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The equations of incompressible fluid dynamics

Let u(x, t) a velocity field:

Du

Dt
= F Newton’s law

∇ · u = 0 incompressibility: volume is preserved, a geometrical constraint

The velocity is self-convected, therefore the (material) time derivative:

Du

Dt
= ∂tu + u · ∇u

In the simplest case, ideal flows, the “force” is just related to the isotropic pressure:

F = −∇p

Euler equations: appeared Académie Royale des Sciences et des Belles-Lettres de Berlin,
Mémoires 1757

∂tu + u ·∇u + ∇p = 0

∇ · u = 0

After more than 250 years they are one of the most intriguing mathematical model, still presenting
fundamental and challenging problems for mathematicians.
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The equations of incompressible fluid dynamics: dissipation

When friction is present the force F has a more complicated expression Introduce the vorticity of
the flow, giving the intensity of the spinning of the flow:

ω = ∇× u

The equation for the vorticity, in 2D, is:

∂tω + u ·∇ω = 0 →

Dω

Dt
= 0

However vorticity is not only convected, but also “diffuses”:

∂tω + u ·∇ω = ν∆ω

Navier-Stokes equations: Navier 1822, Stokes 1845

∂tu + u ·∇ u + ∇p = ν∆ u ,

∇ · u = 0 ,
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The major mathematical problems concerning the NS and
Euler eqs are...

Do smooth solutions exist for all time? Or do singularities develop in
finite time? (Millennium Prize problem)

Do non smooth but physically significant initial data lead to classical
weak solutions?

Do solutions of the Navier-Stokes equation converge to solutions of
the Euler equations away from boundaries?

The long time dynamics of the solutions.

P.Constantin, Bull.Am.Math.Soc., 2007.

M. Sammartino (University of Palermo) 20 minutes of flow 60 minutes 4 / 23



Regularity or blow-up?
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The energy inequality

The basic property of the Euler equations is conservation of energy:
‖u‖2

L2 =
∫
|u|2dx ∫

[∂tu + u ·∇u + ∇p] · udx = 0

and derive
d‖u‖2

L2

dt
= 0

The reason is integration by parts:∫
(u ·∇u) · udx =

1

2

∫
∇ ·

(
u2u
)
dx = 0

d‖u‖2
L2

dt
= −2ν‖∇u‖2 < 0 for Navier-Stokes
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If one goes to more regular Sobolev spaces:

1

2

d‖u‖2
Hs

dt
≤ c‖∇u‖L∞‖u‖2

Hs ≤ c‖u‖3
Hs

ẏ = y3/2 −→ y(t) =
y(0)(

1− 2t
√

y(0)
)

Difference between 2D and 3D
In 2D the equation of vorticity is ∂tω + u ·∇ω = 0:

Dω

dt
= 0 vorticity is conserved along Lagrangian paths

while in 3D: ∂tω + u ·∇ω − ω ·∇u = 0
It is the vortex-stretching term that can lead to strong amplification of
vorticity.
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Regularity criteria for Euler equations

Theorem (Beale-Kato-Majda result)

As long as ∫ T

0
‖ω(·, s)‖L∞ds <∞

the solution of the Euler equations u stays regular.

A criterion realted to the BKM result was found by Constantin, Fefferman and Majda: it shows
that it is (mostly) the variation in the direction of the vorticity that could produce singularities.

ξ =
ω

|ω|
and evaluate K ≡ sup

x,y

|ξ(x , t)− ξ(y , t)|
|x − y |

Theorem (Constantin, Fefferman and Majda 1996)
As long as ∫ T

0
K(s)ds <∞

the solution of the Euler equations u stays regular.
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Criteria for Navier-Stokes

Theorem (Constantin and Fefferman 1993)

sin-Lipschitz condition: Define θ(x , y , t) to be the angle between ξ(x , t) and ξ(y , t), and
suppose that in regions of large vorticity

| sin θ(x , y , t)|
|y |

≤ C

Then the solution of the NS equations remains regular.

Theorem (Beirao da Veiga and Berselli 2002 )

sin-Holder condition: Define θ(x , y , t) to be the angle between ξ(x , t) and ξ(y , t), and suppose
that in regions of large vorticity

| sin θ(x , y , t)|
|y |1/2

≤ C

Then the solution of the NS equations remains regular.
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Terence Tao’s recent result

If one consider the ”cheap” Navier-Stokes equations (Montgomery 2001,
Gallagher and Paicu 2009)

∂tu = ∆u +
√
−∆(u2)

which shares a lot of features with NS (not conservation of energy,
though!!), one can prove the existence of solutions blowing up in finite
time. Tao writes NS equations eliminating the pressure using the Leray
projector (i.e. the Hodge decomposition):

∂tu + B(u,u) = ∆u where B(u,u) = P (u ·∇u)

