so that there are K = MN + 1 sites in
total, including the vertex. The Schrödinger equation
for a stationary state with energy E reduces to a set
of algebraic equations for the site amplitudes Ca

n, where
a = 1, . . . ,M , and n labels the sites in each chain,

M
∑

a=1

tavC
a
1 = EC0 ; vCa

2 + tavC0 = ECa
1 ;

v(Ca
n−1 + Ca

n+1) = ECa
n for 2 ≤ n ≤ N , (2)

with the boundary conditions Ca
N+1 = 0.

SPECTRUM AND EIGENFUCTIONS

For C0 6= 0, the a-dependence of the amplitudes is
given by Ca

n = vtaXn with n = 1, . . . , N , while C0 and
the a-independent amplitudes Xn obey a tri-diagonal ho-
mogeneous set of N + 1 linear equations. The secular
equation for E 6= ±2v has the form,

(E2 + Eǫ+ − v2Q)ǫN− − (E2 + Eǫ− − v2Q)ǫN+ = 0 , (3)

with the control parameter Q ,

Q =
M
∑

a=1

t2a , (4)

and ǫ±(E) = (−E±
√
E2 − 4v2)/2. Note that for even N

the value E = 0 is also a solution of Eq. (3). An analysis
of Eq. (3) shows that the energy spectrum consists of a set
of MN − 1 eigenvalues within the energy band |E| < 2v
(with eigenfunctions extended over theM branches of the
circuit), and two additional eigenvalues with |E| > 2v, for
sufficiently large M or sufficiently large couplings ta.
We first consider the two states with the eigenvalues

outside of the energy band (sometimes such states are
called “hidden”). These states turn out to be strongly
localized at the origin of the circuit provided the param-
eter Q is large enough. In the limit N ≫ 1, the energies
of these states can be found from Eq. (3) by considering
its largest and smallest roots. For Q > 2 one obtains

|Eloc| =
Q√
Q − 1

v , (5)

which generalizes the results found in Refs. [23].
In order to find the structure of the corresponding

eigenfunctions from Eq. (2), we obtain, after lengthy cal-
culations, the following relation, valid for any finite N :

∣

∣

∣

∣

Ca
n+1

Ca
n

∣

∣

∣

∣

2

=
1

Q− 1
Bn(Q,N), n = 1, . . . , N − 1 , (6)

where we have defined the boundary factor,

Bn (Q,N) =

∣

∣

∣

∣

∣

1− (Q− 1)
−(N−n)

1− (Q− 1)−(N+1−n)

∣

∣

∣

∣

∣

2

, (7)

which differs from 1 only for n ≈ N . Neglecting for the
time being this boundary effect (which however will be
crucial for an open model, see below), we obtain

∣

∣

∣

∣

Ca
n

C0

∣

∣

∣

∣

2

=
t2a

Q− 1
e−(n−1)/ξ, n = 1, . . . , N ; Q > 2 . (8)

Here ξ is the localization length,

ξ =
1

ln(Q− 1)
, (9)

of the two states outside the energy band, with the peak
located at the origin of the circuit. Note that these states
are spread over all branches in proportion to the cou-
plings t2a.
For C0 = 0, one has standard extended Bloch states

in each branch. However, the M solutions are linked
through the first equation of (2), yielding M − 1 inde-
pendent degenerate states for each C0 = 0 eigenvalue. As
a result, for the symmetric case of equal branch lengths
Na = N , we have two isolated localized states, N sets
of M − 1 extended degenerate Bloch states with C0 = 0,
and (N − 1) extended non-degenerate Bloch states with
C0 6= 0, altogether K = NM + 1 states.

COUPLING TO CONTINUUM

Coming to the main goal of our study, now we consider
the same circuit coupled to the environment by attaching
the last site of each branch to an external channel, simi-
larly to what has been done in Refs. [13, 16, 18, 20]. The
open system is described by an effective non-Hermitian
Hamiltonian [15, 21],

H = H− i

2
γW; W =

M
∑

a=1

Aa
N |a,N〉〈a,N |Aa∗

N . (10)

Here H is given by Eq. (1), while the coupling to the con-
tinuum via the ends of branches is characterized by the
parameter γ and the matrix W. The matrix W is con-
structed out of the transition amplitudes Aa

N between
intrinsic states |a,N〉 and continuum states |a,E〉. We
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set Aa
N = 1, so that the strength of the coupling is con-

trolled entirely by the parameter γ.
The lifetime τ loc of the two localized states can be

estimated via the imaginary part −Γloc/2 of the corre-
sponding eigenvalues Eloc of the complex Hamiltonian,
τ loc = Γ−1

loc. For small γ, the resonance width is deter-
mined by the spatial overlap of the localized states with
the edges,

