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Rational Extended Thermodynamics and the Kinetic
Theory

The study of nonequilibrium phenomena in gases is particularly important. We
have two complementary approaches to rarefied gases, namely the continuum
approach and the kinetic approach.
The continuum model consists in the description of the system by means of
macroscopic equations (e.g., fluid-dynamic equations) obtained on the basis of
conservation laws and appropriate constitutive equations. A typical example is
TIP. The applicability of this classical macroscopic theory is, however, inherently
restricted to a nonequilibrium state characterized by a small Knudsen number Kn,
which is a measure to what extent the gas is rarefied:

Kn =
mean free path of molecule

macroscopic characteristic length
.
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The approach based on the kinetic theory postulates that the state of a gas can
be described by the velocity distribution function. The evolution of the
distribution function is governed by the Boltzmann equation. The kinetic theory is
applicable to a nonequilibrium state characterized by a large Kn, and the transport
coefficients naturally emerge from the theory itself. Therefore the range of the
applicability of the Boltzmann equation has been limited to rarefied gases.

The RET theory, a generalization of the TIP theory, also belongs to the
continuum approach but is applicable to a nonequilibrium state with larger Kn. In
a sense, RET is a sort of bridge between TIP and the kinetic theory. An
interesting point to be noticed is that, in the case of rarefied gases, there exists a
common applicability range of the RET theory and the kinetic theory. Therefore,
in such a range, the results from the two theories should be consistent with each
other. Because of this, we can expect that the kinetic-theoretical considerations
can motivate us to establish the mathematical structure of the RET theory.
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The Extended Thermodynamics of Rarefied Monoatomic
Gas

The kinetic theory describes the state of a rarefied gas through the phase density
f (x, t, c), where f (x, t, c)dc is the number density of atoms at point x and time t
that have velocities between c and c + dc. The phase density obeys the
Boltzmann equation

∂f

∂t
+ ci

∂f

∂xi
= Q (1)

where Q represents the collisional terms. Most macroscopic thermodynamic
quantities are identified as moments of the phase density

Fk1k2···kj =

∫
R3

fck1ck2 · · · ckjdc, (2)

and due to the Boltzmann equation (1), the moments satisfy an infinity hierarchy
of balance laws in which the flux in one equation becomes the density in the next
one:
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∂tF + ∂iFi = 0

↙
∂tFk1 + ∂iFik1 = 0

↙
∂tFk1k2 + ∂iFik1k2 = P<k1k2>

↙
∂tFk1k2k3 + ∂iFik1k2k3 = Pk1k2k3

...

∂tFk1k2...kn + ∂iFik1k2...kn = Pk1k2...kn

...

The hierarchy structure of the system

1 The tensorial rank of the equations increases one by one.

2 The flux in one equation becomes the density in the next equation.
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Taking into account that Pkk = 0, the first five equations are conservation laws
and coincides with the mass, momentum and energy conservation respectively,
while the remaining ones are balance laws.
Remark: ET with this hierarchy structure is valid only for rarefied monatomic
gases. In fact due to the previous structure we have that the momentum flux:

Fik = ρvivk − tik ; tik = −pδik + σik , σik = −Πδik + σ<ik>

while the conservation of energy we have:

Fll = 2ρε+ ρv2

then
3p = 2ρε Π = 0

that implies

γ =
cp
cV

=
5

3
,

i.e. monatomic gas.

The Closure Problem

When we cut the hierarchy at the density with tensor of rank n, we have the
problem of closure because the last flux end the production terms are not in the
list of the densities.
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The first idea of Rational Extended Thermodynamics Müller and Ruggeri
(Springer - Verlag 1993, 1998) was to view the truncated system as a
phenomenological system of continuum mechanics and then we consider the new
quantities as constitutive functions:

Fk1k2...knkn+1 ≡ Fk1k2...knkn+1 (F ,Fk1 ,Fk1k2 , . . .Fk1k2...kn)

Pk1k2...kj ≡ Pk1k2...kj (F ,Fk1 ,Fk1k2 , . . .Fk1k2...kn) 2 ≤ j ≤ n.