〈B(u,u),u〉 = 0 is equivalent to conservation of energy

Is it possible to construct a B̃(u,u) which satisfies conservation of energy,
of the same strength (from the harmonic analysis point of view) as B, so
that

∂tu + B̃(u,u) = ∆u

exhibits finite time blow up?
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YES, passing through a dyadic model, T.Tao 2015

Dyadic models are local version of the NS, where the mechanism of energy
cascade is oversimplified. The j − th Fourier mode interacts only with
neighboring modes.
Define

u2
j (t) = ‖uj‖2

L2 energy in the j-th shell

Πj = λju2
j uj energy flux from j − th to (j + 1)− th shell

and write the energy balance equation as Kats-Pavlovic model

1

2

d

dt
u2
j = −Πj + Πj−1 − νλ2jα

λ = 2, while α rules the strength of the dissipative effects.
Tao recalls a result of Barbato Morandin and Romito 2011, where it is
shown that “dispersive” effects do not allow blow up for this toy model:
energy does not flow fast enough from the mode j to mode j + 1 and
remains trapped (to be eventually dissipated) without having the chance
to build a singularity.
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Tao is able to modify the Kats-Pavlovic model, substituting u2
j a vector (a

circuit). He is therefore able to build a dyadic model which blows up in
fine time.
He shows that to his dyadic model corresponds an averaged Euler operator
B̃ which conserves energy and elicity

∂tu + B̃(u,u) = ν∇u

has solutions which develop a singularity in finite time.
B̃ is “weaker” than the Euler operator B.
Tao’s example rigorously demonstrates that any attempt to positively
resolve the NavierStokes global regularity problem in three dimensions has
to use finer (still unknown) structure of the equation beyond the energy
identity and incompressibility.
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Singular data: Vortex sheets

Vortex sheets are data where vorticity is concentrated on a curve

Existence of solutions, Delort ’91 J. Am. Math. Soc., Majda ’93,
Comm. Pure Appl. Math.

If ω0 is a Radon measure with positive singular part, such that v0 ∈ L2
loc .

Then Euler equations (in the weak form) admit as solution a bounded
measure ωt , and u ∈ L∞loc (R, L2

loc ).

Duchon and Robert ’88, Di Perna and Majda ’87, Chemin ’95, Evans and
Muller 94’

But:

the question of uniqueness is still unanswered

it gives no information on the structure of the solution.

no relation with the Birkhoff-Rott equation
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Euler equations admit vortex layer solutions

Theorem (Existence and uniqueness for the Euler-Vortex Layer
equations, R.Caflisch, MC.Lombardo, and M.S., CPAM 2020)

Let ω̃0 ∈ B1
ρ0,σ0,µ0

, ϕ0 ∈ B2
ρ0

, and suppose there are two constants S0,
R0 < 1/2 such that:

‖ω̃0‖1,ρ0,σ0,µ0 ≤ S0

‖ϕ0‖2,ρ0 ≤ R0 .

Then there exist β > 0, S , R < 1/2 such that the Euler-Vortex Layer
equations, with initial data (ω̃0, ϕ0), admit a unique solution (ω̃, ϕ) with
ω̃ ∈ B1

ρ0,σ0,µ0,β,T
, ϕ ∈ B2

ρ0,β,T
, where T < ρ0/β, and with:

‖ω̃‖1,ρ0,σ0,µ0,β,T ≤ S

‖ϕ‖2,ρ0,β,T ≤ R .
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Convergence: Justification of the BR equations

One can prove the following result:

Theorem (Convergence, Caflisch, Lombardo, and S., CPAM 2020)

Suppose

All the Assumptions of Theorem giving well-posedness for Euler
Vortex Layer equations [Caflisch, Lombardo,S.] are satisfied;

All the Assumptions of Theorem giving well-posedness for BR
equations [Sulem,Sulem,Bardos,Frish] are satisfied;

Initially the configuration are, i.e. γε0 ≡ γBR0 and ϕε0 = ϕBR
0

Then there exist βC > max [β, βBR ] such that,

‖γε − γBR‖1,ρ0,βC ,TC
+ ‖ϕε − ϕBR‖2,ρ0,β,TC

≤ cεκ

being TC < min [ρ0, ρBR ]/βC and 1 > κ > 0.
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Reality is more singular than mathematical models

link to Video1

link to Video2

link to Video3

Last video F.Gargano, M.S., V.Sciacca, submitted to J.Fluid.Mech. , and
a careful study of the complex singularities of the Navier-Stokes equations,
show concentration à la Di Perna-Majda.
Il layer converge al VS per t → t−s , ma non per t → t+

s
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Zero viscosity: do Navier-Stokes converge to Euler?

link to Video4
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Zero viscosity: D’Alembert Paradox: 1752

This paradox puzzled theoretical Fluid Dynamics for more than 150 years
It seems to me that the theory (potential flow), developed in all possible rigor, gives, at least
in several cases, a strictly vanishing resistance, a singular paradox which I leave to future
Geometers to elucidate.
Consider the Euler equation in a steady situation:

∇ · (uu) + ∇p = 0

and integrate in space, on a volume enclosed in a surface S∫
S
pndS = −

∫
S

uu · ndS

Consider now the situation of a body immersed in a very long channel...

