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The problem

The problem on Sn

Find sign changing solutions to the equation

(1) Lgo u = |u|
4

n−2 u in (Sn,go)

where

(Sn,go) is the unit sphere with the standard metric
Lgo = −∆go − n−2

4(n−1)Rgo is the conformal Laplacian

Rgo = n(n − 1) is the scalar curvature



An equivalent problem

The problem on Rn

Find sign changing solutions to the equation

(2) −∆u = |u|
4

n−2 u in Rn



The stereographic projection π

S = (0, . . . ,0,−1) is the south pole of Sn

π : Rn → Sn \ {S} is defined by π(y) =
(

2y
1+|y|2 ,

1−|y|2
1+|y|2

)

S

π(y)

y

Sn

Rn



Problems (1) and (2) are equivalent

π is a local conformal diffeomorphism, i.e.

π∗go = φ
4

n−2 dy , φ(y) :=

(
2

1 + |y |2

) n−2
2

⇓

π∗
(
Lgo v

)
= φ−

n+2
n−2 ∆ (φπ∗v) for any function v defined on Sn

⇓

u is a solution to (1) ⇔ w = φπ∗u is a solution to (2)



Existence of positive solutions: Obata 1972, Talenti 1976,
Caffarelli-Gidas-Spruck 1989

On Sn ...

all the positive solutions to (1), up to rotations, are given by uε

π∗uε(y) = ε
n−2

2

(
1 + |y |2

ε2 + |y |2

) n−2
2

, ε > 0

On Rn ...

all the positive solutions to (2), up to traslations, are given by wε

wε(y) = φ(y)π∗uε(y) = ε−
n−2

2

(
2ε2

ε2 + |y |2

) n−2
2

, ε > 0



Remark

u1(x) ≡ 1 is a (trivial) solution to (1)
uε blows-up at the north pole as ε→ 0

w1(y) = φ(y) =
(

2
1+|y|2

) n−2
2

is a solution to (2)
wε blows-up at the origin as ε→ 0

N

uε

Sn
0

wε

Rn



Existence of sign changing solutions

Ding’s result (1986)

(1) has infinitely many sign changing solutions,

which are invariant under the action of

O(h)×O(n + 1− h) for any h = 2, . . . ,n − 1

Remark

Nothing is known about the profile of Ding’s solution!
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Our main result

We prove that

(1) has infinitely many sign changing solutions,

which are the superposition of the constant solution u1

with a large number of copies of negative solutions of (1)

which blow-up at points which in turn are regularly arranged

along some special submanifolds of Sn

Remark

Our solutions are not invariant under the action of O(2)×O(n − 1)

⇓

Our solutions are different from Ding’s solutions!
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Concentration on a great circle (n ≥ 4)

Theorem 1

Sn ⊂ C× Rn−1, x ∈ Sn ⇔ x = (z, x∗) ∈ C× Rn−1

T1 := S1 × {0} is a great circle of Sn

There exists k0 > 0 such that for any k ≥ k0 there exists uk solution to
(1) such that

uk (z, x∗) = uk (z̄, x∗) = uk (z,−x∗)

uk (z, x∗) = uk

(
e

iπ
k z, x∗

)
R n-1

C

(z,x*) (z,x*)

(z,-x*)

(eiπ/κz,x*)

T1



uk → 1 uniformly on compact sets of Sn \ T1 as k →∞

uk blow-up negatively at the 2k points Pj :=
(

e
πi
k j ,0∗

)
∈ T1,

j = 1, . . . ,2k as k →∞

T1

Pj=(ei π j/k z,x*)



Hopf fibration

S3 ⊂ C× C and S2 ⊂ C× R
H : S3 → S2, H(z1, z2) :=

(
2z1z̄2, |z1|2 − |z2|2

)
is the Hopf map

Each fiber over a point of S2 is a great circle in S3

Fibers over different points are different great circles in S3

N

S

S1 x {0} is the fiber over (0,1)

{0} x S1  is the fiber over (0,-1)

H

H



Hopf link

Stereographic projection of S3 to R3 maps two different great
circles in S3 into two linking circles in R3, i.e. a Hopf link in R3

S1 x {0} is the fiber over (0,1)

{0} x S1  is the fiber over (0,-1)



The Clifford torus

The Clifford torus is the fiber over S1 × {0}

 S1 x {0}  

H

Toro di Clifford



Concentration on q great circles which are linked (n ≥ 4)

