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Balance Law of Energy

If we enlarge the framework from mechanics to thermodynamics we have also the

balance law of energy. In this case
pv?

\U:pe—|—7, ¢ =—-tjvi+q, f=F-v+r=pb-v+r.

Then
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Therefore in thermo-mechanics we have the following system of Balance Laws:
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Generic System of Balance Laws

The previous system of balance laws is a particular case of
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Lagrangian form of Balance Laws

It is convenient in some case to use Lagrangian variables (X, t) referring to the
initial configuration. We know

dV = JdV*, nd¥ =Fn*dx*. (5)
Therefore J
dt Jv by v
can be rewritten
d
o | JvdvT = —/ ¢,F,gn;*\d>:*+/ fldv*. (7
V* * *

Using Cauchy-Green theorem

0 0P, F§
v) dv* —CAgvr = [ fldv*
V* 5 (J ) d + V* aXA d /* Jd

and assuming regularity conditions




where . .
vi=Lly on =S r=Lr (9)
P P
For example the Balance Laws of mass, momentum and energy becomes in
Lagrangian variables:

p=p/J
Op*vi 0Tja
P Y YA xp.
at Xy 7 (10)
0 v2 0
5 av iAVi) — b i
8t(’02+pe>+6x (Qa — Tiavi) = p*biv; + r*.
where T = (T;a) is the PIOLA-KIRCHHOFF stress tensor
Tia=t;FG <= T=tFC (11)
Q = (Qa) the Lagrangian heat flux
Qu=qFs <+ Q=F7q ~(12)

and




Constitutive Equations and Universal Principles

To close the system we need the constitutive equations that to be physical
consistent need to verifies the following two principles:

@ The Frame Indifference Principle — Objectivity that require that the
constitutive equations are independent of the Observer

© The Entropy Principle, that require that admissible constitutive equations
are such that every solution of the closed system is compatible with the
second law of thermodynamics



jectivity Principle

Figure: Material Indifference

Therefore the stress, the heat flux, the internal energy, are the same in C and in C’
except for a similitude transformation:

t' = RTtR,




The Entropy Principle

i) There exists an additive and objective scalar, which we call entropy;
ii) The entropy density s the flux of the entropy ®; are constitutive functions to
be determined,
iii) The entropy production ¥ is non-negative for all thermodynamic processes.
ops 0

ot | ox

This formulations is due to MULLER. In the classical vision (COLEMAN-NOLL)
was considered the so called CLAUSIUS-DUHEM entropy principle in which

(psvi+ @) =X (15)

q
®=. (16)

In this lectures we consider the simple case of Clausius-Duhem:

Ops 0
ot o

qi

9

(psv,-Jr ):ZZO.




In the case of energy production the entropy principle is modified in

dps 0 qi\ _r
7 X_(psv,—l——)—@%—z, ¥ >0. (18)

In Lagrangian variables the balance law of entropy becomes:

dp*s 0 Qa r*
A A D
8t+8XA<19> g T =0 (19)
with . .
= =5,




Elastic body

A body is elastic if the stress tensor depend only on the gradient of deformation:
t=t(F). (20)

In this case we have

2o 0T (g;;)

— = p*bj, 21
or? 0Xa P (21)
that can be rewritten as system of first order:
ovi  OTa(Fks)
* _ AV kBT *b,'
P ot 0Xa P
(22)
OFia  Ovi _ 0
ot 0Xa o

in the unknown field v = v (X,t) and F = F (X,t) .




Consequences of the Objectivity Principle in elasticity

Let S the so called second tensor of PIOLA-KIRCHHOFF:

1
S=F'Tesym t= 5Fs FT. (23)

Necessary and sufficient condition such that the objectivity principle hold is that
the second tensor of P1OLA-KIRCHHOFF depends on F only trough the
deformation matrix E:

S =S(E) or that is the same S=S(C).