According with the continuum theory, the restrictions on the constitutive
equations come only from universal principles, i.e.: Entropy principle, Objectivity
Principle and Causality and Stability (convexity of the entropy).

The most interesting physical cases was the 13 fields theory in classical framework
(I.S.-Liu & I. Müller - ARMA 1983) and the 14- fields in the context of relativistic
fluids (I.S.-Liu, I. Müller & T. Ruggeri -ANNALS of PHYSICS 1984)
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Closure via the maximum entropy principle and molecular
RET of monatomic gases

If the number of moments increase it is too difficult to adopt the pure continuum
approach for a system with such a large number of field variables.

Therefore it is necessary to recall that the field variables are the moments of a
distribution function truncated at some order. And then the closure of the balance
equations of the moments, which is known as the maximum entropy principle
(MEP), should be introduced. This is the procedure of the so-called molecular
extended thermodynamics (molecular RET).

The principle of maximum entropy has its root in statistical mechanics. It is
developed by Jaynes in the context of the theory of information basing on the
Shannon entropy
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Nowadays the importance of MEP is recognized fully due to the numerous
applications in many fields, for example, in the field of computer graphics.

MEP states that the probability distribution that represents the current state of
knowledge in the best way is the one with the largest entropy.

Another way of stating this is as follows: Take precisely stated prior data or
testable information about a probability distribution function. Then consider the
set of all trial probability distributions that would encode the prior data. Of those,
one with maximal information entropy is the proper distribution, according to this
principle.
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Concerning the applicability of MEP in nonequilibrium thermodynamics, this was
originally by the observation made by Kogan (1967) that Grad’s distribution
function maximizes the entropy. The MEP was proposed in RET for the first time
by Dreyer (1987) .
In this way the 13-moment theory can be obtained in three different ways: RET,
Grad, and MEP. A remarkable point is that all closures are equivalent to each
other!
The MEP procedure was then generalized by Müller and Ruggeri to the case of
any number of moments in the first edition of their book (1993) and later
proposed again and popularized by Levermore (1996). The complete equivalence
between the entropy principle and the MEP was finally proved by Boillat and
Ruggeri (1997).
Later MEP was formulated also in a quantum-mechanical context (Degond &
Ringhofer -2003).
.
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Monatomic rarefied gas with many moments

More explicit :

∂tF + ∂iFi = 0,

∂tFk1 + ∂iFik1 = 0,

∂tFk1k2 + ∂iFik1k2 = P〈ij〉,

∂tFk1k2k3 + ∂iFik1k2k3 = Pk1k2k3 ,

...

∂tFk1···kN + ∂iFik1···kN = Pk1···kN ,

For simplicity, we adopt the following notation:

FA =

{
F for A = 0

Fk1k2···kA for 1 ≤ A ≤ N,

Then the system can be rewritten as simple form:

∂tFA + ∂iFiA = PA, (3)
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Maximum Entropy Principle for Monatomic gas

with

FA = m

∫
R3

cA f dc, FiA = m

∫
R3

cicA f dc, PA = m

∫
R3

cA Q dc. (4)

and

cA =

{
1 for A = 0

ck1ck2 · · · ckA for 1 ≤ A ≤ N.

