Sign changing solutions for a Yamabe type equation

Angela Pistoia

Universitá La Sapienza, Roma

"Metodi topologici e variazionali nello studio di fenomeni non lineari", Brescia 2010

M. Del Pino, M. Musso, F. Pacard, A. Pistoia Torus action on Sⁿ and sign changing solutions for conformally invariant equations. (preprint)

The problem on S^n

Find sign changing solutions to the equation

(1)
$$\mathcal{L}_{g_o}u = |u|^{\frac{4}{n-2}}u$$
 in (S^n, g_o)

where

- (S^n, g_o) is the unit sphere with the standard metric
- $\mathcal{L}_{g_o} = -\Delta_{g_o} rac{n-2}{4(n-1)}R_{g_o}$ is the conformal Laplacian
- $R_{g_o} = n(n-1)$ is the scalar curvature

The problem on Rⁿ

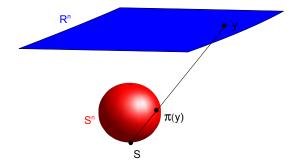
Find sign changing solutions to the equation

2)
$$-\Delta u = |u|^{\frac{4}{n-2}}u$$
 in \mathbb{R}^n

The stereographic projection π

• $S = (0, \dots, 0, -1)$ is the south pole of S^n

•
$$\pi: \mathbb{R}^n \to S^n \setminus \{S\}$$
 is defined by $\pi(y) = \left(\frac{2y}{1+|y|^2}, \frac{1-|y|^2}{1+|y|^2}\right)$



Problems (1) and (2) are equivalent

 π is a local conformal diffeomorphism, i.e.

$$\pi^* g_o = \phi^{\frac{4}{n-2}} dy, \ \phi(y) := \left(\frac{2}{1+|y|^2}\right)^{\frac{n-2}{2}}$$

\Downarrow

 $\pi^*\left(\mathcal{L}_{g_o} v\right) = \phi^{-\frac{n+2}{n-2}} \Delta\left(\phi \pi^* v\right)$ for any function v defined on S^n

\Downarrow

u is a solution to (1) \Leftrightarrow $w = \phi \pi^* u$ is a solution to (2)

Existence of positive solutions: Obata 1972, Talenti 1976, Caffarelli-Gidas-Spruck 1989

On *S*^{*n*} all the positive solutions to (1), up to rotations, are given by u_{ϵ} $\pi^* u_{\epsilon}(\mathbf{y}) = \epsilon^{\frac{n-2}{2}} \left(\frac{1+|\mathbf{y}|^2}{\epsilon^2+|\mathbf{y}|^2} \right)^{\frac{n-2}{2}}, \quad \epsilon > 0$ **On** \mathbb{R}^n ... all the positive solutions to (2), up to traslations, are given by w_{ϵ}

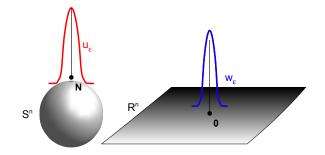
$$w_{\epsilon}(y)=\phi(y)\pi^{*}u_{\epsilon}(y)=\epsilon^{-rac{n-2}{2}}\left(rac{2\epsilon^{2}}{\epsilon^{2}+|y|^{2}}
ight)^{rac{n-2}{2}},\quad\epsilon>0$$

Remark

- $u_1(x) \equiv 1$ is a (trivial) solution to (1)
- u_{ϵ} blows-up at the north pole as $\epsilon \rightarrow 0$

•
$$w_1(y) = \phi(y) = \left(\frac{2}{1+|y|^2}\right)^{\frac{n-2}{2}}$$
 is a solution to (2)

• w_{ϵ} blows-up at the origin as $\epsilon \rightarrow 0$



Ding's result (1986)

(1) has infinitely many sign changing solutions,

which are invariant under the action of

 $O(h) \times O(n + 1 - h)$ for any h = 2, ..., n - 1

Ding's result (1986)

(1) has infinitely many sign changing solutions,

which are invariant under the action of

 $O(h) \times O(n + 1 - h)$ for any h = 2, ..., n - 1

Remark

Nothing is known about the profile of Ding's solution!

We prove that

(1) has infinitely many sign changing solutions, which are the superposition of the constant solution u_1 with a large number of copies of negative solutions of (1) which blow-up at points which in turn are regularly arranged along some special submanifolds of S^n

We prove that

(1) has infinitely many sign changing solutions, which are the superposition of the constant solution u_1 with a large number of copies of negative solutions of (1) which blow-up at points which in turn are regularly arranged along some special submanifolds of S^n

Remark

Our solutions are not invariant under the action of $O(2) \times O(n-1)$

₩

Our solutions are different from Ding's solutions!