∫
S1

p1dS −
∫
S2

p2dS − D =

∫
S2

u2
2dS −

∫
S1

u2
1dS

However u1 = u2 for mass conservation.
Then p1 = p2 for the Bernoulli law, stating that in steady condition p + u2/2 is constant
along a streamline. It follows:

D’Alembert paradox: no drag on a moving body!!!!!

D ≡ 0
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Ludwig Prandtl’s Transition layer theory, 1905

During the week of 8 August 1904, a small group of mathematicians and scientists
gathered in picturesque Heidelberg, Germany, (....)Heidelberg was a natural venue for
the Third International Mathematics Congress.
One of the presenters at the congress was Ludwig Prandtl, a 29-year-old professor at
the Technische Hochschule. His presentation, and the subsequent paper that was
published in the congress proceedings one year later, introduced the concept of the
boundary layer in a fluid flow over a surface.
The modern world of aerodynamics and fluid dynamics is still dominated by Prandtl’s
idea. By every right, his boundary-layer concept was worthy of the Nobel Prize. He
never received it, however; some say the Nobel Committee was reluctant to award the
prize for accomplishments in classical physics.

J.D.Anderson Jr
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n6 τ-

When ν → 0 one gets a singular
limit.
The fluid shows two different
regimes.

Far away from the boundary:
viscous forces � inertial forces =⇒ Euler eqs. might be OK
Close to the boundary:
viscous forces are NOT neglegible =⇒ Boundary layer eqs.

Prandtl 1905 derived as an asymptotic approximation of NS valid near the
boundary at high Reynolds numbers.
He introduced a rescaled variable Y = y/ε to magnify the thin layer close
to the boundary where he could see a lot of interesting phenomena
occurring.

ε =
√
ν

The scaling is suggested by a balance between viscous and inertial forces.
Notice that:

∂y =
1

ε
∂Y
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Conjecture:

uNS = m(y/
√
ν)uE + (1−m(y/

√
ν))uP + O(

√
ν)

Proven for analytic (in x and y) data, S. and Caflisch Comm.Math.Phys ’98

One of the main difficulties is that it is hard to get well posedness results on
Prandtl equations. Evidences of ill-posedness Gerard-Varet and Dormy
J.Am.Math.Soc.’10 Gerard-Varet and Nguyen Asym.Analysis’12

Recently, I.Kukavica and V.Vicol ARMA 2020, have improved the result,
showing that analyticity is necessary only close to the boundary.
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Large time behavior of the Navier-Stokes equations

Kolmogorov theory, using heuristic arguments derives that NS generates
eddies down to the cut-off length

λK = LR−3/4

Below that scale viscosity dissipates all the energy.
Therefore in a box [0, L]3 one must resolve

N = (L/λK )3 ∼ R9/4

This is the origin of the claim that 3D fully developed turbulence has R9/4

degrees of freedom.
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Large time behavior of the Navier-Stokes equations

The idea, very popular in the ’90’s, is to give a rigorous justification of the
Kolmogorov theory using the concept of attractor. For 2D NS the program
has been quite successful.

dattr ≤ (L/λKr )
2
[
1 + log (L/λKr )

2
]

V.Sciacca, M.E.Schonbek, M.Sammartino, Long time behavior for a dissipative shallow
water model, Ann. I.H.Poincaré, 34(2017)731?757.

Ghidaglia, J.M., Marzocchi, A. Exact Decay Estimates for Solutions to Semilinear
Parabolic Equations (1991) Applicable Analysis, 42 (1-4), pp. 69-81.

Bianchi, G., Marzocchi, A. Inertial manifold for the motion of strongly damped nonlinear
elastic beams. NoDEA, Nonlinear differ. equ. appl. 5, 181-192 (1998).

Giorgi, C., Pata, V. Marzocchi, A. Asymptotic behavior of a semilinear problem in heat
conduction with memory. NoDEA, Nonlinear differ. equ. appl. 5, 333?354 (1998).

Giorgi, C., Pata, V., Marzocchi, A. Uniform attractors for a non-autonomous semilinear
heat equation with memory (2000) Quarterly of Applied Mathematics, 58 (4), pp.
661-683.

Marzocchi, A., Necca, S.Z. Attractors for dynamical systems in topological spaces (2002)
Discrete and Continuous Dynamical Systems, 8 (3), pp. 585-597.
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