Γloc = γ

M
∑

a=1

|〈a,Na|ψloc〉|2, (11)

see Refs. [15–17]. Taking into account Eqs. (6, 7, 9) with
|C0|2 found from the normalization, for N,Q ≫ 1 we
have

τ loc = 2
(Q− 1)

N+1

γ Q(Q− 2)
≃ 2

γ
exp

(

N − 1

ξ

)

. (12)

Considering now the extended states inside the energy
band, two different regimes can be distinguished [15, 16]
as a function of γ. At weak coupling, all these states are
similarly affected by the continuum coupling and acquire
widths proportional to γ. For large γ, only M “super-
radiant” states have a width proportional to γ, while
the widths of the remaining (“trapped”) states fall off as
1/γ. In order to find the critical value of the parameter
γ corresponding to the super-radiant transition, we ana-
lyze the average value 〈Γ〉 of the (MN + 1)−M narrow
widths as a function of the rescaled coupling γ/v. At a
critical value γcr, the average width 〈Γ〉 peaks and begins
to decrease.

0 1 2 3 4
  γ / v

0

0.02

0.04

0.06

<
 Γ

 >

Figure 2: (Color online) The dimensionless average width 〈Γ〉 as a

function of γ/v. We consider a) M = 4 and N = 70 with ta = 1 for

all branches (red triangles); b) M = 4 and N = 70 with different

couplings t1 = 200, t2 = 100, t3 = 20, and t4 = 50 (blue squares);

and c) M = 4 with different numbers of sites, N1 = 55, N2 =

80, N3 = 58, N4 = 87, and all ta = 1 (green circles). The dashed

line corresponds to the average over all widths, while the symbols

are obtained by averaging over the K − 4 smallest widths, where

K = 281 is the total number of sites in all cases.

One can evaluate γcr using the following criterion
[16, 20]: the transition occurs when 〈Γ〉 becomes of the
order of the mean level spacing D of the Hamiltonian

for the closed system. This is particularly easy for the
special case of equal coupling ta = t and equal num-
ber of sites in each branch Na = N ; in this case it is
convenient to define an effective mean level spacing as
Deff ≈ 4v/(2N + 1) ≃ 2v/N , which takes into account
the level degeneracy. On the other hand, the average
width is given by 〈Γ〉 ≈ Mγ/(MN + 1) ≃ γ/N , so that
γcr = 2v independently of M , N , and ta. This result is
numerically confirmed in Fig. 2, where it is shown to be
valid even in the more general case of different coupling
ta and different number of sites Na.

TRANSMISSION

Maximum transmission occurs at the super-radiant
transition, as happens in one-dimensional chains [20].
Moreover the above analysis allows one to understand
generic properties of the transmission between different
branches. The data in Fig. 3 demonstrate the energy de-
pendence of the transmission coefficient Tab between two
channels b and a. One can see that with an increase of
γ the resonances corresponding to the energies from the
bulk of spectrum begin to overlap, in contrast to the two
very narrow resonances located out of the energy band.
These quasi-bound resonances remain extremely stable
even for a very strong coupling to continuum.
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Figure 3: (Color online) Transmission coefficients T12 as a function

of energy, for M = 4, t1 = 3, t2 = 2, and t3 = t4 = 1. Full red

curves stand for γ = 0.6, while dashed blue curves correspond to

γ = 5. a) symmetric case N = 4; b) asymmetric case N1 = 4, N2 =

4, N3 = 3, N4 = 5. Horizontal dotted lines are the theoretical

results given by Eq. (15) and its generalization to unequal branch

lengths.

Of special interest is the value of the transmission co-
efficient Tab for the resonances outside the band. Since
these resonances are very narrow, one can estimate
Tab(Eloc) [16, 24] in terms of the edge components of the
localized state ψloc in channels a and b,

Tab(Eloc) =
∣

∣

∣

∣

〈a,Na|ψloc〉
√
γ〈ψloc|b,Nb〉

√
γ

(i/2)Γloc

∣

∣

∣

∣

2

. (13)
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which can be computed from Eqs (6, 7):

|〈a,Na|ψloc〉|2 = |C0|2t2ae−Na/ξ
Na−1
∏

n=1

Bn (Q,Na) . (14)

In the special case of equal-length branches this result
assumes the particularly simple Hauser-Feshbach form:

Tab(Eloc) =
4t2at

2
b

Q2
, a 6= b. (15)

This relation is in good agreement with the data of
Fig. 3a, as indicated by the dotted horizontal line. The
value of Tab(Eloc) for narrow resonances depends on the
hopping elements ta only, and is independent of the cou-
pling strength γ for equal values of the couplings, γa = γ.
The numerical data also indicate that, for equal-length
branches, the maximal value of the transmission coeffi-
cient for |E| < 2 is given by the same expression (15),
while this does not happen when branches have differ-
ent length, see Fig. 3 b). As γ → 0, the lifetime of the
localized states becomes very long.