Theorem 1

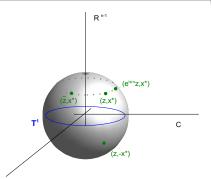
•
$$S^n \subset \mathbb{C} \times \mathbb{R}^{n-1}, x \in S^n \Leftrightarrow x = (z, x^*) \in \mathbb{C} \times \mathbb{R}^{n-1}$$

• $\mathbb{T}^1 := S^1 \times \{0\}$ is a great circle of S^n

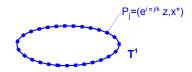
There exists $k_0 > 0$ such that for any $k \ge k_0$ there exists u_k solution to (1) such that

•
$$U_k(Z, X^*) = U_k(\bar{Z}, X^*) = U_k(Z, -X^*)$$

•
$$u_k(z, x^*) = u_k\left(e^{\frac{i\pi}{k}}z, x^*\right)$$

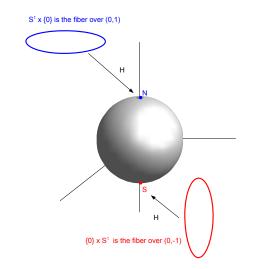


- $u_k \to 1$ uniformly on compact sets of $S^n \setminus \mathbb{T}^1$ as $k \to \infty$
- u_k blow-up negatively at the 2*k* points $P_j := \left(e^{\frac{\pi i}{k}j}, 0^*\right) \in \mathbb{T}^1$, $j = 1, \dots, 2k$ as $k \to \infty$



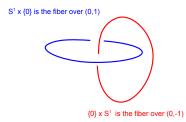
Hopf fibration

- $S^3 \subset \mathbb{C} \times \mathbb{C}$ and $S^2 \subset \mathbb{C} \times \mathbb{R}$
- $H: S^3 \to S^2, H(z_1, z_2) := (2z_1\bar{z}_2, |z_1|^2 |z_2|^2)$ is the Hopf map
- Each fiber over a point of S² is a great circle in S³
- Fibers over different points are different great circles in S³



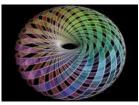
Hopf link

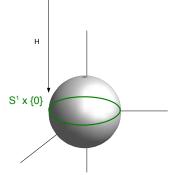
 Stereographic projection of S³ to ℝ³ maps two different great circles in S³ into two linking circles in ℝ³, i.e. a Hopf link in ℝ³



The Clifford torus

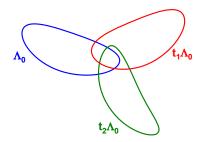
 $\bullet\,$ The Clifford torus is the fiber over ${\cal S}^1\times\{0\}$





Theorem 2

- $S^n \subset \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{n-3}, \ x \in S^n \Leftrightarrow x = (z_1, z_2, x^*) \in \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{n-3}$
- $\Lambda_0 := \left\{ rac{1}{\sqrt{2}}(z,z,0^*): \ z \in S^1
 ight\}$ is a great circle of S^n
- $q \geq 1$ and $t_q: S^n \to S^n$ be $t_q(z_1, z_2, x^*) = \left(e^{-\frac{i\pi}{q}}z_1, e^{\frac{i\pi}{q}}z_2, x^*\right)$
- $\Lambda_0, t_q \Lambda_0, \ldots, t_q^{q-1} \Lambda_0$ are *q* different great circles
- Any two such great circles are linked
- $\Lambda := \Lambda_0 \cup t_q \Lambda_0 \cup \cdots \cup t_q^{q-1} \Lambda_0$ is the union of q great circles

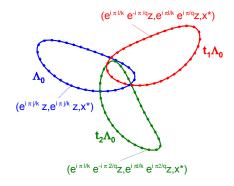


There exists $k_0 > 0$ such that for any $k \ge k_0$ there exists u_k solution to (1) such that

• $U_k(Z_1, Z_2, X^*) = U_k(\overline{Z}_1, \overline{Z}_2, X^*) = U_k(Z_1, Z_2, -X^*) = U_k(Z_2, Z_1, X^*)$

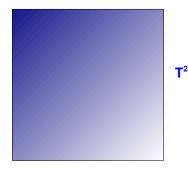
•
$$U_k(Z_1, Z_2, X^*) = U_k\left(e^{\frac{i\pi}{k}}Z_1, e^{\frac{i\pi}{k}}Z_2, X^*\right) = U_k\left(e^{-\frac{i\pi}{q}}Z_1, e^{\frac{i\pi}{q}}Z_2, X^*\right)$$

- $u_k \rightarrow 1$ uniformly on compact sets of $S^n \setminus \Lambda$ as $k \rightarrow \infty$
- u_k blow-up negatively at the $2k \times q$ points in Λ as $k \to \infty$