The variational problem from which the distribution function fN is obtained is
connected to the functional:

LN (f ) = −k
∫
R3

f log f dc + u′A

(
FA −m

∫
R3

cA f dc

)
where u′A are the Lagrange multipliers The distribution function fN which
maximizes the functional LN is given by:

fN = exp
(
−1− m

k
χN

)
, χN = u′AcA. (5)

Tommaso Ruggeri Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 6



Then, the system may be rewritten as follows:

JAB∂tu
′
B + JiAB∂iu

′
B = PA(u′C ), A = 0, . . . ,N (6)

where

JAB (u′C ) = −m2

kB

∫
R3

fN cAcB dc, JiAB (u′C ) = −m2

kB

∫
R3

fN cicAcB dc. (7)

In an equilibrium state, (5) reduces to the Maxwellian distribution function. We
observe that fN is not a solution of the Boltzmann equation. But we have the
conjecture (open problem) that, for N →∞, fN tends to a solution of the
Boltzmann equation. The system (6) is symmetric hyperbolic according with the
general theory of systems of balance laws with a convex entropy density (Boillat &
Ruggeri Continuum Mech. Thermodyn. (1997)).
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Convergence Problem and a Theory Near Equilibrium State

All results explained above are valid also for a case far from equilibrium provided
that the integrals in (4) and (7) are convergent. The problem of the convergence
of the moments is one of the main questions in a far-from-equilibrium case. In
particular, as we will see, the index of truncation N must be even. This implies, in
particular, that a theory with 13 moments is not allowed when far from
equilibrium!
Moreover, if the conjecture that the distribution function fN , when N →∞, tends
to the distribution function f that satisfies the Boltzmann equation is true, we
need another convergence requirement.
These problems were studied by Boillat and Ruggeri (1997) . They first
introduced a map between the components of order k of the main field u′i1i2...ik
and the corresponding variables u′pqr with p + q + r = k , where p, q, r are the
indices over 1, 2, 3. With this notation, χ is expressed as

χ =
∑
p,q,r

u′pqrc
p
1 c

q
2 c

q
3 , 0 ≤ p + q + r ≤ N. (8)
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Since ∣∣∣∣∣∑
p,q,r

u′pqrc
p
1 c

q
2 c

q
3

∣∣∣∣∣ ≤ aNc
N

with
aN = max

|t|=1
νN(t), νN(t) =

∑
p,q,r

u′pqr t
p
1 t

q
2 t

q
3 ,

when p + q + r = N →∞, the series is absolutely convergent for any c provided
that

u′pqr → 0,
aN+1

aN
→ 0.

Hence the components of the main field become smaller and smaller when N
increases. This justifies the truncation of the system. On the other hand, when N
is finite, the integrals of moments must also be convergent. When c is large,
χ ' |c |NνN . Therefore it is easy to see, by using the spherical coordinates, that
the integrals of moments converge provided that νN(t) < 0 for any unit vector t.

But, as ν(−t) = (−1)Nν(t), we can conclude that N must be even and
max|t|=1 ν(t) < 0.
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Now, the distribution function obtained as the solution of the variational problem
is expanded in the neighborhood of a local equilibrium state:

f ≈ fM

(
1− m

kB
ũ′AcA

)
, ũ′A = u′A − u′EA , (9)

where u′EA are the main field components evaluated in the local equilibrium state
and fM is the Maxwellian equilibrium distribution function.

This is a big limitation of the theory because the theory is valid only near
equilibrium and hyperbolicity exists only in some small domain of configuration
space near equilibrium. Notice that f is not always positive!

The RET had success because several experiments are in agreement with the
theory (sound waves in high frequencies, Light scattering, Schock waves)
nevertheless have 2 weak limitations:

1 The theory is valid only near equilibrium

2 The theory, as Kinetic Theory, is valid only for monatomic rarefied gas.
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Limit of ET and KT

ET has played crucial role for rarefied non-equilibrium gas. Nevertheless the weak
point of ET and KT is that the applicable range is limited to rarefied monatomic
gas.
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Boltzmann equation for polyatomic gases

