Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3

Tommaso Ruggeri
Department of Mathematics and Research Center of Applied Mathematics
University of Bologna
Università Cattolica del Sacro Cuore
Dipartimento di Matematica e Fisica "Niccolò Tartaglia"
January 23-25, 2017

Overview

(1) Constitutive Equations
(2) Elasticity and Thermoelasticity
(3) Fluids
(4) Heat equation
(5) Hyperbolic Systems
(6) Wave equation and method of the characteristics
(7) A non linear example: the Burgers equation
(8) Weak solutions and Shock waves
(9) Shock waves in Euler fluid

Balance Law of Energy

If we enlarge the framework from mechanics to thermodynamics we have also the balance law of energy. In this case

$$
\Psi=\rho e+\frac{\rho v^{2}}{2}, \quad \Phi_{i}=-t_{i j} v_{j}+q_{i}, \quad f=\mathbf{F} \cdot \mathbf{v}+r=\rho \mathbf{b} \cdot \mathbf{v}+r .
$$

Then

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{1}{2} \rho v^{2}+\rho e\right)+\frac{\partial}{\partial x_{i}}\left\{\left(\frac{1}{2} \rho v^{2}+\rho e\right) v_{i}-t_{i j} v_{j}+q_{i}\right\}=\rho b_{i} v_{i}+r . \tag{1}
\end{equation*}
$$

Therefore in thermo-mechanics we have the following system of Balance Laws:

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}+\frac{\partial \rho v_{i}}{\partial x_{i}}=0 \\
\frac{\partial \rho v_{j}}{\partial t}+\frac{\partial}{\partial x_{i}}\left(\rho v_{i} v_{j}-t_{i j}\right)=\rho b_{j} \quad(j=1,2,3) \tag{2}\\
\frac{\partial}{\partial t}\left(\frac{1}{2} \rho v^{2}+\rho e\right)+\frac{\partial}{\partial x_{i}}\left\{\left(\frac{1}{2} \rho v^{2}+\rho e\right) v_{i}-t_{i j} v_{j}+q_{i}\right\}=\rho b_{j} v_{j}+r .
\end{array}\right.
$$

Generic System of Balance Laws

The previous system of balance laws is a particular case of

$$
\begin{equation*}
\frac{\partial \mathbf{F}^{0}}{\partial t}+\frac{\partial \mathbf{F}^{i}}{\partial x^{i}}=\mathbf{f}, \quad \leftrightarrow \quad \frac{\partial \mathbf{F}^{\alpha}}{\partial x^{\alpha}}=\mathbf{f} \tag{3}
\end{equation*}
$$

$\mathbf{F}^{0}=\left(\begin{array}{c}\rho \\ \rho v_{1} \\ \rho v_{2} \\ \rho v_{3} \\ \frac{1}{2} \rho v^{2}+\rho e\end{array}\right) ; \quad \mathbf{F}^{i}=\left(\begin{array}{c}\rho v_{i} \\ \rho v_{i} v_{1}-t_{i 1} \\ \rho v_{i} v_{2}-t_{i 2} \\ \rho v_{i} v_{3}-t_{i 3} \\ \left(\frac{1}{2} \rho v^{2}+\rho e\right) v_{i}-t_{i j} v_{j}+q_{i}\end{array}\right) ; \quad \mathbf{f}=\left(\begin{array}{c}0 \\ \rho b_{1} \\ \rho b_{2} \\ \rho b_{3} \\ \rho b_{j} v_{j}+r\end{array}\right)$.
In general $\mathbf{F}^{0}, \mathbf{F}^{i}$ ef \mathbb{R}^{n} vectors.

Lagrangian form of Balance Laws

It is convenient in some case to use Lagrangian variables (\mathbf{X}, t) referring to the initial configuration. We know

$$
\begin{equation*}
d V=J d V^{*}, \quad \mathbf{n} d \Sigma=\mathbf{F}^{C} \mathbf{n}^{*} d \Sigma^{*} \tag{5}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{d}{d t} \int_{V} \Psi d V=-\int_{\Sigma} \Phi_{i} n_{i} d \Sigma+\int_{V} f d V \tag{6}
\end{equation*}
$$

can be rewritten

$$
\begin{equation*}
\frac{d}{d t} \int_{V^{*}} J \Psi d V^{*}=-\int_{\Sigma^{*}} \Phi_{i} F_{i A}^{C} n_{A}^{*} d \Sigma^{*}+\int_{V^{*}} f J d V^{*} \tag{7}
\end{equation*}
$$

Using Cauchy-Green theorem

$$
\int_{V^{*}} \frac{\partial}{\partial t}(J \Psi) d V^{*}+\int_{V^{*}} \frac{\partial \Phi_{i} F_{i A}^{C}}{\partial X_{A}} d V^{*}=\int_{V^{*}} f J d V^{*}
$$

and assuming regularity conditions

$$
\frac{\partial \Psi^{*}}{\partial t}+\frac{\partial \Phi_{A}^{*}}{\partial X_{A}}=f^{*}
$$

where

$$
\begin{equation*}
\psi^{*}=\frac{\rho^{*}}{\rho} \psi, \quad \Phi_{A}^{*}=\Phi_{i} F_{i A}^{C}, \quad f^{*}=\frac{\rho^{*}}{\rho} f . \tag{9}
\end{equation*}
$$

For example the Balance Laws of mass, momentum and energy becomes in Lagrangian variables:

$$
\left\{\begin{array}{l}
\rho=\rho^{*} / J \tag{10}\\
\frac{\partial \rho^{*} v_{j}}{\partial t}-\frac{\partial T_{j A}}{\partial X_{A}}=\rho^{*} b_{j} \\
\frac{\partial}{\partial t}\left(\rho^{*} \frac{v^{2}}{2}+\rho^{*} e\right)+\frac{\partial}{\partial X_{A}}\left(Q_{A}-T_{i A} v_{i}\right)=\rho^{*} b_{i} v_{i}+r^{*} .
\end{array}\right.
$$

where $\mathbf{T} \equiv\left(T_{i A}\right)$ is the Piola-Kirchhoff stress tensor

$$
\begin{equation*}
T_{j A}=t_{i j} F_{i A}^{C} \quad \Longleftrightarrow \quad \mathbf{T}=\mathbf{t} \mathbf{F}^{C} \tag{11}
\end{equation*}
$$

$\mathbf{Q} \equiv\left(Q_{A}\right)$ the Lagrangian heat flux

$$
\begin{equation*}
Q_{A}=q_{i} F_{i A}^{C} \quad \Longleftrightarrow \quad \mathbf{Q}=\mathbf{F}^{C T} \mathbf{q} \tag{12}
\end{equation*}
$$

and

$$
r^{*}=r \frac{\rho^{*}}{\rho}
$$

Constitutive Equations and Universal Principles

To close the system we need the constitutive equations that to be physical consistent need to verifies the following two principles:
(1) The Frame Indifference Principle - Objectivity that require that the constitutive equations are independent of the Observer
(2) The Entropy Principle, that require that admissible constitutive equations are such that every solution of the closed system is compatible with the second law of thermodynamics

Objectivity Principle

Figure: Material Indifference

Therefore the stress, the heat flux, the internal energy, are the same in \mathcal{C} and in \mathcal{C}^{\prime} except for a similitude transformation:

$$
\begin{equation*}
\mathbf{t}^{\prime}=\mathbf{R}^{T} \mathbf{t} \mathbf{R}, \quad \mathbf{q}^{\prime}=\mathbf{R}^{T} \mathbf{q}, \quad e^{\prime}=e \tag{14}
\end{equation*}
$$

The Entropy Principle

i) There exists an additive and objective scalar, which we call entropy;
ii) The entropy density s the flux of the entropy Φ_{i} are constitutive functions to be determined;
iii) The entropy production Σ is non-negative for all thermodynamic processes.

$$
\begin{equation*}
\frac{\partial \rho s}{\partial t}+\frac{\partial}{\partial x_{i}}\left(\rho s v_{i}+\Phi_{i}\right)=\Sigma \tag{15}
\end{equation*}
$$