Proof. As the body is elastic we have:
t(F)=R"t(F)R VR c Rot con FF=R'F

then




Substituting (23)2 in (24) we have

1 1
jRTFS (RTF)F'R = jRTFS (F)FTR VR € Rot

ie.
S(R'F)=S(F)  VRE€ Rot (25)
Recalling the polar theorem .
F=RU (26)
and requiring that (25)is satisfied also for R = R we obtain
S(U)=S(F),

and therefore S depends on F only trough the dilatation U or equivalently S
depends on C (C =U?) or S dependson E (E=1(C—1)):

S=S(E) c.v.d.

From (23). we have that the dependence of the stress tensor t on F must be

tH(F) =~ FS(E)FT @)

while the first PIOLA-KIRCHHOFF tensor

T(F) = FS(E).




Thermoelastic body

A body is thermoelastic if the constitutive equations depends on the gradient of
deformation, the temperature and eventually of gradient of temperature:

t=t(F,9)
e=e(F,9) (28)
q=—x(F,9) V¥.

The last equation of (28) is the Fourier law in which x denotes the heat
conductibility.

Necessary and sufficient condition such that the objectivity principle hold is that
the second tensor of P1O0LA-KIRCHHOFF, internal energy and heat conductivity
depends on F only trough the deformation matrix E and on the temperature:

S=S(EY), e=e(E,J), x=x(E1). (29)




The field equations

*8V;_8T,'A_ *p

P ot " oxa P

OFia  0Ov;

ot X, ° (30)
pat<2+e>8XA(TfAviQA)p bjvi + r*.

can be rewritten taking into account that e = e(F, ) in the form

*av,' - 8T,’A %

p ot 0Xa +orhi

OFia  0v;

ot 0Xa (31)

W, [(Ta_ D\ ov 100
ot BE p* OFia ) 0Xa p* 0Xa p*

oY




The Fourier law become in Lagrangian variables:

09 09 0Xg 1.1 OV
- wFCZ~ _ _JFC T~ = yJFYFSI
QA X IAaX,' X IAaXB aX,' XJ Ai ' Bi 8XB
i.e. -
Q=—xJF'(F') Gradv Q= —x(E 9)JC 'Grad ¥
where

Grad 9 = (

L)
OXy 09Xy 0X3 )




Entropy principle in thermoelasticity

We now require the compatibility with the entropy principle, i.e. every solution of
(31) must be solution of (19) assuming that the entropy principle is also a
constitutive equation:

s=s(F,9). (32)

we have the following

Theorem (Entropy Principle)

Necessary an sufficient condition such that the entropy principle is satisfied is that
there exists a scalar function the free energy, 1 = (E, ), such that

) 0

L e=t—O=. (33)

T 2T ap 9

Moreover the heat conductivity must be non negative:

x (E9) > 0.




Proof : From (19) and (32) we have

p*(
then
. ) Os
OFix
then

oY iA
(T
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0s 8F,A
8/—',-A ot

Os

95 99
oY ot

10Qs 1 r*
A —=¥*>0.
) 90X, QA Ty Tr =0
0s
Oe ov; 17 o9 0Qa 4
9Fn) (0Xa "0 Oe (\0xa
a9
(34)
192 XJC 1Grad ¥ - Grad 9 = ¥* > 0.
ds _de
o9 oY
Os _ O0e T (35)
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The first two of (35) are equivalent to the so called GIBBS equation (local
equilibrium)

1
9ds = de — —T - dF (36)
p
or equivalently
1
Yds = de — ES-dE. (37)
Let
P =e— s, (38)
the free energy we obtain
1
dip = —s dV + - S-dE. (39)
and we proved the conditions (33). Taking into account that
J
T = 122 C'Grad ¥ - Grad ¥ > 0. (40)

then x > 0 and theorem is proved, In particular the first PIOLA- KIRCHHOFF
tensor must be in the form




|deal Fluids and Euler system

Definition
A fluid is ideal if the specific stress is normal and have pressure character:

t, = —psn pn >0 v n. (42)

For the Cauchy theorem we have
pnN = p1ne; + panes + p3nzes
and therefore we obtains soon the PASCAL result
ph=pr=p2=p3=p Vn
Then

t,=—pn p>0 YV n (43)

that implies that the stress tensor is isotropic




In an ideal fluid is supposed also negligible the heat conductivity and then:
q=0. (45)

Therefore the balance laws assume the form

@ apv,- -0

ot Ox; N

Opv; 0 :

ot + o vVt PO = pby (j=1,2.3) (46)

2p—‘/2—i-e—i-a p—V2+e+ i 0 = pbjv; +
at\ 2 7 Ox; g TPETR)Vip =LY

For prescribed thermal and caloric equation of state

p=p(p.v),  e=elpv). 47

the system is closed and is called EULER system.