The 14 moment phenomenological theory for dense gas and in particular
polyatomic ones was recently obtained using the universal principles of ET and
postulating a double hierarchy of equations by T. Arima, S. Taniguchi, T. Ruggeri
and M. Sugiyama - Continuum Mech. Thermodyn., (2012).
The question is if the macroscopic system have a kinetic counterpart. We will see
that in the case of rarefied gas the previous structure can be explained in clear
manner. We shall, therefore, briefly describe the kinetic model for polyatomic
gases and point out the important consequences related to internal energy density.
The idea is to consider an additional parameter in the distribution function
f (t, x, c, I ) defined on extended domain [0,∞)× R3 × R3 × [0,∞). Its rate of
change is determined by the Boltzmann equation which has the same form as for
monatomic gas but collision integral Q(f ) takes into account the influence of
internal degrees of freedom through collisional cross section (Bourgat,
Desvillettes, Le Tallec and Perthame, see also Borgnakke and Larsen)
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Equilibrium distribution function for polyatomic gases

Collision invariants for this model form a 5-vector:

ψ(c, I ) = m

(
1, ci ,

1

2
mc2 + I

)T

, (10)

which lead to hydrodynamic variables in the form: ρ
ρvi

1
2ρv

2 + ρε

 =

∫
R3

∫ ∞
0

ψ(c, I )f (t, x, c, I )ϕ(I ) dI dc, (11)

where ρ, v and ε are mass density, hydrodynamic velocity and internal energy,
respectively. A non-negative measure ϕ(I ) dI is property of the model aimed at
recovering classical caloric equation of state for polyatomic gases in equilibrium.
Entropy is defined by the following relation:

h = −k
∫
R3

∫ ∞
0

f log f ϕ(I ) dI dc. (12)
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We shall introduce the peculiar velocity:

C = c− v (13)

and rewrite the Eq. (11) in terms of it. Then: ρ
0i

2ρε

 =

∫
R3

∫ ∞
0

m

 1
Ci

C 2 + 2I/m

 f (t, x,C, I )ϕ(I ) dI dC. (14)

Note that the internal energy density can be divided into the translational part
ρεT and part related to the internal degrees of freedom ρεI :

ρεT =

∫
R3

∫ ∞
0

1

2
mC 2f (t, x,C, I )ϕ(I ) dI dC,

ρεI =

∫
R3

∫ ∞
0

If (t, x,C, I )ϕ(I ) dI dC. (15)

The former can be related to kinetic temperature in the following way:

εT =
3

2

k

m
T , (16)

whereas the latter should determine the contribution of internal degrees of
freedom to internal energy of a polyatomic gas.
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In fact if D is the number of degrees of freedom of a molecule, it can be shown
that ϕ(I ) = Iα leads to appropriate caloric equation in equilibrium provided:

α =
D − 5

2
. (17)

In fact if the weighting function is chosen to be ϕ(I ) = Iα, internal energy of a
polyatomic gas in equilibrium reads:

ε =

(
5

2
+ α

)
k

m
T , α > −1. (18)

The relation between α and D (17) follows directly from comparison between (18)
and well-know caloric equation for polyatomic gases:

ε =
D

2

k

m
T .

Observe that model for a monatomic gas (D = 3) cannot be recovered from the
one with continuous internal energy, since the value of parameter α in monatomic
case violates the overall restriction α > −1.
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Pavić, Ruggeri and Simić [5] firstly considered the Euler fluid with 5 moments and
they considered the the maximum entropy principle expressed in terms of the
following variational problem: determine the velocity distribution function
f (t, x, c, I ) such that h→ max., being subjected to the constraints (11).

Theorem

The distribution function that maximizes the entropy (12) under the constraints
(14) has the form:

fE =
ρ

m (kBT )1+αΓ(1 + α)

(
m

2πkBT

)3/2

exp

{
− 1

kBT

(
1

2
mC 2 + I

)}
. (19)

This is the generalized Maxwell distribution function for polyatomic gases.
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The following theorem was also proved:

Theorem

If (19) is the local equilibrium distribution function with ρ ≡ ρ(t, x), v ≡ v(t, x)
and T ≡ T (t, x), then the hydrodynamic variables ρ, v and T satisfy the Euler
system:

∂ρ

∂t
+

∂

∂xi
(ρvi ) = 0,

∂

∂t
(ρvj) +

∂

∂xi
(ρvivj + pδij) = 0, (20)

∂

∂t

(
ρε+ ρ

v2

2

)
+

∂

∂xi

{(
ρε+ ρ

v2

2
+ p

)
vi

}
= 0

with

p =
kB
m
ρT , ε =

D

2

kB
m

T . (21)

This is an important result because we can obtain the Euler equations from the
kinetic equation for any kind of polyatomic gases as well as monatomic gases.
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Pavić, Ruggeri and Simić [5] secondly considered the case of 14 moments. This
case is completely in agreement with the binary hierarchy with the moments: F

Fi1

Fi1i2

 =

∫
R3

∫ ∞
0

m

 1
ci1
ci1ci2

 f (t, x, c, I )ϕ(I ) dI dc,

(22)(
Gpp

Gppk1

)
=

∫
R3

∫ ∞
0

m

(
c2 + 2 I

m(
c2 + 2 I

m

)
ck1

)
f (t, x, c, I )ϕ(I ) dI dc.

For the entropy defined by (12), the following variational problem, expressing the
maximum entropy principle, can be formulated: determine the velocity distribution
function f (t, x,C, I ) such that h→ max., being subjected to the constraints (22).
The solution of the problem is as follows.
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Near the equilibrium state the velocity distribution function, which maximizes the
entropy (12) with the constraints (22) and the weighting function ϕ(I ) = Iα, has
the form:

f = fE

{
1− ρ

p2
qiCi +

ρ

p2

[
−σ〈ij〉 +

(
5

2
+ α

)
(1 + α)−1Πδij

]
CiCj (23)

− 3

2(1 + α)

ρ

p2
Π

(
1

2
C 2 +

I

m

)
+

(
7

2
+ α

)−1
ρ2

p3
qi

(
1

2
C 2 +

I

m

)
Ci

}
,

where fE is the equilibrium distribution (19). The non-equilibrium distribution
(23) reduces to the velocity distribution obtained by Mallinger for gases composed
of diatomic molecules (α = 0), and, for any α > −1, the closure gives exactly the
same equations obtained before by using the macroscopic approach and the
entropy principle:

[T. Arima, S. Taniguchi, T. Ruggeri and M. Sugiyama - Continuum Mech.
Thermodyn., (2012).]
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The general hierarchy of moment equations for polyatomic
gases

In non-equilibrium motivated by the idea of phenomenological ET, we shall
generalize the moment equations for polyatomic gases by constructing two
independent hierarchies. One will be much alike classical “momentum” hierarchy
of monatomic gases (F−hierarchy); the other one, “energy” hierarchy, commences
with the moment related to energy collision invariant and proceeds with standard
increase of the order through multiplication by velocities (G−hierarchy). They
read:

∂tF + ∂iFi = P, ∂tG + ∂iGi = Q.

[Pavić, Ruggeri & Simić Physica A,(2012)]
[Arima, Mentrelli & Ruggeri - Annals of Physics (2014)]
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Moments, fluxes and productions of F−hierarchy are defined as:

F(t, x) =

∫
R3

∫ ∞
0

Ψ(c)f ϕ(I ) dI dc,

Fi (t, x) =

∫
R3

∫ ∞
0

ciΨ(c)f ϕ(I ) dI dc,

P(t, x) =

∫
R3

∫ ∞
0

Ψ(c)Q(f )ϕ(I ) dI dc,

with:

Ψ(c) = m



1
ci1
ci1ci2

...
ci1 · · · cin

...