INTRODUCING DISORDER

A key consideration in important practical applications
is the influence of disorder. For this reason we study the
circuit with diagonal disorder by adding the term V ,

V =
∑

a

∑

n

ǫa,n|a, n〉〈a, n|, (16)

to the non-Hermitian Hamiltonian (10). Here the site
energies ǫa,n are random numbers uniformly distributed
in the interval [−W/2,W/2]. According to the theory of
disordered systems, for N → ∞ all states within the en-
ergy band become exponentially localized with a localiza-
tion length ∝ (v/W )2. For the isolated localized states,
a weaker dependence on disorder can be expected, and
it is more convenient to define a localization length ℓloc
through the inverse participation number,

ℓloc =

(

|〈0|ψloc〉|4 +
M
∑

a=1

N
∑

n=1

|〈a, n|ψloc〉|4
)−1

. (17)

Without disorder and for large N , the value of ℓloc for
the isolated states can be estimated as

ℓloc ≈
4Q(Q− 1)2

(Q − 2)
[

Q(Q− 2) +
∑M

a=1 t
4
a

] . (18)

Numerical data confirm that the isolated states are not
affected by disorder up to a critical disorder strength,
Wcr, that can be very large. Above Wcr, the localization
length of the isolated states also begins to decrease. This

critical value can be estimated by assuming that it cor-
responds to the intersection between the gap of size ∆
emerging due to disorder around the localized states and
the bulk of the spectrum of width 2(2v+W/2). One can
estimate the value of ∆ from the relation,

∆2 = 〈ψloc|V |ψloc〉2 =
W 2

12
ℓ−1
loc , (19)

where the average is taken over sites n and over the dis-
order. The critical value Wcr for large N is thus ob-
tained by equating the half-width of the density of states
(2v+W/2) to the minimal possible energy of the isolated
states due to random fluctuations:

Qv√
Q− 1

−∆ ≈ 2v +
W

2
, (20)

which yields

Wcr = 2v

(

Q√
Q − 1

− 2

)

×

×






1 +

√

√

√

√

(Q− 2)
[

Q (Q− 2) +
∑M

a=1 t
4
a

]

12Q (Q− 1)2







−1

.

(21)
Despite the cumbersome appearance of Eq. (21), it ad-
mits two interesting limits: assuming for simplicity ta = t
for all a, it is easy to see that for Q ≈ 2, Wcr/v ≃
(Q − 2)2/2, while for Q → ∞, one has Wcr/v ≃ k

√
Q,

where the constant k = 2/(1 +
√

(M + 1)/(12M)) de-
pends only on the number of branches, and k ≈ 1.55
for large M . Note that it is impossible to have delocal-
ized isolated states along with localized states inside the
band for any disorder W . The expression (21) is com-
pared with numerical data for Wcr defined as the point
where the localization length ℓloc of the isolated localized
state begins to decrease with an increase of disorder. The
data in Fig. 4 show quite good agreement with this es-
timate over many orders of magnitude with no fitting
parameters.

SUMMARY

As an example of a non-trivial quantum network, we
have studied the properties of an open circuit with M
branches coupled to each other through one common
point. The transmission properties of the open model
were studied in relation to the structure of the energy
spectrum and eigenfunctions of the parent closed system.
The method of the effective non-Hermitian Hamiltonian
allows one to derive the exact solution of the problem.
Our main interest was in the energies and localization
lengths of special eigenstates located outside the crystal
energy band and strongly localized at the junction. It
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Figure 4: Critical value Wcr in units where v = 1, as a function

of Q =
∑

a
t2
a

for M = 4. We choose for simplicity ta = t for

a = 1, . . . ,M , so that Q = Mt2. Circles represent numerical data

(full N = 30, open N = 100), while the dashed line shows the

prediction (21).

was shown that, in the presence of coupling to the con-
tinuum, these states typically become narrow resonances
with a very large lifetime. This fact may be important for
the fabrication of new kinds of electron nanostructures,
waveguides, antennas, and lasing devices with a large
quality factor. Another possible application of the M -
branch circuits follows from the expression (15), which
points out the possibility of controlling and distribut-
ing energy incoming via one branch into all others. We
have also shown the negligible influence of disorder in the
branches on these special eigenstates. In our considera-
tion the continuum coupling γ was taken as a constant
parameter. In real arrangements, the circuit can be con-
nected to transmitters or particle reservoirs. Then γ can
depend on the signal energy and density of states in the
reservoirs. Along with that, the continuum coupling will
acquire a real part (dispersive integral) that should be
added to the intrinsic Hamiltonian in Eq. (10). We hope
to consider this more complicated situation elsewhere.
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