Sign changing solutions for a Yamabe type equation

Angela Pistoia

Universitá La Sapienza, Roma
"Metodi topologici e variazionali nello studio di fenomeni non lineari", Brescia 2010

围 M. Del Pino, M. Musso, F. Pacard, A. Pistoia Torus action on S^{n} and sign changing solutions for conformally invariant equations. (preprint)

The problem on S^{n}

Find sign changing solutions to the equation

$$
\text { (1) } \quad \mathcal{L}_{g_{0}} u=|u|^{\frac{4}{n-2}} u \quad \text { in } \quad\left(S^{n}, g_{0}\right)
$$

where

- $\left(S^{n}, g_{0}\right)$ is the unit sphere with the standard metric
- $\mathcal{L}_{g_{0}}=-\Delta_{g_{0}}-\frac{n-2}{4(n-1)} R_{g_{0}}$ is the conformal Laplacian
- $R_{g_{0}}=n(n-1)$ is the scalar curvature

The problem on R^{n}

Find sign changing solutions to the equation

$$
\text { (2) } \quad-\Delta u=|u|^{\frac{4}{n-2}} u \text { in } \quad \mathbb{R}^{n}
$$

- $S=(0, \ldots, 0,-1)$ is the south pole of S^{n}
- $\pi: \mathbb{R}^{n} \rightarrow S^{n} \backslash\{S\}$ is defined by $\pi(y)=\left(\frac{2 y}{1+|y|^{2}}, \frac{1-|y|^{2}}{1+|y|^{2}}\right)$

π is a local conformal diffeomorphism, i.e.

$$
\pi^{*} g_{o}=\phi^{\frac{4}{n-2}} d y, \phi(y):=\left(\frac{2}{1+|y|^{2}}\right)^{\frac{n-2}{2}}
$$

\Downarrow
$\pi^{*}\left(\mathcal{L}_{g_{0}} v\right)=\phi^{-\frac{n+2}{n-2}} \Delta\left(\phi \pi^{*} v\right)$ for any function v defined on S^{n}
\Downarrow
u is a solution to (1) $\Leftrightarrow \quad w=\phi \pi^{*} u$ is a solution to (2)

Existence of positive solutions: Obata 1972, Talenti 1976, Caffarelli-Gidas-Spruck 1989

On S^{n}...

all the positive solutions to (1), up to rotations, are given by u_{ϵ}

$$
\pi^{*} u_{\epsilon}(y)=\epsilon^{\frac{n-2}{2}}\left(\frac{1+|y|^{2}}{\epsilon^{2}+|y|^{2}}\right)^{\frac{n-2}{2}}, \quad \epsilon>0
$$

On \mathbb{R}^{n}...

all the positive solutions to (2), up to traslations, are given by w_{ϵ}

$$
w_{\epsilon}(y)=\phi(y) \pi^{*} u_{\epsilon}(y)=\epsilon^{-\frac{n-2}{2}}\left(\frac{2 \epsilon^{2}}{\epsilon^{2}+|y|^{2}}\right)^{\frac{n-2}{2}}, \quad \epsilon>0
$$

- $u_{1}(x) \equiv 1$ is a (trivial) solution to (1)
- u_{ϵ} blows-up at the north pole as $\epsilon \rightarrow 0$
- $w_{1}(y)=\phi(y)=\left(\frac{2}{1+|y|^{2}}\right)^{\frac{n-2}{2}}$ is a solution to (2)
- w_{ϵ} blows-up at the origin as $\epsilon \rightarrow 0$

Ding's result (1986)

(1) has infinitely many sign changing solutions, which are invariant under the action of

$$
O(h) \times O(n+1-h) \text { for any } h=2, \ldots, n-1
$$

Ding's result (1986)

(1) has infinitely many sign changing solutions, which are invariant under the action of

$$
O(h) \times O(n+1-h) \text { for any } h=2, \ldots, n-1
$$

Remark

Nothing is known about the profile of Ding's solution!

We prove that

(1) has infinitely many sign changing solutions, which are the superposition of the constant solution u_{1} with a large number of copies of negative solutions of (1) which blow-up at points which in turn are regularly arranged along some special submanifolds of S^{n}

We prove that

(1) has infinitely many sign changing solutions, which are the superposition of the constant solution u_{1} with a large number of copies of negative solutions of (1) which blow-up at points which in turn are regularly arranged along some special submanifolds of S^{n}

Remark

Our solutions are not invariant under the action of $O(2) \times O(n-1)$
\Downarrow
Our solutions are different from Ding's solutions!

