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The Physical laws in continuum theories are balance laws: Let F0 (x, t);
x ∈ Ω, t ∈ R+, a generic density. The time derivative in the domain Ω is
expressed by

d

dt

∫
Ω

F0 dΩ = −
∫

Σ

GinidΣ +

∫
Ω

fdΩ, (1)

where the first integral on the r.h.s. represents the flux of some quantities Gi

trough the surface Σ of unit normal −→n and velocity −→v , while the last integral
represents the productions.
Under regularity assumptions the system can be put in the local form:

∂F0

∂t
+
∂Fi

∂x i
= f, Fi = F0v i + Gi (2)
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For example in the case of fluids:

∂ρ

∂t
+
∂ρvi
∂x i

= 0 (mass balance)

∂(ρvj)

∂t
+

∂

∂x i
(ρvivj − tij) = 0 (balance of momentum) (3)

∂E

∂t
+

∂

∂x i
(Evi + qi − tijvj) = 0 (energy conservation).

where E = ρ v2

2 + ρε and ρ, v ≡ (vi ), t ≡ (tij),q ≡ (qi ), ε are the density, the
velocity, the stress tensor, the heat flux and the internal energy.
Of course the system is not closed and we need the so called constitutive
equations.
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In the modern constitutive theory all the constitutive equations must obey the two
principles:

The objectivity principle: the proper constitutive equations are independent
of the Observer;

The second principle of thermodynamics that in the Rational
Thermodynamics requires that any solutions of the full system satisfies the
inequality of Clausius-Duhem (Coleman-Noll 1963):

∂ρS

∂t
+

∂

∂x i

(
ρSv i +

qi

T

)
≥ 0 for all processes (4)
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For instance in the case of classical approach of fluids with Fourier Navier-Stokes
assumptions

t = −pI + σ

qi= −χ∂T
∂x i

; σ<ij> = µ
∂v<i

∂x j>
; σll = νdivv,

the constitutive equations compatible with (4) require the existence of a free
energy ψ, function of the density ρ and temperature T , such that:

p = ρ2 ∂ψ

∂ρ
, S = − ∂ψ

∂T
, ε = ψ − T

∂ψ

∂T
, (5)

while

χ (heat conductivity), µ (shear viscosity), ν (bulk viscosity) ≥ 0.
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The entropy principle is also supported by the kinetic theory of gases. In fact from
the Boltzmann equation

∂f

∂t
+ c i

∂f

∂x i
= Q; f ≡ f (x, t, c)

introducing as moment:

ρS =

∫
(−k log f )f dc; φi =

∫
(−k log f )fc i dc;

we have the so called H-theorem:

∂ρS

∂t
+

∂

∂x i
(
ρSv i + φi

)
≥ 0 (6)

but the non convective entropy flux φi is in general different from qi/T .
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The necessity to extend the entropy principle with a general entropy flux was
proposed by Ingo Müller (1967).
At present the general form (6)

∂ρS

∂t
+

∂

∂x i
(
ρSv i + φi

)
≥ 0

is universally accepted in the continuum community and all the constitutive
equations in new models are tested by the entropy principle.
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For systems (2) we can define the so called weak solution:∫
V

(
u∂tΦ + Fi∂iΦ

)
dV = 0 (7)

for any test function Φ.

In a particular a shock wave is a
weak solution of (2) iff across the
shock front the Rankine-Hugoniot
equations are fulfilled:

−s [u] +
[
Fi
]
ni = 0.

P

    uu0 (x,t)u1 (x,t)

Γ: ϕ(x,t) = 0

n
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The Riemann problem was originated by the following well know
problem in fluidynamics:
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The Riemann Problem

Let us consider quasi-linear system of conservation laws compatible with an
entropy principle with a convex entropy density:

∂tu + ∂xF(u) = 0

(8)

∂th(u) + ∂xk(u) ≤ 0.

with initial data

u (x , 0) =

{
u0 for x > 0
u1 for x < 0.
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The Riemann Problem and the non uniqueness of weak
solutions

Before we recall how the Riemann Problem was solved we remember a peculiarity
of the weak solutions: the non uniqueness!
To explain this let’s consider the Burger equation

ut +

(
u2

2

)
x

= 0

equivalent to
ut + uux = 0

with initial data

u (x , 0) =

{
u0 for x > 0
u1 for x < 0
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Figure: Initial data
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If we are looking for a shock solution, along the curve dx/dt = s the R-H
condition must be satisfied. In this case this turns into:

−s [u] +
[
u2/2

]
= 0 (9)

and we can get the velocity of the shock, s

s =

[
u2/2

]
[u]

=
1

2
(u0 + u1) . (10)

So we have the weak solution

u (x , t) =

 u0 per x > st

u1 per x < st
; with s =

1

2
(u0 + u1). (11)
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u

Figure: Shock wave
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u

Figure: Shock wave in space-time
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We can see that we have also the following solution u (x , t)

u (x , t) =


u1 per x

t < u1
x

t
per u1 ≤

x

t
≤ u0

u0 per x
t > u0

(12)

t

x

u

0

u

1
u
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The solution (12)

is compatible with the initial data;

is continuous for any t > 0;

is differentiable;

is a weak solution

So we have found two different solutions of this Riemann problem. Both of them
are acceptable from a mathematical point of view, but from a physical point of
view only one of them should be acceptable.