Fourier-Navier-Stokes Dissipative fluids

Definition

A real fluid have character of pressure only in equilibrium

Then in nonequilibrium
t=—-pl+o, t; = —pdj + ojj, (48)

where o = ||ojj|| € Sym is the viscous stress tensor and is assumed that depends in
the symmetric part of velocity gradient D:

oc=0(D), o(0)=0, D= % (Vv +(Vv)7). (49)

For a real fluid the heat flux is not zero and depends on gradient of the
temperature

a=q(VY), q(0)=0. (50)
The most simple case is to suppose linear constitutive equations. For the heat ﬂux
we have seen the FOURIER law: :

q =—x VY9, x=x(p?).




While for the viscous stress tensor there is the assumptions of NAVIER STOKES) :

o =Adivw 1 +2u D, (52)

- 8Vk - 6V,' 8\/1
O',J—>\87Xk5,]+/l <8)<J+8X,>

It is more convenient to use orthogonal tensors and for this reason is convenient to
decompose the matrix D in the deviatoric part (traceless) and the isotropic part:

D:DD+%&WI
and the (52) becomes
o = vdivv | + 2, DP (53)

con 1

The scalars v e and p are the so called bulk viscosity and shear viscosity
respectively and they depends on the density and temperature:

v=v(p,9), p=pp,9). ‘GM




The stress tensor becomes
t=—(p+m)l+2uDP (55)

where we have put
7 = —vdivv.

For this reason 7 is called dynamic pressure, while
tP = oP = 2uDP

is the deviatoric viscous stress tensor. A fluid is called Stokesian if v = 0 (example
are the Monatomic gases). The balance laws for Fourier-Navier-Stokes fluids
becomes

@ Opvi 0

ot Ox; o

Opv; 0] .

L4 = (pvivi + pSj — og) = pby  (j=1,2,3)

ot ox;

o p—vz+ e)+ 2 p—v2+ +p)vi—ojvi+qip = b--+v‘?‘"v.":'
at\ 2 7€) T o 2 TPeTR) Vi aui g = PR

(56)




To close the system we need the constitutive equations:

p(p,9) (pressure), e =e(p,¥) (internal energy),
x(p,9¥) (heat conductivity), (57)
v(p,9) e p=u(p,9) (bulk and shear viscosity).

p
X
v

It is easy to prove that the previous system can be rewritten fro classical solutions
in the form: d
P .
— +pdive=0
at
dv; 0

Pae T o (POi = i) = pbi (58)

de
Pt

Taking into account that e = e(p, ) the last equation can be write

+pdive—oc-D+divg=r

d_ 1
dt_pg—g

{r+<p2§;—p> divv+0'~D—divq}. (59)




Entropy principle for a fluid

The entropy principle require that every solutions of the fluid system satisfy also

ds d /q; r
= Ty =¥ >0
pdt+8x,-(19) g = r=0 (60)

As the entropy density is a constitutive function s = s(p, ) we have

1 g;} , _ { ,0s (28e );%}

= — 22 L (divgq—r)+divvq —p°— + = — e
e ( (diva P P e

{19 20 9p 9p 0

Js

a5 1
+%U-D—@q-wzzzo. (61)
a9
Then
05 _ e
09 99
0S  Oe
V—=—
dp Op

i.e. the Gibbs equation hold



The residual inequality becomes for Fourier-Navier-Stokes

1 : D X 2
Z:E(/\dlva—Q,uD )-D—|—@|V19| =

(X (@ivv)? +2uDP|2) + SIVoE =0,

Sl

that implies

A(p,¥) = 0, w(p,9) = 0, x(p; V) = 0.