.
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Moments, fluxes and productions of G−hierarchy are defined as:

G(t, x) =

∫
R3

∫ ∞
0

Θ(c, I )f ϕ(I ) dI dc,

Gi (t, x) =

∫
R3

∫ ∞
0

ciΘ(c, I )f ϕ(I ) dI dc,

Q(t, x) =

∫
R3

∫ ∞
0

Θ(c, I )Q(f )ϕ(I ) dI dc,

with:

Θ(c, I ) = m



c2 + 2 I
m(

c2 + 2 I
m

)
ck1(

c2 + 2 I
m

)
ck1ck2

...(
c2 + 2 I

m

)
ck1 · · · ckm

...


,

Note that minimal order of the moment in F−hierarchy is 0, while minimal order
in G−hierarchy is 2.
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Polyatomic rarefied gas with many moments

More explicit :

For simplicity, we adopt the following notation:

FA =

{
F for A = 0

Fk1k2···kA for 1 ≤ A ≤ N,
GLLa =

{
GLL for a = 0

GLLk1k2···ka for 1 ≤ a ≤ M,

Then the system can be rewritten as simple form:

∂tFA + ∂iFiA = PA, ∂tGLLA′ + ∂iGiLLA′ = QLLA′ . (24)
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Maximum Entropy Principle

The variational problem from which the distribution function f(N,M) is obtained is
connected to the functional:

L(N,M) (f ) = −k
∫
R3

∫ ∞
0

f log f Iα dI dc+u′A

(
FA −m

∫
R3

∫ ∞
0

cA f Iα dI dc

)
+

+ v ′A′

(
GllA′ −m

∫
R3

∫ ∞
0

(
c2 +

2I

m

)
cA′ f I

αdIdc

)
,

where u′A and v ′a are the Lagrange multipliers and

cA =

{
1 for A = 0

ck1ck2 · · · ckA for 1 ≤ A ≤ N,
cA′ =

{
1 for A′ = 0

ck1ck2 · · · ckA′ for 1 ≤ A′ ≤ M.

The distribution function f(N,M) which maximizes the functional L(N,M) is given
by:

f(N,M) = exp
(
−1− m

k
χ(N,M)

)
, χ(N,M) = u′AcA +

(
c2 +

2I

m

)
v ′A′cA′ . (25)
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Then, the system may be rewritten as follows:(
J0
AB J1

AB′

J1
A′B J2

A′B′

)
∂t

(
u′B

v ′B′

)
+

(
J0
iAB J1

iAB′

J1
iA′B J2

iA′B′

)
∂i

(
u′B

v ′B′

)
=

(
PA

QllA′

)
,

(26)
where

J0
AB = −m

k

∫
R3

∫ ∞
0

f cAcB I
α dIdc,

J1
AB′ = −m

k

∫
R3

∫ ∞
0

f cAcB′

(
c2 +

2I

m

)
Iα dIdc,

J2
A′B′ = −m

k

∫
R3

∫ ∞
0

f cA′cB′

(
c2 +

2I

m

)2

Iα dIdc.

(27)

The system (26) is symmetric hyperbolic according with the general theory of
systems of balance laws with a convex entropy density (Boillat & Ruggeri
Continuum Mech. Thermodyn. (1997)).

Tommaso Ruggeri Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 6



Problem ê Are N and M independent?

The following two theorems give the answer [Arima, Mentrelli and Ruggeri- Annals of

Physics (2014)]:

Theorem
The differential system is Galilean invariant if and only if M ≤ N − 1.

Theorem

If M < N − 1, all characteristic velocities are independent from the internal
degrees of freedom D and coincides with the one of F -hierarchy of monatomic
gases with the truncation order N.