Theorem 3

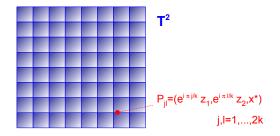
- $S^n \subset \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{n-3}, \ x \in S^n \Leftrightarrow x = (z_1, z_2, x^*) \in \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{n-3}$
- $\mathbb{T}^2 := \frac{1}{\sqrt{2}} \left(S^1 \times S^1 \right) \times \{ 0^* \}$ is the Clifford torus of S^n



Concentration on the Clifford torus ($n \ge 5$)

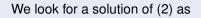
There exists $k_0 > 0$ such that for any $k \ge k_0$ there exists u_k solution to (1) such that

- $U_k(Z_1, Z_2, X^*) = U_k(\overline{Z}_1, \overline{Z}_2, X^*) = U_k(Z_1, Z_2, -X^*) = U_k(Z_2, Z_1, X^*)$
- $U_k(Z_1, Z_2, X^*) = U_k\left(e^{\frac{i\pi}{k}}Z_1, e^{\frac{i\pi}{k}}Z_2, X^*\right) = U_k\left(e^{-\frac{i\pi}{k}}Z_1, e^{\frac{i\pi}{k}}Z_2, X^*\right)$
- $u_k \to 1$ uniformly on compact sets of $S^n \setminus \mathbb{T}^2$ as $k \to \infty$
- u_k blow-up negatively at the $(2k)^2$ points of \mathbb{T}^2 as $k \to \infty$



An idea of the proof in \mathbb{R}^n

Ansatz



$$u_k(y) = w_1(y) - \sum_{j=1}^{2k} w_{\delta}(y - \xi_j) + v(y), \ y \in \mathbb{R}^n = \mathbb{C} \times \mathbb{R}^{n-1}$$

•
$$w_1(y) = \left(\frac{2}{1+|y|^2}\right)^{\frac{n-2}{2}}$$

•
$$W_{\delta}(y-\xi_j) = \delta^{-\frac{n-2}{2}} \left(\frac{2\delta^2}{\delta^2+|y-\xi_j|^2}\right)^{\frac{n-2}{2}}$$

• $\delta := \frac{d}{k^2}, d > 0$ concentration rate

•
$$\xi_j := \left(\rho e^{\frac{\pi i}{k}j}, \mathbf{0}^*\right), j = 1, \dots, 2k$$
 concentration points

•
$$v = v(d, \rho, k)$$
 is a remainder term

 $k \rightarrow \infty$ is the parameter (Wei & Yan 2007)

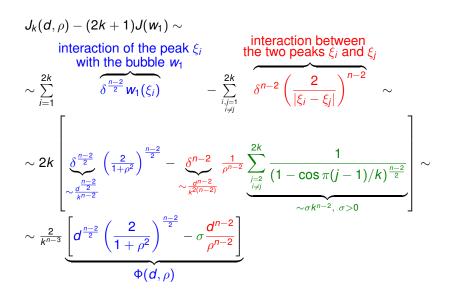
Reduction to a finite dimensional problem

$$u_k = w_1 - \sum_{j=1}^{2k} w_{\delta}(\cdot - \xi_j) + v$$
 is a solution to (2),

i.e. a critical point of the energy

 $(d,
ho)\in(0,+\infty) imes(0,+\infty)$ is a critical point of the reduced energy

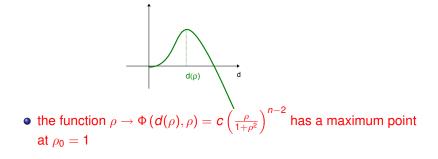
$$J_k(\boldsymbol{d},
ho) := J\left(oldsymbol{w}_1 - \sum_{j=1}^{2k} oldsymbol{w}_\delta(\cdot - \xi_j) + oldsymbol{v}
ight)$$

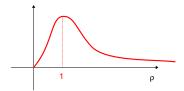


The function $\Phi(d, \rho)$ has a C^1 -stable critical point

•
$$\Phi(\boldsymbol{d},\rho) := \boldsymbol{d}^{\frac{n-2}{2}} \left(\frac{2}{1+\rho^2}\right)^{\frac{n-2}{2}} - \sigma \frac{\boldsymbol{d}^{n-2}}{\rho^{n-2}}$$

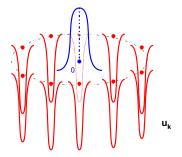
• for any $\rho > 0$ there exists $d(\rho)$ maximum point of $d \rightarrow \Phi(d, \rho)$





Proof completed

Φ has a C^1 -stable critical point (d_0 , 1) ↓ if $k \sim +\infty$, J_k has a critical point (d_k , ρ_k) s.t. (d_k , ρ_k) → (d_0 , 1) ↓ (2) has a sign changing solution u_k as in the picture!



Buon Compleanno Antonio!