Concentration on a great circle $(n \geq 4)$

Theorem 1

- $S^{n} \subset \mathbb{C} \times \mathbb{R}^{n-1}, x \in S^{n} \Leftrightarrow x=\left(z, x^{*}\right) \in \mathbb{C} \times \mathbb{R}^{n-1}$
- $\mathbb{T}^{1}:=S^{1} \times\{0\}$ is a great circle of S^{n}

There exists $k_{0}>0$ such that for any $k \geq k_{0}$ there exists u_{k} solution to
(1) such that

- $u_{k}\left(z, x^{*}\right)=u_{k}\left(\bar{z}, x^{*}\right)=u_{k}\left(z,-x^{*}\right)$
- $u_{k}\left(z, x^{*}\right)=u_{k}\left(e^{\frac{i \pi}{k}} z, x^{*}\right)$

- $u_{k} \rightarrow 1$ uniformly on compact sets of $S^{n} \backslash \mathbb{T}^{1}$ as $k \rightarrow \infty$
- u_{k} blow-up negatively at the $2 k$ points $P_{j}:=\left(e^{\frac{\pi i}{k} j}, 0^{*}\right) \in \mathbb{T}^{1}$, $j=1, \ldots, 2 k$ as $k \rightarrow \infty$

- $S^{3} \subset \mathbb{C} \times \mathbb{C}$ and $S^{2} \subset \mathbb{C} \times \mathbb{R}$
- H: $S^{3} \rightarrow S^{2}, H\left(z_{1}, z_{2}\right):=\left(2 z_{1} \bar{z}_{2},\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right)$ is the Hopf map
- Each fiber over a point of S^{2} is a great circle in S^{3}
- Fibers over different points are different great circles in S^{3}

- Stereographic projection of S^{3} to \mathbb{R}^{3} maps two different great circles in S^{3} into two linking circles in \mathbb{R}^{3}, i.e. a Hopf link in \mathbb{R}^{3}

$\{0\} \times S^{1}$ is the fiber over $(0,-1)$

The Clifford torus

- The Clifford torus is the fiber over $S^{1} \times\{0\}$

Toro di Clifford

Theorem 2

- $S^{n} \subset \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{n-3}, x \in S^{n} \Leftrightarrow x=\left(z_{1}, z_{2}, x^{*}\right) \in \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{n-3}$
- $\Lambda_{0}:=\left\{\frac{1}{\sqrt{2}}\left(z, z, 0^{*}\right): z \in S^{1}\right\}$ is a great circle of S^{n}
- $q \geq 1$ and $t_{q}: S^{n} \rightarrow S^{n}$ be $t_{q}\left(z_{1}, z_{2}, x^{*}\right)=\left(e^{-\frac{i \pi}{q}} z_{1}, e^{\frac{i \pi}{q}} z_{2}, x^{*}\right)$
- $\Lambda_{0}, t_{q} \Lambda_{0}, \ldots, t_{q}^{q-1} \Lambda_{0}$ are q different great circles
- Any two such great circles are linked
- $\Lambda:=\Lambda_{0} \cup t_{q} \Lambda_{0} \cup \cdots \cup t_{q}^{q-1} \Lambda_{0}$ is the union of q great circles

There exists $k_{0}>0$ such that for any $k \geq k_{0}$ there exists u_{k} solution to (1) such that

- $u_{k}\left(z_{1}, z_{2}, x^{*}\right)=u_{k}\left(\bar{z}_{1}, \bar{z}_{2}, x^{*}\right)=u_{k}\left(z_{1}, z_{2},-x^{*}\right)=u_{k}\left(z_{2}, z_{1}, x^{*}\right)$
- $u_{k}\left(z_{1}, z_{2}, x^{*}\right)=u_{k}\left(e^{\frac{i \pi}{\kappa}} z_{1}, e^{\frac{i \pi}{k}} z_{2}, x^{*}\right)=u_{k}\left(e^{-\frac{i \pi}{9}} z_{1}, e^{\frac{i \pi}{q}} z_{2}, x^{*}\right)$
- $u_{k} \rightarrow 1$ uniformly on compact sets of $S^{n} \backslash \wedge$ as $k \rightarrow \infty$
- u_{k} blow-up negatively at the $2 k \times q$ points in Λ as $k \rightarrow \infty$

Concentration on the Clifford torus ($n \geq 5$)

Theorem 3

- $S^{n} \subset \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{n-3}, x \in S^{n} \Leftrightarrow x=\left(z_{1}, z_{2}, x^{*}\right) \in \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{n-3}$
- $\mathbb{T}^{2}:=\frac{1}{\sqrt{2}}\left(S^{1} \times S^{1}\right) \times\left\{0^{*}\right\}$ is the Clifford torus of S^{n}

There exists $k_{0}>0$ such that for any $k \geq k_{0}$ there exists u_{k} solution to (1) such that

- $u_{k}\left(z_{1}, z_{2}, x^{*}\right)=u_{k}\left(\bar{z}_{1}, \bar{z}_{2}, x^{*}\right)=u_{k}\left(z_{1}, z_{2},-x^{*}\right)=u_{k}\left(z_{2}, z_{1}, x^{*}\right)$
- $u_{k}\left(z_{1}, z_{2}, x^{*}\right)=u_{k}\left(e^{\frac{i \pi}{\kappa}} z_{1}, e^{\frac{i \pi}{\kappa}} z_{2}, x^{*}\right)=u_{k}\left(e^{-\frac{i \pi}{k}} z_{1}, e^{\frac{i \pi}{k}} z_{2}, x^{*}\right)$
- $u_{k} \rightarrow 1$ uniformly on compact sets of $S^{n} \backslash \mathbb{T}^{2}$ as $k \rightarrow \infty$
- u_{k} blow-up negatively at the $(2 k)^{2}$ points of \mathbb{T}^{2} as $k \rightarrow \infty$