Introducing the free energy
P =e—1s

we obtain

and then




Heat equation

In the case of a rigid heat conductor we have only the energy balance

L Oe )
p E-ﬁ-dlvq—r (68)
with the constitutive FOURIER equation:
q=—xV¥ (69)
and
e=e(¥) e x=x(0). (70)
Substituting the (69) and (70) in (68) we have
9
P cv(9) % —div(xV9) =r (71)

with

cv(¥9) =¢€'(W) = % (specific heat).

Then (71) becomes:
% —p A9 —v(grad¥9)? = r




where
X)) X0 dx()
W) = prey(9) v(d) = prey(9) X' (9) = Tdo

in the simple case in which x and cy are constants and we have no supply r =0,
the equation assume the usual form of heat equation:

oY

5t —pAY=0. (73)

that is the typical parabolic equation If we prescribe the initial data
9(x,0) = Jo(x), (74)

the solution is

0x0) = s | v (U )y )

and for an initial data having support compact we have the so called heat paradox
of infinite propagation. iy




Cattaneo Equation

Carlo Cattaneo propose to modify the Fourier law:
q=—xV0+xTVd (0 = 9v/0t), (76)

where 7 is a relaxation time. The (76) can be rewritten as :

0
If 7 is small enough the inverse operator is
AN i)
1—7— ~1 — 7
( Tat> + "o (78)
then from (78) and (77) we obtain the Cattaneo equation
0
Tai' +q= V0. (79)

Combining this equation with the energy equation we obtain the hyperbollc
telegraphist equation




Hyperbolic Systems

The hyperbolic systems of continuum mechanic are balance laws

OF*(u)
) (81)

with F® e f local function of u. The (81) can be rewritten

du OF“
Aa(u) = f(u), A“ = W

oxe

Definition (Hyperbolic System)

A system (82) is hyperbolic in the time direction if
a) det A® #£ 0;
b) The following eigenvalue problem

(A,— A =0, (A,=An) (83)

Vn € R3 : ||n|| = 1, admits real eigenvalues \ and the eigenvectors d are linearly
independent




Example of Euler system

Choosing as field
u= (p7 Vi, V2, V375)T

the Euler system becomes in the form (82) with:

1 00 00 i p 0 0

01 00O po/p vi 0 O

A=l 00100/, A= 0 0 w O

0 0010 0 0 0 v

0 00 01 0 0 0 O

% 0 p O 0 V3 0 0

0 vow 0 0 0 0 wvi O

A= p,/p 0O w 0 ps/p |, A= 0 0 wvs
0 0 0 w O p/p 0 0

0 0 0 O Vo 0 0 0




then (v, =v-n)

Pe mo vy 0 o P m
P P

A,=A"n = &nz 0 vo 0 pinz
P P
Pe nz 0 0 Vi Ps ns
p p

that have eigenvalues
MY =y, —¢; X=X =)® =y \O=y + (84)
and eigenvectors

d(l) = (P, —Cny, —cn, —cng, O)Tv d(S) = (pa cny, cna, cns, O)Ta

d® = (—p,,0,0,0,c2)7, d® =(0,-n3,0,n,0)7, d* = (0,—ny,n,0,0)7,




Example of Cattaneo system

Instead to construct the matrix is more convenient to apply the following rule
from the system

0 0
5 =)0, B —nid, f—0 (86)
obtaining immediately
(A, — AA%)6u =0 (87)

from which we deduce that du coincide gith the right eigenvector d.
For example from Cattaneo system

90 dg;
14 Cv(ﬁ)ﬁ + aX- =r

3q,- oY -
ot

(V)




we have
—p*cy()A0Y + dg, =0

—A7(9)dqi + x(9) nj 69 =0
con &g, = dg; n;. Da (88) and we have

AL = *X : A2 = \® = A®) = *X ;
prCvT preyT

d) = <1a )\>1<7—'1> ;o d@ =(0,wy);  d® =(0,wy); d®¥ = (17 )ZTH) ;

con wi e Wp: Wi -n=w;-n=wj- wp =0 and the system is hyperbolic provided
T>0:




Wave equation and method of the characteristics

Let consider the wave equation in one space dimension

U — Uy = 0. (89)
Let
U=v, Ui=w. (90)
that the equation can be rewritten as system of first order
2
Vi —Ccwy =0
{ wi — v =0 ’ (91)
that belong on the form
u; + Aux =0 (92)
with )
T 0 —c
u=(v,w) , A_<—1 0 ) (93)

The eigenvalues and the right eigenvectors are
A = ¢ A = ¢




Let | the left eigenvector of A, i.e.:
1A =)l

then
M= (1,¢) ; 1®= (1, —¢).