This formulations is due to Müller. In the classical vision (Coleman-Noll) was considered the so called Clausius-Duhem entropy principle in which

$$
\begin{equation*}
\boldsymbol{\Phi}=\frac{\mathbf{q}}{\vartheta} . \tag{16}
\end{equation*}
$$

In this lectures we consider the simple case of Clausius-Duhem:

$$
\frac{\partial \rho s}{\partial t}+\frac{\partial}{\partial x_{i}}\left(\rho s v_{i}+\frac{q_{i}}{\vartheta}\right)=\Sigma \geq 0 .
$$

In the case of energy production the entropy principle is modified in

$$
\begin{equation*}
\frac{\partial \rho s}{\partial t}+\frac{\partial}{\partial x_{i}}\left(\rho s v_{i}+\frac{q_{i}}{\vartheta}\right)=\frac{r}{\vartheta}+\Sigma, \quad \Sigma \geq 0 . \tag{18}
\end{equation*}
$$

In Lagrangian variables the balance law of entropy becomes:

$$
\begin{equation*}
\frac{\partial \rho^{*} s}{\partial t}+\frac{\partial}{\partial X_{A}}\left(\frac{Q_{A}}{\vartheta}\right)=\frac{r^{*}}{\vartheta}+\Sigma^{*} ; \quad \Sigma^{*} \geq 0 \tag{19}
\end{equation*}
$$

with

$$
r^{*}=\frac{\rho^{*}}{\rho} r, \quad \Sigma^{*}=\frac{\rho^{*}}{\rho} \Sigma .
$$

Elastic body

A body is elastic if the stress tensor depend only on the gradient of deformation:

$$
\begin{equation*}
\mathbf{t} \equiv \mathbf{t}(\mathbf{F}) \tag{20}
\end{equation*}
$$

In this case we have

$$
\begin{equation*}
\frac{\partial^{2} \rho^{*} u_{i}}{\partial t^{2}}-\frac{\partial T_{i A}\left(\frac{\partial u_{k}}{\partial X_{B}}\right)}{\partial X_{A}}=\rho^{*} b_{i}, \tag{21}
\end{equation*}
$$

that can be rewritten as system of first order:

$$
\left\{\begin{array}{l}
\rho^{*} \frac{\partial v_{i}}{\partial t}-\frac{\partial T_{i A}\left(F_{k B}\right)}{\partial X_{A}}=\rho^{*} b_{i} \tag{22}\\
\frac{\partial F_{i A}}{\partial t}-\frac{\partial v_{i}}{\partial X_{A}}=0
\end{array}\right.
$$

in the unknown field $\mathbf{v} \equiv \mathbf{v}(\mathbf{X}, t)$ and $\mathbf{F} \equiv \mathbf{F}(\mathbf{X}, t)$.

Consequences of the Objectivity Principle in elasticity

Let \mathbf{S} the so called second tensor of Piola-Kirchhoff:

$$
\begin{equation*}
\mathbf{S}=\mathbf{F}^{-1} \mathbf{T} \in \text { Sym }, \quad \mathbf{t}=\frac{1}{J} \mathbf{F} \mathbf{S} \mathbf{F}^{T} . \tag{23}
\end{equation*}
$$

Theorem

Necessary and sufficient condition such that the objectivity principle hold is that the second tensor of Piola-Kirchhoff depends on \mathbf{F} only trough the deformation matrix \mathbf{E} :

$$
\mathbf{S} \equiv \mathbf{S}(\mathbf{E}) \text { or that is the same } \mathbf{S} \equiv \mathbf{S}(\mathbf{C})
$$

Proof: As the body is elastic we have:

$$
\mathbf{t}\left(\mathbf{F}^{\prime}\right)=\mathbf{R}^{T} \mathbf{t}(\mathbf{F}) \mathbf{R} \quad \forall \mathbf{R} \in \operatorname{Rot} \quad \text { con } \mathbf{F}^{\prime}=\mathbf{R}^{T} \mathbf{F}
$$

then

$$
\mathbf{t}\left(\mathbf{R}^{T} \mathbf{F}\right)=\mathbf{R}^{T} \mathbf{t}(\mathbf{F}) \mathbf{R} \quad \forall \mathbf{R} \in \operatorname{Rot} .
$$

Substituting $(23)_{2}$ in (24) we have

$$
\frac{1}{J} \mathbf{R}^{T} \mathbf{F S}\left(\mathbf{R}^{T} \mathbf{F}\right) \mathbf{F}^{T} \mathbf{R}=\frac{1}{J} \mathbf{R}^{T} \mathbf{F S}(\mathbf{F}) \mathbf{F}^{T} \mathbf{R} \quad \forall \mathbf{R} \in \operatorname{Rot}
$$

i.e.

$$
\begin{equation*}
\mathbf{S}\left(\mathbf{R}^{T} \mathbf{F}\right)=\mathbf{S}(\mathbf{F}) \quad \forall \mathbf{R} \in \operatorname{Rot} \tag{25}
\end{equation*}
$$

Recalling the polar theorem

$$
\begin{equation*}
\mathbf{F}=\hat{\mathbf{R}} \mathbf{U} \tag{26}
\end{equation*}
$$

and requiring that (25)is satisfied also for $\mathbf{R}=\hat{\mathbf{R}}$ we obtain

$$
\mathbf{S}(\mathbf{U})=\mathbf{S}(\mathbf{F})
$$

and therefore \mathbf{S} depends on \mathbf{F} only trough the dilatation \mathbf{U} or equivalently \mathbf{S} depends on $\mathbf{C}\left(\mathbf{C}=\mathbf{U}^{2}\right)$ or \mathbf{S} depends on $\mathbf{E}\left(\mathbf{E}=\frac{1}{2}(\mathbf{C}-\mathbf{I})\right)$:

$$
\mathbf{S} \equiv \mathbf{S}(\mathbf{E}) \quad \text { c.v.d. }
$$

From $(23)_{2}$ we have that the dependence of the stress tensor \mathbf{t} on \mathbf{F} must be

$$
\mathbf{t}(\mathbf{F})=\frac{1}{J} \mathbf{F} \mathbf{S}(\mathbf{E}) \mathbf{F}^{T}
$$

while the first Piola-Kirchhoff tensor

$$
\mathbf{T}(\mathbf{F})=\mathbf{F S}(\mathbf{E})
$$

Thermoelastic body

A body is thermoelastic if the constitutive equations depends on the gradient of deformation, the temperature and eventually of gradient of temperature:

$$
\left\{\begin{array}{l}
\mathbf{t} \equiv \mathbf{t}(\mathbf{F}, \vartheta) \tag{28}\\
e \equiv e(\mathbf{F}, \vartheta) \\
\mathbf{q}=-\chi(\mathbf{F}, \vartheta) \nabla \vartheta .
\end{array}\right.
$$

The last equation of (28) is the Fourier law in which χ denotes the heat conductibility.

Theorem

Necessary and sufficient condition such that the objectivity principle hold is that the second tensor of Piola-Kirchhoff, internal energy and heat conductivity depends on \mathbf{F} only trough the deformation matrix \mathbf{E} and on the temperature:

$$
\begin{equation*}
\mathbf{S} \equiv \mathbf{S}(\mathbf{E}, \vartheta), \quad e \equiv e(\mathbf{E}, \vartheta), \quad \chi \equiv \chi(\mathbf{E}, \vartheta) . \tag{29}
\end{equation*}
$$

The field equations

$$
\left\{\begin{array}{l}
\rho^{*} \frac{\partial v_{i}}{\partial t}-\frac{\partial T_{i A}}{\partial X_{A}}=\rho^{*} b_{i} \\
\frac{\partial F_{i A}}{\partial t}-\frac{\partial v_{i}}{\partial X_{A}}=0 \tag{30}\\
\rho^{*} \frac{\partial}{\partial t}\left(\frac{v^{2}}{2}+e\right)-\frac{\partial}{\partial X_{A}}\left(T_{i A} v_{i}-Q_{A}\right)=\rho^{*} b_{i} v_{i}+r^{*} .
\end{array}\right.
$$

can be rewritten taking into account that $e \equiv e(\mathbf{F}, \vartheta)$ in the form

$$
\left\{\begin{array}{l}
\rho^{*} \frac{\partial v_{i}}{\partial t}=\frac{\partial T_{i A}}{\partial X_{A}}+\rho^{*} b_{i} \tag{31}\\
\frac{\partial F_{i A}}{\partial t}=\frac{\partial v_{i}}{\partial X_{A}} \\
\frac{\partial \vartheta}{\partial t}=\frac{1}{\frac{\partial e}{\partial \vartheta}}\left\{\left(\frac{T_{i A}}{\rho^{*}}-\frac{\partial e}{\partial F_{i A}}\right) \frac{\partial v_{i}}{\partial X_{A}}-\frac{1}{\rho^{*}} \frac{\partial Q_{A}}{\partial X_{A}}+\frac{r^{*}}{\rho^{*}}\right\}
\end{array}\right.
$$