T^{2}

$$
\begin{array}{r}
\mathrm{P}_{\mathrm{j}=}=\left(\mathrm{e}^{\mathrm{i} \pi j \mathrm{k}} z_{1}, \mathrm{e}^{i \pi / k} z_{2}, \mathrm{x}^{*}\right) \\
\mathrm{j}, \mathrm{l}=1, \ldots, 2 \mathrm{k}
\end{array}
$$

Ansatz

We look for a solution of (2) as

$$
u_{k}(y)=w_{1}(y)-\sum_{j=1}^{2 k} w_{\delta}\left(y-\xi_{j}\right)+v(y), y \in \mathbb{R}^{n}=\mathbb{C} \times \mathbb{R}^{n-1}
$$

- $w_{1}(y)=\left(\frac{2}{1+|y|^{2}}\right)^{\frac{n-2}{2}}$
- $w_{\delta}\left(y-\xi_{j}\right)=\delta^{-\frac{n-2}{2}}\left(\frac{2 \delta^{2}}{\delta^{2}+\left|y-\xi_{j}\right|^{2}}\right)^{\frac{n-2}{2}}$
- $\delta:=\frac{d}{k^{2}}, d>0$ concentration rate
- $\xi_{j}:=\left(\rho e^{\frac{\pi i}{k} j}, 0^{*}\right), j=1, \ldots, 2 k$ concentration points
- $v=v(d, \rho, k)$ is a remainder term

$$
k \rightarrow \infty \text { is the parameter (Wei \& Yan 2007) }
$$

Reduction to a finite dimensional problem

$$
\begin{gathered}
u_{k}=w_{1}-\sum_{j=1}^{2 k} w_{\delta}\left(\cdot-\xi_{j}\right)+v \text { is a solution to }(2), \\
\text { i.e. a critical point of the energy } \\
J(u):=\frac{1}{2} \int_{\mathbb{R}^{n}}|\nabla u|^{2} d y-\frac{n-2}{2 n} \int_{\mathbb{R}^{n}}|u|^{\frac{2 n}{n-2}} d y \\
\Uparrow
\end{gathered}
$$

$(d, \rho) \in(0,+\infty) \times(0,+\infty)$ is a critical point of the reduced energy

$$
J_{k}(d, \rho):=J\left(w_{1}-\sum_{j=1}^{2 k} w_{\delta}\left(\cdot-\xi_{j}\right)+v\right)
$$

$$
\begin{aligned}
& J_{k}(d, \rho)-(2 k+1) J\left(w_{1}\right) \sim \\
& \text { interaction of the peak } \xi_{i} \\
& \text { with the bubble } w_{1} \\
& \sim \sum_{i=1}^{2 k} \overbrace{\delta^{\frac{n-2}{2}} w_{1}\left(\xi_{i}\right)} \\
& -\sum_{\substack{i, j=1 \\
i \neq j}}^{2 k} \overbrace{\delta^{n-2}\left(\frac{2}{\left|\xi_{i}-\xi_{j}\right|}\right)^{n-2}} \\
& \sim 2 k[\underbrace{\delta^{\frac{n-2}{2}}}_{\sim \frac{d^{\frac{n-2}{2}}}{k^{n-2}}}\left(\frac{2}{1+\rho^{2}}\right)^{\frac{n-2}{2}}-\underbrace{\delta^{\frac{d^{2}-2}{2(n-2)}}}_{\sim} \frac{1}{\rho^{n-2}} \underbrace{\sum_{\substack{j=2 \\
j \neq j}}^{2 k} \frac{1}{(1-\cos \pi(j-1) / k)^{\frac{n-2}{2}}}}_{\sim \sigma k^{n-2}, \sigma>0}] \sim \\
& \sim \frac{2}{k^{n-3}} \underbrace{\left[d^{\frac{n-2}{2}}\left(\frac{2}{1+\rho^{2}}\right)^{\frac{n-2}{2}}-\sigma \frac{d^{n-2}}{\rho^{n-2}}\right]}_{\Phi(d, \rho)}
\end{aligned}
$$

- $\Phi(d, \rho):=d^{\frac{n-2}{2}}\left(\frac{2}{1+\rho^{2}}\right)^{\frac{n-2}{2}}-\sigma \frac{d^{n-2}}{\rho^{n-2}}$
- for any $\rho>0$ there exists $d(\rho)$ maximum point of $d \rightarrow \Phi(d, \rho)$
 at $\rho_{0}=1$

Φ has a C^{1}-stable critical point $\left(d_{0}, 1\right)$
\Downarrow
if $k \sim+\infty, J_{k}$ has a critical point $\left(d_{k}, \rho_{k}\right)$ s.t. $\left(d_{k}, \rho_{k}\right) \rightarrow\left(d_{0}, 1\right)$ \Downarrow
(2) has a sign changing solution u_{k} as in the picture!

Buon Compleanno Antonio!