We assign the initial data
U(x,0) = @(x),  Ut(x,0) = 9(x).
i.e. for the first order system
v(x,0) = ¢(x), w(x,0) = ¢'(x); con
Multiplying the (92) for the left eigenvector we have

H{u; +Au} =0 < I{us+Au,} =0

and we define the characteristic line in the space-time as:




Figure: Characteristic lines

In the present case we have two characteristic lines

%
dt
dx

dt

¢t —=\Y = x=_—cttx (102)

2= ==X = x=ct+x 71(103)




We consider the directional derivative

d
pri Or + A Ox
obtaining
du
l-— =0.
dt 0
Then
i(l(l) ‘u) =0 (sucCh) i(|(2) -u) =0 (su C?).
dt ' dt
Therefore

1D u(x, t) =1 . u(x,0)
1@ . u(x, t) = 1® . u(x, 0)
Let ug(x) the initial data of u:
u(x,0) = ug(x).

Therefore
1D - u(x, t) = 1D - ug(x + ct)

1@ - u(x, t) = 1®) - ug(x — ct).

(104)

(105)

(106)

(107)
(108)




In the present case we have the algebraic system:
v(x,t) + cw(x, t) = ¥(x + ct) + co’(x + ct)
v(x,t) — cw(x,t) = ¥(x — ct) — cp’(x — ct).
Then the solution

V(x,t) = % {((x+ ct) +(x — ct) + e[ (x + ct) — J(x —ct)]}  (110)

w(x,t) = i {h(x+ct) —p(x —ct) + c[e'(x+ ct) + ' (x —ct)]}. (111)

or

U, ) = oo (Tt ct) = T — ct) +elplx+et) 4ol — o)l (112)

with




Linear systems

In the case of a generic first order system of N equations if we represent the initial
data in the basis of right eigenvectors

N
u(x,t) = > M(x, t)dV (113)

proceeding in the same way with the method of characteristic it is possible to
prove that the solution is a combination of N waves:

u(x, t) =y Mh(x — Nt)dV). (114)




A non linear example: the Burgers equation

Let consider the non linear BURGERS equation

uy + uuy, = 0. (115)
The characteristc is
dx
pra (x,t) (116)
But
@ = us + A\uy = uy + uu, = 0. (117)
dt
i.e.
u(x,t) = up(xo)- (118)

Therefore also in this case the charcateristc is a line and

X = xo + up(xp) t




Xo X, X,

a) b)

Figure: Caratteristica e tempo critico dell'equazione di Burgers

but the slope of the line depends on xq (see figure).




The determination of the critical time is simple In fact the (118) and (119) are
solution in paramteric form: for a fixed time t the depenmdence of u from x is
tyrouth the paarmeter xg. Then invertibility is lost when dx/dxg = 0 and then:

1
te0) = =)
the critical time is
ter = inf{t.(x0) > 0}. (120)
n; U(X,O) : "”‘ u (Xltc)
x/a E ) C x/a

Figure: Critical time for Burtgers equation




Weak solutions

t

Figure: weak solutions

Let a system of balance laws
0,F%(u) = f(u). (121)

Let C a domain in the space-time and multiply (121) for a test function ¢, wnth
support in C and we have




or

/aa (¢Fa)dC—/(Fa8a¢+f¢) dc =o. (123)
C C

Using the GAUSS-GREEN theorem

/z Ve (6F) T — /c (F0.6 + f6)dC = 0. (124)

then (assuming zero initial data)

/ F 9, $dC + / fdC = 0. (125)
C C

A solution of (125) for any test function ¢ is called a weak solution of (121).