The Fourier law become in Lagrangian variables:

$$
Q_{A}=-\chi F_{i A}^{C} \frac{\partial \vartheta}{\partial x_{i}}=-\chi F_{i A}^{C} \frac{\partial \vartheta}{\partial X_{B}} \frac{\partial X_{B}}{\partial x_{i}}=-\chi J F_{A i}^{-1} F_{B i}^{-1} \frac{\partial \vartheta}{\partial X_{B}}
$$

i.e.

$$
\mathbf{Q}=-\chi J \mathbf{F}^{-1}\left(\mathbf{F}^{-1}\right)^{T} \operatorname{Grad} \vartheta \quad \mathbf{Q}=-\chi(\mathbf{E}, \vartheta) J \mathbf{C}^{-1} \operatorname{Grad} \vartheta
$$

where

$$
\operatorname{Grad} \vartheta \equiv\left(\frac{\partial \vartheta}{\partial X_{1}}, \frac{\partial \vartheta}{\partial X_{2}}, \frac{\partial \vartheta}{\partial X_{3}}\right) .
$$

Entropy principle in thermoelasticity

We now require the compatibility with the entropy principle, i.e. every solution of (31) must be solution of (19) assuming that the entropy principle is also a constitutive equation:

$$
\begin{equation*}
s \equiv s(\mathbf{F}, \vartheta) \tag{32}
\end{equation*}
$$

we have the following

Theorem (Entropy Principle)

Necessary an sufficient condition such that the entropy principle is satisfied is that there exists a scalar function the free energy, $\psi \equiv \psi(\mathbf{E}, \vartheta)$, such that

$$
\begin{equation*}
s=-\frac{\partial \psi}{\partial \vartheta}, \quad \mathbf{S}=\rho^{*} \frac{\partial \psi}{\partial \mathbf{E}}, \quad e=\psi-\vartheta \frac{\partial \psi}{\partial \vartheta} . \tag{33}
\end{equation*}
$$

Moreover the heat conductivity must be non negative:

$$
\chi(\mathbf{E}, \vartheta) \geq 0 .
$$

Proof: From (19) and (32) we have

$$
\rho^{*}\left(\frac{\partial s}{\partial F_{i A}} \frac{\partial F_{i A}}{\partial t}+\frac{\partial s}{\partial \vartheta} \frac{\partial \vartheta}{\partial t}\right)+\frac{1}{\vartheta} \frac{\partial Q_{A}}{\partial X_{A}}-\frac{1}{\vartheta^{2}} Q_{A} \frac{\partial \vartheta}{\partial X_{A}}-\frac{r^{*}}{\vartheta}=\Sigma^{*} \geq 0 .
$$

then

$$
\begin{align*}
\rho^{*}\left\{\frac{\partial s}{\partial F_{i A}}+\frac{\frac{\partial s}{\partial \vartheta}}{\frac{\partial e}{\partial \vartheta}}\left(\frac{T_{i A}}{\rho^{*}}-\frac{\partial e}{\partial F_{i A}}\right)\right\} & \} \frac{\partial v_{i}}{\partial X_{A}}+\left\{\frac{1}{\vartheta}-\frac{\frac{\partial s}{\partial \vartheta}}{\frac{\partial e}{\partial \vartheta}}\right\}\left(\frac{\partial Q_{A}}{\partial X_{A}}-r^{*}\right)+ \\
& +\frac{1}{\vartheta^{2}} \chi J \mathbf{C}^{-1} \operatorname{Grad} \vartheta \cdot \operatorname{Grad} \vartheta=\Sigma^{*} \geq 0 . \tag{34}
\end{align*}
$$

then

$$
\left\{\begin{array}{l}
\vartheta \frac{\partial s}{\partial \vartheta}=\frac{\partial e}{\partial \vartheta} \\
\vartheta \frac{\partial s}{\partial F_{i A}}=\frac{\partial e}{\partial F_{i A}}-\frac{T_{i A}}{\rho^{*}} \\
\chi \geq 0 .
\end{array}\right.
$$

The first two of (35) are equivalent to the so called GibBs equation (local equilibrium)

$$
\begin{equation*}
\vartheta d s=d e-\frac{1}{\rho^{*}} \mathbf{T} \cdot d \mathbf{F} \tag{36}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\vartheta d s=d e-\frac{1}{\rho^{*}} \mathbf{S} \cdot d \mathbf{E} . \tag{37}
\end{equation*}
$$

Let

$$
\begin{equation*}
\psi=e-\vartheta s, \tag{38}
\end{equation*}
$$

the free energy we obtain

$$
\begin{equation*}
d \psi=-s d \vartheta+\frac{1}{\rho^{*}} \mathbf{S} \cdot d \mathbf{E} . \tag{39}
\end{equation*}
$$

and we proved the conditions (33). Taking into account that

$$
\begin{equation*}
\Sigma^{*}=\frac{\chi J}{\vartheta^{2}} \mathbf{C}^{-1} \operatorname{Grad} \vartheta \cdot \operatorname{Grad} \vartheta \geq 0 \tag{40}
\end{equation*}
$$

then $\chi \geq 0$ and theorem is proved, In particular the first Piola-Kirchhofe tensor must be in the form

$$
\begin{equation*}
\mathbf{T}=\rho^{*} \mathbf{F} \frac{\partial \psi}{\partial \mathbf{E}} \tag{41}
\end{equation*}
$$

Ideal Fluids and Euler system

Definition

A fluid is ideal if the specific stress is normal and have pressure character:

$$
\begin{equation*}
\mathbf{t}_{n}=-p_{n} \mathbf{n} \quad p_{n} \geq 0 \quad \forall \mathbf{n} . \tag{42}
\end{equation*}
$$

For the Cauchy theorem we have

$$
p_{n} \mathbf{n}=p_{1} n_{1} \mathbf{e}_{1}+p_{2} n_{2} \mathbf{e}_{2}+p_{3} n_{3} \mathbf{e}_{3}
$$

and therefore we obtains soon the PASCAL result

$$
p_{n}=p_{1}=p_{2}=p_{3}=p \quad \forall \mathbf{n} .
$$

Then

$$
\begin{equation*}
\mathbf{t}_{n}=-p \mathbf{n} \quad p \geq 0 \quad \forall \mathbf{n} \tag{43}
\end{equation*}
$$

that implies that the stress tensor is isotropic

$$
\mathbf{t}=-p \mathbf{l}, \quad \mathbf{t} \equiv\left|\begin{array}{ccc}
-p & 0 & 0 \tag{44}\\
0 & -p & 0 \\
0 & 0 & -p
\end{array}\right|, \quad t_{i j}=-p \delta_{i j}
$$

In an ideal fluid is supposed also negligible the heat conductivity and then:

$$
\begin{equation*}
\mathbf{q}=0 \tag{45}
\end{equation*}
$$

Therefore the balance laws assume the form

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}+\frac{\partial \rho v_{i}}{\partial x_{i}}=0 \\
\frac{\partial \rho v_{j}}{\partial t}+\frac{\partial}{\partial x_{i}}\left(\rho v_{i} v_{j}+p \delta_{i j}\right)=\rho b_{j} \quad(j=1,2,3) \tag{46}\\
\frac{\partial}{\partial t}\left(\frac{\rho v^{2}}{2}+\rho e\right)+\frac{\partial}{\partial x_{i}}\left\{\left(\frac{\rho v^{2}}{2}+\rho e+p\right) v_{i}\right\}=\rho b_{j} v_{j}+r .
\end{array}\right.
$$

For prescribed thermal and caloric equation of state

$$
\begin{equation*}
p \equiv p(\rho, \vartheta), \quad e \equiv e(\rho, \vartheta) \tag{47}
\end{equation*}
$$

the system is closed and is called Euler system.