Theorem 2

Sn ⊂ C× C× Rn−3, x ∈ Sn ⇔ x = (z1, z2, x∗) ∈ C× C× Rn−3

Λ0 :=
{

1√
2

(z, z,0∗) : z ∈ S1
}

is a great circle of Sn

q ≥ 1 and tq : Sn → Sn be tq(z1, z2, x∗) =
(

e−
iπ
q z1,e

iπ
q z2, x∗

)
Λ0, tqΛ0, . . . , t

q−1
q Λ0 are q different great circles

Any two such great circles are linked

Λ := Λ0 ∪ tqΛ0 ∪ · · · ∪ tq−1
q Λ0 is the union of q great circles

Λ0 t1Λ0

t2Λ0



There exists k0 > 0 such that for any k ≥ k0 there exists uk solution to
(1) such that

uk (z1, z2, x∗) = uk (z̄1, z̄2, x∗) = uk (z1, z2,−x∗) = uk (z2, z1, x∗)

uk (z1, z2, x∗) = uk

(
e

iπ
k z1,e

iπ
k z2, x∗

)
= uk

(
e−

iπ
q z1,e

iπ
q z2, x∗

)
uk → 1 uniformly on compact sets of Sn \ Λ as k →∞
uk blow-up negatively at the 2k × q points in Λ as k →∞

(ei π j/k z,ei π j/k z,x*)

(ei π l/k e-i π 2/qz,ei πl/k ei π2/qz,x*)

Λ0

t1Λ0

t2Λ0

(ei π l/k e-i π /qz,ei πl/k ei π/qz,x*)



Concentration on the Clifford torus (n ≥ 5)

Theorem 3

Sn ⊂ C× C× Rn−3, x ∈ Sn ⇔ x = (z1, z2, x∗) ∈ C× C× Rn−3

T2 := 1√
2

(
S1 × S1

)
× {0∗} is the Clifford torus of Sn

T2



Concentration on the Clifford torus (n ≥ 5)

There exists k0 > 0 such that for any k ≥ k0 there exists uk solution to
(1) such that

uk (z1, z2, x∗) = uk (z̄1, z̄2, x∗) = uk (z1, z2,−x∗) = uk (z2, z1, x∗)

uk (z1, z2, x∗) = uk

(
e

iπ
k z1,e

iπ
k z2, x∗

)
= uk

(
e−

iπ
k z1,e

iπ
k z2, x∗

)
uk → 1 uniformly on compact sets of Sn \ T2 as k →∞
uk blow-up negatively at the (2k)2 points of T2 as k →∞

Pjl=(ei π j/k z1,e
i π l/k z2,x*)

T2

j,l=1,...,2k



An idea of the proof in Rn

Ansatz

We look for a solution of (2) as

uk (y) = w1(y)−
2k∑
j=1

wδ(y − ξj ) + v(y), y ∈ Rn = C× Rn−1

w1(y) =
(

2
1+|y|2

) n−2
2

wδ(y − ξj ) = δ−
n−2

2

(
2δ2

δ2+|y−ξj |2

) n−2
2

δ := d
k2 , d > 0 concentration rate

ξj :=
(
ρe

πi
k j ,0∗

)
, j = 1, . . . ,2k concentration points

v = v(d , ρ, k) is a remainder term

k →∞ is the parameter (Wei & Yan 2007)



The Ljapunov-Schmidt reduction

Reduction to a finite dimensional problem

uk = w1 −
2k∑
j=1

wδ(· − ξj ) + v is a solution to (2),

i.e. a critical point of the energy

J(u) :=
1
2

∫
Rn

|∇u|2dy − n − 2
2n

∫
Rn

|u|
2n

n−2 dy

m

(d , ρ) ∈ (0,+∞)× (0,+∞) is a critical point of the reduced energy

Jk (d , ρ) := J

w1 −
2k∑
j=1

wδ(· − ξj ) + v





Expansion of the reduced energy

Jk (d , ρ)− (2k + 1)J(w1) ∼

∼
2k∑
i=1

interaction of the peak ξi
with the bubble w1︷ ︸︸ ︷

δ
n−2

2 w1(ξi ) −
2k∑

i,j=1
i 6=j

interaction between
the two peaks ξi and ξj︷ ︸︸ ︷
δn−2

(
2

|ξi − ξj |

)n−2

∼

∼ 2k

 δ
n−2

2︸︷︷︸
∼ d

n−2
2

kn−2

(
2

1+ρ2

) n−2
2 − δn−2︸︷︷︸

∼ dn−2

k2(n−2)

1
ρn−2

2k∑
j=2
i 6=j

1

(1− cosπ(j − 1)/k)
n−2

2︸ ︷︷ ︸
∼σkn−2, σ>0

 ∼

∼ 2
kn−3

[
d

n−2
2

(
2

1 + ρ2

) n−2
2

− σdn−2

ρn−2

]
︸ ︷︷ ︸

Φ(d , ρ)



The function Φ(d , ρ) has a C1−stable critical point

Φ(d , ρ) := d
n−2

2

(
2

1+ρ2

) n−2
2 − σ dn−2

ρn−2

for any ρ > 0 there exists d(ρ) maximum point of d → Φ(d , ρ)

d(ρ) d

the function ρ→ Φ (d(ρ), ρ) = c
(

ρ
1+ρ2

)n−2
has a maximum point

at ρ0 = 1

ρ1



Proof completed

Φ has a C1−stable critical point (d0,1)

⇓
if k ∼ +∞, Jk has a critical point (dk , ρk ) s.t. (dk , ρk )→ (d0,1)

⇓
(2) has a sign changing solution uk as in the picture!

0

uk



Buon Compleanno Antonio!