If exists a regular surface ' with unit normal n

moving with normal velocity s separating the space in two
sub-spaces in which there are classical smooth solutions
ug and uy such that their limit values in the surface

are different we call this kind of solution a shock wave.
Let denoting the jump with a square bracket:

[ul =w | o —Ug|pr  (sul).

We want to prove that a shock wave is a

weak solution if and only if across the surface there exists

some compatibility conditions called RANKINE-HUGONIOT
conditions. Let condider a surface in the space

time o of normal ¢, (see Figura 7). We have from (124)

/ pLoFIdT” — / (F20,6 + F.6) dCH = 0
YtUot ct

/ 0o OF2dT” —/ (F*0a¢ +f_¢)dC™ =0.
Y~ Uo— -

r fronte d' onda

u Uy
campo perturbato | campo imperturbato

Figure: Onda d'urto




[
75,2

Figure: Soluzioni deboli tipo onde d’urto.

Then
/ pa¢Fido" — / (F$0a0 + f10) dCT =0 (126)
ot c+

/ o ¢Fido™ — / (F*0,¢ +f_¢)dC™ =0. (127)




Rankine-Hugoniot equations

Summing (126) e (127) we have
/ ¢;¢Fid0++/ o OF do— —/(F“8a¢>+f¢) dc —0.  (128)
ot o— C

The last integral vanish and therefore we mush have in the surface:

/ ¢a (FY —F*) ¢do = 0. (129)
and then
(F$ —F*) o =0 (130)
i.e.
[F*]¢a = 0. (131)

This means that the normal components in the space time of F* must be
continuous across the surface. Dividing space and time

¥o = —S5, wi = nj
and assuming u = F° we can rewrite the R-H conditions in the usual form

—s[u]+ [F]n=0




or explicitly ‘ _
—sup + F' (Ul) ni = —sug + F' (Uo) nj, (134)

The R-H conditions formally can be write from the differential system with the
operator rule

or — —s[], 0 —n], fFf—0. (135)
Let '
W, (u) = —su+F'(u)n,. (136)
then the R-H implies
¥ (u)

llls (Ul) = llls (UO) . » (137)

This require the non invertibility of the function W, (u).




We have ow
aus = —sl+A'n; (138)

then bifurcation point are the one when s meet an unperturbed eigenvalue \q
(k-shocks)

det (A, — Al),, = 0. (139)

urto
caratteristico

biforcazione ortogonale

A0
0

20 u=u,




Shock waves in Euler fluid

The R-H for Euler system becomes:

—s[p] + [pva] =0 (141)
—s[pv]+[pvav+pn] =0 (142)
V2 V2
—-s [”2 + pe] + [(,02 + pe + p) vn] =0 (143)
where v, = v - n. Let introduce the MACH number and the specific volume
— 1
My = >—Yon V==C, (144)
Co p
then the solution of the R-H are
2y 2
= pg + My —1). 145
P = Po 7Jrlpo(o ) (145)
2 Mz -1
V=V- Vo —2rm

v+1

Mg




From (145) and (146) we have

Pl _ @M

V= v <0. (148)

Then we have two possibilities
i) [p)) >0e[V]<0: corresponding to M3 > 1,
i) [p] <0e[V]>0: corresponding to M2 < 1.

Mathematically both are acceptable but which of the two is physical consistent?
For this reason we calculate the R-H relative to the entropy law

1 = s[pS] — [pSva] = [p(s — va)S] (149)

If the weak solution of teh system is also weak solution of the entropy law 1 must
be zero, while 7 is not null. In fact we have

24+ M2(v — 1)\ 2M2y +1 —
1= pococy Mo Iog{( Gl )> o ’Y} < {150)

Mg (v +1) 14y




Entropy growth across the shock

Figure: Entropy growth across the shock

As 1 have the meaning of the production of entopy across the shock we need to
require
n=>0

and then




100 1 8
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We note that
. vV  4-1
im —=—.
Moy—+oo Vg ’7+1

In reality we have another solution of the R-H equations: the characteristic shock
Vo= Von =5, P=p0, (151)

with
[vr] arbitrario, [p] arbitrario, vy =v — v,n (152)

where v is the tangential component of the fluid velocity. In this case n = 0.
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