Fourier-Navier-Stokes Dissipative fluids

Definition

A real fluid have character of pressure only in equilibrium.
Then in nonequilibrium

$$
\begin{equation*}
\mathbf{t}=-p \mathbf{I}+\boldsymbol{\sigma}, \quad t_{i j}=-p \delta_{i j}+\sigma_{i j}, \tag{48}
\end{equation*}
$$

where $\boldsymbol{\sigma} \equiv\left\|\sigma_{i j}\right\| \in \operatorname{Sym}$ is the viscous stress tensor and is assumed that depends in the symmetric part of velocity gradient \mathbf{D} :

$$
\begin{equation*}
\sigma \equiv \sigma(\mathbf{D}), \quad \sigma(0)=0, \quad \mathbf{D}=\frac{1}{2}\left(\nabla \mathbf{v}+(\nabla \mathbf{v})^{T}\right) . \tag{49}
\end{equation*}
$$

For a real fluid the heat flux is not zero and depends on gradient of the temperature

$$
\begin{equation*}
\mathbf{q} \equiv \mathbf{q}(\nabla \vartheta), \quad \mathbf{q}(0)=0 . \tag{50}
\end{equation*}
$$

The most simple case is to suppose linear constitutive equations. For the heat flux we have seen the Fourier law:

$$
\begin{equation*}
\mathbf{q}=-\chi \nabla \vartheta, \quad \chi \equiv \chi(\rho, \vartheta) . \tag{51}
\end{equation*}
$$

While for the viscous stress tensor there is the assumptions of Navier Stokes) :

$$
\begin{equation*}
\boldsymbol{\sigma}=\lambda \operatorname{div} \mathbf{I}+2 \mu \mathbf{D}, \tag{52}
\end{equation*}
$$

i.e.

$$
\sigma_{i j}=\lambda \frac{\partial v_{k}}{\partial x_{k}} \delta_{i j}+\mu\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right) .
$$

It is more convenient to use orthogonal tensors and for this reason is convenient to decompose the matrix \mathbf{D} in the deviatoric part (traceless) and the isotropic part:

$$
\mathbf{D}=\mathbf{D}^{D}+\frac{1}{3} \operatorname{div} \mathbf{v} \mathbf{I}
$$

and the (52) becomes

$$
\begin{equation*}
\boldsymbol{\sigma}=\nu \operatorname{div} \mathbf{v} \mathbf{I}+2 \mu \mathbf{D}^{D} \tag{53}
\end{equation*}
$$

con

$$
\nu=\frac{1}{3}(3 \lambda+2 \mu) .
$$

The scalars ν e and μ are the so called bulk viscosity and shear viscosity respectively and they depends on the density and temperature:

$$
\nu \equiv \nu(\rho, \vartheta), \quad \mu \equiv \mu(\rho, \vartheta) .
$$

The stress tensor becomes

$$
\begin{equation*}
\mathbf{t}=-(p+\pi) \mathbf{I}+2 \mu \mathbf{D}^{D} \tag{55}
\end{equation*}
$$

where we have put

$$
\pi=-\nu \operatorname{div} \mathbf{v}
$$

For this reason π is called dynamic pressure, while

$$
\mathbf{t}^{D}=\boldsymbol{\sigma}^{D}=2 \mu \mathbf{D}^{D}
$$

is the deviatoric viscous stress tensor. A fluid is called Stokesian if $\nu=0$ (example are the Monatomic gases). The balance laws for Fourier-Navier-Stokes fluids becomes

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}+\frac{\partial \rho v_{i}}{\partial x_{i}}=0 \\
\frac{\partial \rho v_{j}}{\partial t}+\frac{\partial}{\partial x_{i}}\left(\rho v_{i} v_{j}+p \delta_{i j}-\sigma_{i j}\right)=\rho b_{j} \quad(j=1,2,3) \\
\frac{\partial}{\partial t}\left(\frac{\rho v^{2}}{2}+\rho e\right)+\frac{\partial}{\partial x_{i}}\left\{\left(\frac{\rho v^{2}}{2}+\rho e+p\right) v_{i}-\sigma_{i j} v_{j}+q_{i}\right\}=\rho b_{j} v_{j}
\end{array}\right.
$$

To close the system we need the constitutive equations:

$$
\begin{align*}
& p \equiv p(\rho, \vartheta) \quad \text { (pressure), } \quad e \equiv e(\rho, \vartheta) \quad \text { (internal energy), } \\
& \chi \equiv \chi(\rho, \vartheta) \quad \text { (heat conductivity), } \tag{57}\\
& \nu \equiv \nu(\rho, \vartheta) \quad \text { e } \quad \mu \equiv \mu(\rho, \vartheta) \quad \text { (bulk and shear viscosity). }
\end{align*}
$$

It is easy to prove that the previous system can be rewritten fro classical solutions in the form:

$$
\left\{\begin{array}{l}
\frac{d \rho}{d t}+\rho \operatorname{div} \mathbf{v}=0 \\
\rho \frac{d v_{j}}{d t}+\frac{\partial}{\partial x_{i}}\left(p \delta_{i j}-\sigma_{i j}\right)=\rho b_{j} \tag{58}\\
\rho \frac{d e}{d t}+p \operatorname{div} \mathbf{v}-\boldsymbol{\sigma} \cdot \mathbf{D}+\operatorname{div} \mathbf{q}=r
\end{array}\right.
$$

Taking into account that $e \equiv e(\rho, \vartheta)$ the last equation can be write

$$
\frac{d \vartheta}{d t}=\frac{1}{\rho \frac{\partial e}{\partial \vartheta}}\left\{r+\left(\rho^{2} \frac{\partial e}{\partial \rho}-p\right) \operatorname{div} \mathbf{v}+\boldsymbol{\sigma} \cdot \mathbf{D}-\operatorname{div} \mathbf{q}\right\} .
$$

Entropy principle for a fluid

The entropy principle require that every solutions of the fluid system satisfy also

$$
\begin{equation*}
\rho \frac{d s}{d t}+\frac{\partial}{\partial x_{i}}\left(\frac{q_{i}}{\vartheta}\right)-\frac{r}{\vartheta}=\Sigma \geq 0 . \tag{60}
\end{equation*}
$$

As the entropy density is a constitutive function $s \equiv s(\rho, \vartheta)$ we have

$$
\begin{align*}
& \left\{\frac{1}{\vartheta}-\frac{\frac{\partial s}{\partial \vartheta}}{\frac{\partial e}{\partial \vartheta}}\right\}(\operatorname{div} \mathbf{q}-r)+\operatorname{div} \mathbf{v}\left\{-\rho^{2} \frac{\partial s}{\partial \rho}+\left(\rho^{2} \frac{\partial e}{\partial \rho}-p\right) \frac{\frac{\partial s}{\partial \vartheta}}{\frac{\partial e}{\partial \vartheta}}\right\} \\
& +\frac{\frac{\partial s}{\partial \vartheta}}{\frac{\partial e}{\partial \vartheta}} \boldsymbol{\sigma} \cdot \mathbf{D}-\frac{1}{\vartheta^{2}} \mathbf{q} \cdot \nabla \vartheta=\Sigma \geq 0 . \tag{61}
\end{align*}
$$

Then

$$
\left\{\begin{array}{l}
\vartheta \frac{\partial S}{\partial \vartheta}=\frac{\partial e}{\partial \vartheta} \tag{62}\\
\vartheta \frac{\partial S}{\partial \rho}=\frac{\partial e}{\partial \rho}-\frac{p}{\rho^{2}} .
\end{array}\right.
$$

i.e. the Gibbs equation hold

$$
\begin{equation*}
\vartheta d s=d e-\frac{p}{\rho^{2}} d \rho . \tag{63}
\end{equation*}
$$