Which is the physically acceptable solution?
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In the present case the characteristic velocity λ = u and the characteristic curves
are straight lines represented by the equations x = u0t + x0 and x = u1t + x0.

If λ(u1) < λ(u0) the two families of characteristics do not intersect for any
t > 0;

If λ(u1) > λ(u0) the two families of characteristics do intersect for t > 0.
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Figure: Non-intersecting and intersecting characteristic lines
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The Lax condition select the admissible shock:

λ(u0) < s < λ(u1). (13)

The entropy growth:

ut +

(
u2

2

)
x

= 0, −s[u] +

[
u2

2

]
= 0, u1 = 2s − u0;

(
u2

2

)
t

+

(
u3

3

)
x

= 0, η = −s
[
u2

2

]
+

[
u3

3

]
;

η =
2

3
(s − λ0)3

> 0 → s > λ0

and as
s = (λ1 + λ0)/2 → s < λ1
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i.e. the equivalence between the Lax condition and the entropy growth condition:

λ(u0) < s < λ(u1) ⇔ η > 0. (14)

Both are also justified by the artificial viscosity method:

ut + uux = νuxx (15)

taking the limit of ν → 0.
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Peter Lax

The general Lax solution:
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Let
A = ∇F; (A− λI)r = 0.

The Riemann problem for initial sufficiently small jump is solved as a
”superposition” of shocks, characteristic shocks, rarefaction waves and constant
states. The physical shocks are those for which:
Shock:

if ∇λ · r 6= 0, λ(u0) < s < λ(u1) ⇐⇒ η > 0

Characteristic Shock:

if ∇λ · r ≡ 0, λ(u0) = s = λ(u1) ⇐⇒ η = 0

while if λ(u1) < λ(u0) we have a rarefaction wave.
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u0

Shock
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Figure: The Euler solution for the density - t = 0
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Figure: The Euler solution for the density - t > 0
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The problem fails in the special case of local exceptionality

∇λ · r = 0 for some u.

V λ r = 0

Positive Shocks

Negative Shocks

Local Exceptionality surface
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In this case the stability of the shock must be satisfy the Liu conditions that
implies the generalized Lax condition λ(u0) ≤ s ≤ λ(u1) but the entropy growth is
not sufficient; it is necessary to add additional conditions for example a new
superposition principle (Liu, Ruggeri, 2003).

µ

U
s

µ
1µ

0

(a)

μ

λ

 

U s(μ)

λ(μ)

(b)
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The Riemann problem is a fundamental tool for the existence theorem for
solutions of the initial data (Glimm, Dafermos, Bressan, Bianchini,...) as well for
numerically approach (Godunov, Russo,.....).
See the book of C. Dafermos, Hyperbolic Conservation Laws in Continuum
Physics. Springer Verlag, Berlin.
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Riemann (R) problem

0
x

u(
x,

t=
0)

 ≡
 v

(x
,t=

0)

u
1

u
0
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Riemann (R) problem

0
x

u(
x,

t=
0)

 ≡
 v

(x
,t=

0)

u
1

u
0

Riemann with Structure
(RS) problem

0
x

u(
x,

t=
0)

 ≡
 v

(x
,t=

0)

u
1

u
0

0
x

u(
x,

t=
0)

 ≡
 v

(x
,t=

0)

u
1

u
0
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The importance of the Riemann Problem is evident also for the following
asymptotic results due to Tai-Ping Liu:

Theorem
If the initial data are ”perturbations” of the Riemann data, i.e. at x = ±∞ there
are two constant states then for t large the solutions tends to the one of the
Riemann problem for genuine non-linear characteristic, while waves of linearly
degenerate characteristic velocities tend to traveling waves.

In particular if the initial data are perturbations of a constant state then
for t large the solutions converge to the constant state.

Tommaso Ruggeri Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3



Example of the traffic problem:

∂ρ

∂t
+
∂ρv

∂x
= 0 v (ρ) = vm

(
1− ρ

ρm

)
.

t = 0

x = 0x = -l

0 < t < t

t > t *

*

ρ= ρ

ρ

ρ = 0

(x) 

m 

0 

x 

ρ = 0

- l 0 
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t = 0

ρ= ρ

ρ

ρ = 0

(x) 

m 

0 

x 

ρ = 0

- l 0 
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ρ= ρ

ρ

ρ = 0

(x) 

m 

0 

x 

ρ = 0

- l 0 
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ρ= ρ

ρ

ρ = 0

(x) 

m 

0 

x 

ρ = 0

- l 0 
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t > t *

ρ

ρ = 0

(x) 
0 

x 

ρ = 0

- l 0 
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