The residual inequality becomes for Fourier-Navier-Stokes

$$
\begin{gathered}
\Sigma=\frac{1}{\vartheta}\left(\lambda \operatorname{div} \mathbf{v} \mathbf{I}+2 \mu \mathbf{D}^{D}\right) \cdot \mathbf{D}+\frac{\chi}{\vartheta^{2}}|\nabla \vartheta|^{2}= \\
=\frac{1}{\vartheta}\left(\lambda(\operatorname{div} \mathbf{v})^{2}+2 \mu\left\|\mathbf{D}^{D}\right\|^{2}\right)+\frac{\chi}{\vartheta^{2}}|\nabla \vartheta|^{2} \geq 0,
\end{gathered}
$$

that implies

$$
\begin{equation*}
\lambda(\rho, \vartheta) \geq 0, \quad \mu(\rho, \vartheta) \geq 0, \quad \chi(\rho, \vartheta) \geq 0 . \tag{64}
\end{equation*}
$$

Introducing the free energy

$$
\begin{equation*}
\psi=e-\vartheta s \tag{65}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
d \psi=\frac{p}{\rho^{2}} d \rho-s d \vartheta . \tag{66}
\end{equation*}
$$

and then

$$
\begin{equation*}
p=\rho^{2} \frac{\partial \psi}{\partial \rho}, \quad s=-\frac{\partial \psi}{\partial \vartheta}, \quad e=\psi-\vartheta \frac{\partial \psi}{\partial \vartheta} . \tag{67}
\end{equation*}
$$

Heat equation

In the case of a rigid heat conductor we have only the energy balance

$$
\begin{equation*}
\rho^{*} \frac{\partial e}{\partial t}+\operatorname{div} \mathbf{q}=r \tag{68}
\end{equation*}
$$

with the constitutive Fourier equation:

$$
\begin{equation*}
\mathbf{q}=-\chi \nabla \vartheta \tag{69}
\end{equation*}
$$

and

$$
\begin{equation*}
e \equiv e(\vartheta) \quad \text { e } \quad \chi \equiv \chi(\vartheta) \tag{70}
\end{equation*}
$$

Substituting the (69) and (70) in (68) we have

$$
\begin{equation*}
\rho^{*} c_{V}(\vartheta) \frac{\partial \vartheta}{\partial t}-\operatorname{div}(\chi \nabla \vartheta)=r \tag{71}
\end{equation*}
$$

with

$$
c_{V}(\vartheta)=e^{\prime}(\vartheta)=\frac{d e}{d \vartheta} \quad \text { (specific heat). }
$$

Then (71) becomes:

$$
\begin{equation*}
\frac{\partial \vartheta}{\partial t}-\mu \Delta \vartheta-\nu(\operatorname{grad} \vartheta)^{2}=r \tag{72}
\end{equation*}
$$

where

$$
\mu(\vartheta)=\frac{\chi(\vartheta)}{\rho^{*} c_{V}(\vartheta)} ; \quad \nu(\vartheta)=\frac{\chi^{\prime}(\vartheta)}{\rho^{*} c_{V}(\vartheta)} ; \quad \chi^{\prime}(\vartheta)=\frac{d \chi(\vartheta)}{d \vartheta} .
$$

in the simple case in which χ and c_{V} are constants and we have no supply $r=0$, the equation assume the usual form of heat equation:

$$
\begin{equation*}
\frac{\partial \vartheta}{\partial t}-\mu \Delta \vartheta=0 . \tag{73}
\end{equation*}
$$

that is the typical parabolic equation If we prescribe the initial data

$$
\begin{equation*}
\vartheta(\mathbf{x}, 0)=\vartheta_{0}(\mathbf{x}), \tag{74}
\end{equation*}
$$

the solution is

$$
\begin{equation*}
\vartheta(\mathbf{x}, t)=\frac{1}{(4 \pi \mu t)^{3 / 2}} \int_{-\infty}^{+\infty} \vartheta_{0}(\mathbf{y}) \exp \left(-\frac{(\mathbf{y}-\mathbf{x})^{2}}{4 \mu t}\right) d \mathbf{y} \tag{75}
\end{equation*}
$$

and for an initial data having support compact we have the so called heat paradox of infinite propagation.

Cattaneo Equation

Carlo Cattaneo propose to modify the Fourier law:

$$
\begin{equation*}
\mathbf{q}=-\chi \nabla \vartheta+\chi \tau \nabla \dot{\vartheta} \quad(\dot{\vartheta}=\partial \vartheta / \partial t), \tag{76}
\end{equation*}
$$

where τ is a relaxation time. The (76) can be rewritten as:

$$
\begin{equation*}
\mathbf{q}=-\chi\left(1-\tau \frac{\partial}{\partial t}\right) \nabla \vartheta . \tag{77}
\end{equation*}
$$

If τ is small enough the inverse operator is

$$
\begin{equation*}
\left(1-\tau \frac{\partial}{\partial t}\right)^{-1} \simeq 1+\tau \frac{\partial}{\partial t} \tag{78}
\end{equation*}
$$

then from (78) and (77) we obtain the Cattaneo equation

$$
\begin{equation*}
\tau \frac{\partial \mathbf{q}}{\partial t}+\mathbf{q}=-\chi \nabla \vartheta . \tag{79}
\end{equation*}
$$

Combining this equation with the energy equation we obtain the hyperbolic telegraphist equation

$$
\begin{equation*}
\tau \frac{\partial^{2} \vartheta}{\partial t^{2}}+\frac{\partial \vartheta}{\partial t}-\mu \Delta \vartheta=0 \tag{80}
\end{equation*}
$$

Hyperbolic Systems

The hyperbolic systems of continuum mechanic are balance laws

$$
\begin{equation*}
\frac{\partial \mathbf{F}^{\alpha}(\mathbf{u})}{\partial x^{\alpha}}=\mathbf{f}(\mathbf{u}) \tag{81}
\end{equation*}
$$

with \mathbf{F}^{α} e \mathbf{f} local function of \mathbf{u}. The (81) can be rewritten

$$
\begin{equation*}
\mathbf{A}^{\alpha}(\mathbf{u}) \frac{\partial \mathbf{u}}{\partial x^{\alpha}}=\mathbf{f}(\mathbf{u}), \quad \mathbf{A}^{\alpha}=\frac{\partial \mathbf{F}^{\alpha}}{\partial \mathbf{u}} . \tag{82}
\end{equation*}
$$

Definition (Hyperbolic System)

A system (82) is hyperbolic in the time direction if
a) $\operatorname{det} \mathbf{A}^{0} \neq 0$;
b) The following eigenvalue problem

$$
\begin{equation*}
\left(\mathbf{A}_{n}-\lambda \mathbf{A}^{0}\right) \mathbf{d}=\mathbf{0}, \quad\left(\mathbf{A}_{n}=\mathbf{A}^{i} n_{i}\right) \tag{83}
\end{equation*}
$$

$\forall \mathbf{n} \in \mathbb{R}^{3}:\|\mathbf{n}\|=1$, admits real eigenvalues λ and the eigenvectors \mathbf{d} are linearly independent

Example of Euler system

Choosing as field

$$
\mathbf{u} \equiv\left(\rho, v_{1}, v_{2}, v_{3}, s\right)^{T}
$$

the Euler system becomes in the form (82) with:

$$
\mathbf{A}^{0} \equiv\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right), \quad \mathbf{A}^{1} \equiv\left(\begin{array}{ccccc}
v_{1} & \rho & 0 & 0 & 0 \\
p_{\rho} / \rho & v_{1} & 0 & 0 & p_{S} / \rho \\
0 & 0 & v_{1} & 0 & 0 \\
0 & 0 & 0 & v_{1} & 0 \\
0 & 0 & 0 & 0 & v_{1}
\end{array}\right)
$$

$$
\mathbf{A}^{2} \equiv\left(\begin{array}{ccccc}
v_{2} & 0 & \rho & 0 & 0 \\
0 & v_{2} & 0 & 0 & 0 \\
p_{\rho} / \rho & 0 & v_{2} & 0 & p_{S} / \rho \\
0 & 0 & 0 & v_{2} & 0 \\
0 & 0 & 0 & 0 & v_{2}
\end{array}\right), \quad \mathbf{A}^{3} \equiv\left(\begin{array}{ccccc}
v_{3} & 0 & 0 & \rho & 0 \\
0 & v_{3} & 0 & 0 & 0 \\
0 & 0 & v_{3} & 0 & 0 \\
p_{\rho} / \rho & 0 & 0 & v_{3} & p_{S} / \rho \\
0 & 0 & 0 & 0 & v_{3}
\end{array}\right),
$$

then $\left(v_{n}=\mathbf{v} \cdot \mathbf{n}\right)$

$$
\mathbf{A}_{n}=\mathbf{A}^{i} n_{i} \equiv\left(\begin{array}{ccccc}
v_{n} & \rho n_{1} & \rho n_{2} & \rho n_{3} & 0 \\
\frac{p_{\rho}}{\rho} n_{1} & v_{n} & 0 & 0 & \frac{p_{S}}{\rho} n_{1} \\
\frac{p_{\rho}}{\rho} n_{2} & 0 & v_{n} & 0 & \frac{p_{S}}{\rho} n_{2} \\
\frac{p_{\rho}}{\rho} n_{3} & 0 & 0 & v_{n} & \frac{p_{S}}{\rho} n_{3} \\
0 & 0 & 0 & 0 & v_{n}
\end{array}\right)
$$

that have eigenvalues

$$
\begin{equation*}
\lambda^{(1)}=v_{n}-c ; \quad \lambda^{(2)}=\lambda^{(3)}=\lambda^{(4)}=v_{n} ; \quad \lambda^{(5)}=v_{n}+c, \tag{84}
\end{equation*}
$$

and eigenvectors

$$
\begin{aligned}
& \mathbf{d}^{(1)} \equiv\left(\rho,-c n_{1},-c n_{2},-c n_{3}, 0\right)^{T}, \quad \mathbf{d}^{(5)} \equiv\left(\rho, c n_{1}, c n_{2}, c n_{3}, 0\right)^{T}, \\
& \mathbf{d}^{(2)} \equiv\left(-p_{s}, 0,0,0, c^{2}\right)^{T}, \quad \mathbf{d}^{(3)} \equiv\left(0,-n_{3}, 0, n_{1}, 0\right)^{T}, \quad \mathbf{d}^{(4)} \equiv\left(0,-n_{2}, n_{1}, 0,0\right)^{T},
\end{aligned}
$$

Example of Cattaneo system

Instead to construct the matrix is more convenient to apply the following rule from the system

$$
\begin{equation*}
\frac{\partial}{\partial t} \rightarrow-\lambda \delta, \quad \frac{\partial}{\partial x_{i}} \rightarrow n_{i} \delta, \quad \mathbf{f} \rightarrow 0 \tag{86}
\end{equation*}
$$

obtaining immediately

$$
\begin{equation*}
\left(\mathbf{A}_{n}-\lambda \mathbf{A}^{0}\right) \delta \mathbf{u}=0 \tag{87}
\end{equation*}
$$

from which we deduce that $\delta \mathbf{u}$ coincide qith the right eigenvector \mathbf{d}. For example from Cattaneo system

$$
\left\{\begin{array}{l}
\rho^{*} c_{V}(\vartheta) \frac{\partial \vartheta}{\partial t}+\frac{\partial q_{i}}{\partial x_{i}}=r \\
\tau(\vartheta) \frac{\partial q_{i}}{\partial t}+\chi(\vartheta) \frac{\partial \vartheta}{\partial x_{i}}=-q_{i},
\end{array}\right.
$$

we have

$$
\left\{\begin{array}{l}
-\rho^{*} c_{V}(\vartheta) \lambda \delta \vartheta+\delta q_{n}=0 \tag{88}\\
-\lambda \tau(\vartheta) \delta q_{i}+\chi(\vartheta) n_{i} \delta \vartheta=0
\end{array}\right.
$$

con $\delta q_{n}=\delta q_{i} n_{i}$. Da (88) and we have

$$
\begin{gathered}
\lambda^{(1)}=-\sqrt{\frac{\chi}{\rho^{*} c_{V} \tau}} ; \quad \lambda^{(2)}=\lambda^{(3)}=0 ; \quad \lambda^{(4)}=\sqrt{\frac{\chi}{\rho^{*} c_{V} \tau}} ; \\
\mathbf{d}^{(1)} \equiv\left(1, \frac{\chi}{\lambda_{1} \tau} \mathbf{n}\right) ; \quad \mathbf{d}^{(2)} \equiv\left(0, \mathbf{w}_{1}\right) ; \quad \mathbf{d}^{(3)} \equiv\left(0, \mathbf{w}_{2}\right) ; \quad \mathbf{d}^{(4)} \equiv\left(1, \frac{\chi}{\lambda_{4} \tau} \mathbf{n}\right) ;
\end{gathered}
$$

con \mathbf{w}_{1} e $\mathbf{w}_{2}: \mathbf{w}_{1} \cdot \mathbf{n}=\mathbf{w}_{2} \cdot \mathbf{n}=\mathbf{w}_{1} \cdot \mathbf{w}_{2}=0$ and the system is hyperbolic provided $\tau>0$:

Wave equation and method of the characteristics

Let consider the wave equation in one space dimension

$$
\begin{equation*}
U_{t t}-c^{2} U_{x x}=0 \tag{89}
\end{equation*}
$$

Let

$$
\begin{equation*}
U_{t}=v, \quad U_{x}=w . \tag{90}
\end{equation*}
$$

that the equation can be rewritten as system of first order

$$
\left\{\begin{array}{l}
v_{t}-c^{2} w_{x}=0 \tag{91}\\
w_{t}-v_{x}=0
\end{array}\right.
$$

that belong on the form

$$
\begin{equation*}
\mathbf{u}_{t}+\mathbf{A} \mathbf{u}_{x}=0 \tag{92}
\end{equation*}
$$

with

$$
\mathbf{u}=(v, w)^{T}, \quad \mathbf{A}=\left(\begin{array}{rc}
0 & -c^{2} \tag{93}\\
-1 & 0
\end{array}\right) .
$$

The eigenvalues and the right eigenvectors are

$$
\begin{gathered}
\lambda^{(1)}=-c ; \quad \lambda^{(2)}=c ; \\
\mathbf{d}^{(1)} \equiv\binom{c}{1} ; \quad \mathbf{d}^{(2)} \equiv\binom{-c}{1} .
\end{gathered}
$$

Let I the left eigenvector of \mathbf{A}, i.e.:

$$
\begin{equation*}
\mathbf{I} \mathbf{A}=\lambda \mathbf{I} \tag{96}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathbf{I}^{(1)} \equiv(1, c) ; \quad \mathbf{I}^{(2)} \equiv(1,-c) . \tag{97}
\end{equation*}
$$

We assign the initial data

$$
\begin{equation*}
U(x, 0)=\varphi(x), \quad U_{t}(x, 0)=\psi(x) . \tag{98}
\end{equation*}
$$

i.e. for the first order system

$$
\begin{equation*}
v(x, 0)=\psi(x), \quad w(x, 0)=\varphi^{\prime}(x) ; \quad \text { con } \quad \varphi^{\prime}(x)=\frac{d \varphi}{d x} \tag{99}
\end{equation*}
$$

Multiplying the (92) for the left eigenvector we have

$$
\begin{equation*}
\mathbf{I}\left\{\mathbf{u}_{t}+\mathbf{A} \mathbf{u}_{x}\right\}=0 \Leftrightarrow \mathbf{I}\left\{\mathbf{u}_{t}+\lambda \mathbf{u}_{x}\right\}=0 \tag{100}
\end{equation*}
$$

and we define the characteristic line in the space-time as:

$$
\frac{d x}{d t}=\lambda .
$$

Figure: Characteristic lines

In the present case we have two characteristic lines

$$
\begin{align*}
& \mathcal{C}^{1} \Rightarrow \frac{d x}{d t}=\lambda^{(1)} \tag{102}\\
& \mathcal{C}^{2} \Rightarrow \frac{d x}{d t}=\lambda^{(2)} \quad \Rightarrow x=-c t+x_{1} \tag{103}\\
&
\end{align*}
$$

Alwhes

We consider the directional derivative

$$
\begin{equation*}
\frac{d}{d t}=\partial_{t}+\lambda \partial_{x} \tag{104}
\end{equation*}
$$

obtaining

$$
\begin{equation*}
\mathbf{I} \cdot \frac{d \mathbf{u}}{d t}=0 \tag{105}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{d}{d t}\left(\mathbf{I}^{(1)} \cdot \mathbf{u}\right)=0 \quad\left(\operatorname{su} \mathcal{C}^{1}\right), \quad \frac{d}{d t}\left(\mathbf{I}^{(2)} \cdot \mathbf{u}\right)=0 \quad\left(\operatorname{su} \mathcal{C}^{2}\right) \tag{106}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& \mathbf{l}^{(1)} \cdot \mathbf{u}(x, t)=\mathbf{I}^{(1)} \cdot \mathbf{u}\left(x_{1}, 0\right) \tag{107}\\
& \mathbf{I}^{(2)} \cdot \mathbf{u}(x, t)=\mathbf{I}^{(2)} \cdot \mathbf{u}\left(x_{2}, 0\right) \tag{108}
\end{align*}
$$

Let $\mathbf{u}_{0}(x)$ the initial data of \mathbf{u} :

$$
\mathbf{u}(x, 0)=\mathbf{u}_{0}(x)
$$

Therefore

$$
\left\{\begin{array}{l}
\mathbf{I}^{(1)} \cdot \mathbf{u}(x, t)=\mathbf{l}^{(1)} \cdot \mathbf{u}_{0}(x+c t) \tag{109}\\
\mathbf{l}^{(2)} \cdot \mathbf{u}(x, t)=\mathbf{l}^{(2)} \cdot \mathbf{u}_{0}(x-c t)
\end{array}\right.
$$

In the present case we have the algebraic system:

$$
\left\{\begin{array}{l}
v(x, t)+c w(x, t)=\psi(x+c t)+c \varphi^{\prime}(x+c t) \\
v(x, t)-c w(x, t)=\psi(x-c t)-c \varphi^{\prime}(x-c t)
\end{array}\right.
$$

Then the solution

$$
\begin{align*}
v(x, t) & =\frac{1}{2}\left\{\psi(x+c t)+\psi(x-c t)+c\left[\varphi^{\prime}(x+c t)-\varphi^{\prime}(x-c t)\right]\right\} \tag{110}\\
w(x, t) & =\frac{1}{2 c}\left\{\psi(x+c t)-\psi(x-c t)+c\left[\varphi^{\prime}(x+c t)+\varphi^{\prime}(x-c t)\right]\right\} \tag{111}
\end{align*}
$$

or

$$
\begin{equation*}
U(x, t)=\frac{1}{2 c}\{\Gamma(x+c t)-\Gamma(x-c t)+c[\varphi(x+c t)+\varphi(x-c t)]\} \tag{112}
\end{equation*}
$$

with

$$
\Gamma(\xi)=\int_{0}^{\xi} \psi(\tau) d \tau
$$

Linear systems

In the case of a generic first order system of N equations if we represent the initial data in the basis of right eigenvectors

$$
\begin{equation*}
\mathbf{u}(x, t)=\sum_{j=1}^{N} \Pi^{j}(x, t) \mathbf{d}^{(j)} \tag{113}
\end{equation*}
$$

proceeding in the same way with the method of characteristic it is possible to prove that the solution is a combination of N waves:

$$
\begin{equation*}
\mathbf{u}(x, t)=\sum_{j=1}^{N} \Pi_{0}^{j}\left(x-\lambda^{j} t\right) \mathbf{d}^{(j)} \tag{114}
\end{equation*}
$$

A non linear example: the Burgers equation

Let consider the non linear Burgers equation

$$
\begin{equation*}
u_{t}+u u_{x}=0 \tag{115}
\end{equation*}
$$

The characteristc is

$$
\begin{equation*}
\frac{d x}{d t}=u(x, t) \tag{116}
\end{equation*}
$$

But

$$
\begin{equation*}
\frac{d u}{d t}=u_{t}+\lambda u_{x}=u_{t}+u u_{x}=0 . \tag{117}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
u(x, t)=u_{0}\left(x_{0}\right) . \tag{118}
\end{equation*}
$$

Therefore also in this case the charcateristc is a line and

$$
x=x_{0}+u_{0}\left(x_{0}\right) t
$$

Figure: Caratteristica e tempo critico dell'equazione di Burgers
but the slope of the line depends on x_{0} (see figure).

The determination of the critical time is simple In fact the (118) and (119) are solution in paramteric form: for a fixed time t the depenmdence of u from x is tyrouth the paarmeter x_{0}. Then invertibility is lost when $d x / d x_{0}=0$ and then:

$$
t_{c}\left(x_{0}\right)=-\frac{1}{u^{\prime}\left(x_{0}\right)}
$$

the critical time is

$$
\begin{equation*}
t_{c r}=\inf _{x_{0}}\left\{t_{c}\left(x_{0}\right)>0\right\} . \tag{120}
\end{equation*}
$$

Figure: Critical time for Burtgers equation

Weak solutions

Figure: weak solutions
Let a system of balance laws

$$
\begin{equation*}
\partial_{\alpha} \mathbf{F}^{\alpha}(\mathbf{u})=\mathbf{f}(\mathbf{u}) . \tag{121}
\end{equation*}
$$

Let \mathcal{C} a domain in the space-time and multiply (121) for a test function ϕ, with support in \mathcal{C} and we have

$$
\begin{equation*}
\int_{\mathcal{C}} \phi\left(\partial_{\alpha} \mathbf{F}^{\alpha}-\mathbf{f}\right) d \mathcal{C}=0 \tag{122}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{\mathcal{C}} \partial_{\alpha}\left(\phi \mathbf{F}^{\alpha}\right) d \mathcal{C}-\int_{\mathcal{C}}\left(\mathbf{F}^{\alpha} \partial_{\alpha} \phi+\mathbf{f} \phi\right) d \mathcal{C}=0 . \tag{123}
\end{equation*}
$$

Using the Gauss-Green theorem

$$
\begin{equation*}
\int_{\Sigma} \nu_{\alpha}\left(\phi \mathbf{F}^{\alpha}\right) d \Sigma-\int_{\mathcal{C}}\left(\mathbf{F}^{\alpha} \partial_{\alpha} \phi+\mathbf{f} \phi\right) d \mathcal{C}=0 \tag{124}
\end{equation*}
$$

then (assuming zero initial data)

$$
\begin{equation*}
\int_{\mathcal{C}} \mathbf{F}^{\alpha} \partial_{\alpha} \phi d \mathcal{C}+\int_{\mathcal{C}} \mathbf{f} \phi d \mathcal{C}=0 \tag{125}
\end{equation*}
$$

A solution of (125) for any test function ϕ is called a weak solution of (121).

Shock waves

If exists a regular surface Γ with unit normal \mathbf{n} moving with normal velocity s separating the space in two sub-spaces in which there are classical smooth solutions \mathbf{u}_{0} and \mathbf{u}_{1} such that their limit values in the surface are different we call this kind of solution a shock wave. Let denoting the jump with a square bracket:

$$
[\mathbf{u}]=\left.\mathbf{u}_{1}\right|_{\varphi^{-}}-\left.\mathbf{u}_{0}\right|_{\varphi^{+}} \quad(\operatorname{su} \Gamma)
$$

We want to prove that a shock wave is a weak solution if and only if across the surface there exists some compatibility conditions called Rankine-Hugoniot conditions. Let condider a surface in the space time σ of normal φ_{α} (see Figura 7). We have from (124)

$$
\begin{aligned}
\int_{\Sigma^{+} \cup \sigma^{+}} \varphi_{\alpha}^{+} \phi \mathbf{F}_{+}^{\alpha} d \Sigma^{*}-\int_{\mathcal{C}^{+}}\left(\mathbf{F}_{+}^{\alpha} \partial_{\alpha} \phi+\mathbf{f}_{+} \phi\right) d \mathcal{C}^{+} & =0 \\
\int_{\Sigma^{-} \cup \sigma-} \varphi_{\alpha}^{-} \phi \mathbf{F}_{-}^{\alpha} d \Sigma^{*}-\int_{\mathcal{C}^{-}}\left(\mathbf{F}_{-}^{\alpha} \partial_{\alpha} \phi+\mathbf{f}_{-} \phi\right) d \mathcal{C}^{-} & =0
\end{aligned}
$$

Figure: Onda d'urto

Figure: Soluzioni deboli tipo onde d'urto.

Then

$$
\begin{align*}
& \int_{\sigma^{+}} \varphi_{\alpha}^{+} \phi \mathbf{F}_{+}^{\alpha} d \sigma^{+}-\int_{\mathcal{C}^{+}}\left(\mathbf{F}_{+}^{\alpha} \partial_{\alpha} \phi+\mathbf{f}_{+} \phi\right) d \mathcal{C}^{+}=0 \tag{126}\\
& \int_{\sigma_{-}} \varphi_{\alpha}^{-} \phi \mathbf{F}_{-}^{\alpha} d \sigma^{-}-\int_{\mathcal{C}^{-}}\left(\mathbf{F}_{-}^{\alpha} \partial_{\alpha} \phi+\mathbf{f}_{-} \phi\right) d \mathcal{C}^{-}=0
\end{align*}
$$

Rankine-Hugoniot equations

Summing (126) e (127) we have

$$
\begin{equation*}
\int_{\sigma^{+}} \varphi_{\alpha}^{+} \phi \mathbf{F}_{+}^{\alpha} d \sigma^{+}+\int_{\sigma-} \varphi_{\alpha}^{-} \phi \mathbf{F}_{-}^{\alpha} d \sigma^{-}-\int_{\mathcal{C}}\left(\mathbf{F}^{\alpha} \partial_{\alpha} \phi+\mathbf{f} \phi\right) d \mathcal{C}=0 . \tag{128}
\end{equation*}
$$

The last integral vanish and therefore we mush have in the surface:

$$
\begin{equation*}
\int_{\sigma} \varphi_{\alpha}\left(\mathbf{F}_{+}^{\alpha}-\mathbf{F}_{-}^{\alpha}\right) \phi d \sigma=0 \tag{129}
\end{equation*}
$$

and then

$$
\begin{equation*}
\left(\mathbf{F}_{+}^{\alpha}-\mathbf{F}_{-}^{\alpha}\right) \varphi_{\alpha}=0 \tag{130}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\left[\mathbf{F}^{\alpha}\right] \varphi_{\alpha}=0 . \tag{131}
\end{equation*}
$$

This means that the normal components in the space time of \mathbf{F}^{α} must be continuous across the surface. Dividing space and time

$$
\begin{equation*}
\varphi_{0}=-s, \quad \varphi_{i}=n_{i} \tag{132}
\end{equation*}
$$

and assuming $\mathbf{u} \equiv \mathbf{F}^{0}$ we can rewrite the $\mathrm{R}-\mathrm{H}$ conditions in the usual form

$$
\begin{equation*}
-s[\mathbf{u}]+\left[\mathbf{F}^{i}\right] n_{i}=0 \tag{133}
\end{equation*}
$$

or explicitly

$$
\begin{equation*}
-s \mathbf{u}_{1}+\mathbf{F}^{i}\left(\mathbf{u}_{1}\right) n_{i}=-s \mathbf{u}_{0}+\mathbf{F}^{i}\left(\mathbf{u}_{0}\right) n_{i}, \tag{134}
\end{equation*}
$$

The R-H conditions formally can be write from the differential system with the operator rule

$$
\begin{equation*}
\partial_{t} \rightarrow-s[\cdot], \quad \partial_{i} \rightarrow n_{i}[\cdot], \quad \mathbf{f} \rightarrow 0 . \tag{135}
\end{equation*}
$$

Let

$$
\begin{equation*}
\boldsymbol{\Psi}_{s}(\mathbf{u})=-s \mathbf{u}+\mathbf{F}^{i}(\mathbf{u}) n_{i} . \tag{136}
\end{equation*}
$$

then the R - H implies

This require the non invertibility of the function $\boldsymbol{\Psi}_{s}(\mathbf{u})$.

We have

$$
\begin{equation*}
\frac{\partial \boldsymbol{\Psi}_{s}}{\partial \mathbf{u}}=-s \mathbf{I}+\mathbf{A}^{i} n_{i} \tag{138}
\end{equation*}
$$

then bifurcation point are the one when s meet an unperturbed eigenvalue λ_{0} (k-shocks)

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{A}_{n}-\lambda \mathbf{I}\right)_{\mathbf{u}_{0}}=0 . \tag{139}
\end{equation*}
$$

$$
\mathbf{u}_{1} \equiv \mathbf{u}_{1}\left(\mathbf{u}_{0}, s, \mathbf{n}\right)
$$

Shock waves in Euler fluid

The R-H for Euler system becomes:

$$
\begin{gather*}
-s[\rho]+\left[\rho v_{n}\right]=0 \tag{141}\\
-s[\rho \mathbf{v}]+\left[\rho v_{n} \mathbf{v}+p \mathbf{n}\right]=0 \tag{142}\\
-s\left[\rho \frac{v^{2}}{2}+\rho e\right]+\left[\left(\rho \frac{v^{2}}{2}+\rho e+p\right) v_{n}\right]=0 \tag{143}
\end{gather*}
$$

where $v_{n}=\mathbf{v} \cdot \mathbf{n}$. Let introduce the MACH number and the specific volume

$$
\begin{equation*}
M_{0}=\frac{s-v_{0 n}}{c_{0}}, \quad V=\frac{1}{\rho}, \tag{144}
\end{equation*}
$$

then the solution of the $\mathrm{R}-\mathrm{H}$ are

$$
\begin{align*}
p & =p_{0}+\frac{2 \gamma}{\gamma+1} p_{0}\left(M_{0}^{2}-1\right) . \tag{145}\\
V & =V_{0}-\frac{2}{\gamma+1} V_{0} \frac{M_{0}^{2}-1}{M_{0}^{2}} \tag{146}\\
\mathbf{v} & =\mathbf{v}_{0}+\frac{2 c_{0}}{\gamma+1} \frac{M_{0}^{2}-1}{M_{0}} \mathbf{n} . \tag{147}
\end{align*}
$$

From (145) and (146) we have

$$
\begin{equation*}
\frac{[p]}{[V]}=-\frac{c_{0}^{2} M_{0}^{2}}{V_{0}^{2}} \leq 0 . \tag{148}
\end{equation*}
$$

Then we have two possibilities
i) $[p]>0$ e $[V]<0$: corresponding to $M_{0}^{2}>1$,
ii) $[p]<0$ e $[V]>0$: corresponding to $M_{0}^{2}<1$.

Mathematically both are acceptable but which of the two is physical consistent? For this reason we calculate the $\mathrm{R}-\mathrm{H}$ relative to the entropy law

$$
\begin{equation*}
\eta=s[\rho S]-\left[\rho S v_{n}\right]=\left[\rho\left(s-v_{n}\right) S\right] \tag{149}
\end{equation*}
$$

If the weak solution of teh system is also weak solution of the entropy law η must be zero, while η is not null. In fact we have

$$
\begin{equation*}
\eta=\rho_{0} c_{0} c_{V} M_{0} \log \left\{\left(\frac{2+M_{0}^{2}(\gamma-1)}{M_{0}^{2}(\gamma+1)}\right)^{\gamma} \frac{2 M_{0}^{2} \gamma+1-\gamma}{1+\gamma}\right\} \tag{150}
\end{equation*}
$$

Entropy growth across the shock

Figure: Entropy growth across the shock

As η have the meaning of the production of entopy across the shock we need to require

$$
\eta \geq 0
$$

and then

$$
M_{0}^{2}>1
$$

(d)

(b)

(e)

(c)

(f)

We note that

$$
\lim _{M_{0} \rightarrow \pm \infty} \frac{V}{V_{0}}=\frac{\gamma-1}{\gamma+1} .
$$

In reality we have another solution of the R - H equations: the characteristic shock

$$
\begin{equation*}
v_{n}=v_{0 n}=s, \quad p=p_{0}, \tag{151}
\end{equation*}
$$

with

$$
\begin{equation*}
\left[\mathbf{v}_{T}\right] \text { arbitrario, }[\rho] \text { arbitrario, } \mathbf{v}_{T}=\mathbf{v}-v_{n} \mathbf{n} \tag{152}
\end{equation*}
$$

where \mathbf{v}_{T} is the tangential component of the fluid velocity. In this case $\eta=0$.