ê
The relation between N and M for the physically meaningful system

The requirement that the system is Galilean invariant and the characteristic
velocities are function of D require

M = N − 1
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Examples:

N=1, M=0 Euler system:

N=2, M=1 14-field system:
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The closure in the neighborhood of a local equilibrium

We have the same problematic in polyatomic gas concerning the convergence of
the integrals. In ET of monatomic gas we need that the index of truncation N
must even and M + 2 must be even in the present theory. In particular not Grad in
monatomic case neither 14 moments are allowed in a theory far from equilibrium!
Therefore as in the monatomic gas case, the distribution function obtained as
solution of the variational problem is expanded in the neighborhood of a local
equilibrium state:

f ≈ f E
[

1− m

k

(
ũ′AcA +

(
c2 +

2I

m

)
ṽ ′A′cA′

)]
, ũ′A = u′A − u′EA , ṽ

′
A′ = v ′A′ − v ′EA′ ,

(28)
where u′EA and v ′EA′ are the main field components evaluated in the local
equilibrium state. The equilibrium distribution function f E is given by the (19).
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The 14 moments system for polyatomic gases

In the case of 14 moments and polyatomic gas p = k
mρT , ε = D

2
k
mT , the system

become:

ρ̇ + ρ
∂vk

∂xk

= 0,

ρv̇i +
∂p

∂xi

+
∂Π

∂xi

−
∂σ〈ij〉
∂xj

= 0,

Ṫ +
2

D
kB
m
ρ

(p + Π)
∂vk

∂xk

−
2

D
kB
m
ρ

∂vi

∂xk

σ〈ik〉 +
2

D
kB
m
ρ

∂qk

∂xk

= 0,

σ̇〈ij〉 + σ〈ij〉
∂vk

∂xk

− 2Π
∂v〈i
∂xj〉

+ 2
∂v〈i
∂xk

σ〈j〉k〉 −
4

D + 2

∂q〈i
∂xj〉

− 2p
∂v〈i
∂xj〉

= −
1

τS

σ〈ij〉,

Π̇ +
5D − 6

3D
Π
∂vk

∂xk

−
2(D − 3)

3D

∂v〈i
∂xk〉

σ〈ik〉 +
4(D − 3)

3D(D + 2)

∂qk

∂xk

+
2(D − 3)

3D
p
∂vk

∂xk

= −
1

τΠ

Π,

q̇i +
D + 4

D + 2
qi

∂vk

∂xk

+
2

D + 2
qk

∂vk

∂xi

+
D + 4

D + 2
qk

∂vi

∂xk

+
kB

m
T
∂Π

∂xi

−
kB

m
T
∂σ〈ik〉
∂xk

+ Π

− kB
m

T

ρ

∂ρ

∂xi

+
D + 2

2

kB

m

∂T

∂xi

−
1

ρ

∂Π

∂xi

+
1

ρ

∂σ〈ik〉
∂xk



−σ〈ik〉

− kB
m

T

ρ

∂ρ

∂xk

+
D + 2

2

kB

m

∂T

∂xk

−
1

ρ

∂Π

∂xk

+
1

ρ

∂σ〈pk〉
∂xp

 +
D + 2

2

(
kB

m

)2
ρT

∂T

∂xi

= −
1

τq
qi ,
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The 6 Moments case

The most simple case of dissipative polyatomic gas is the one in which we neglect
heat conductivity and shear viscosity and we suppose that only the bulk viscosity
is not negligible In this case we have the most simple model after Euler in the
presence of dissipation due to the role of the dynamical pressure We consider 6
independent field-variables (ρ, vi ,T ,Π), and we assume the following binary
hierarchy (F-series and G-series) of the balance equations proposed in the
framework of ET of real gases [2]:

∂F

∂t
+
∂Fi

∂xi
= 0,

∂Fj

∂t
+
∂Fji

∂xi
= 0, (29)

∂Fll

∂t
+
∂Flli

∂xi
= Pll ,

∂Gll

∂t
+
∂Glli

∂xi
= 0,

where (29)1,2,4 represent the conservation laws of mass, momentum and energy
provided that F = ρ, Fi = ρvi , Fij = ρvivj + (p + Π)δij , Gll = ρvlvl + 2ρε, and
Glli = (ρvlvl + 2ρε+ 2p + 2Π)vi with p and ε being, respectively, the pressure and
the specific internal energy.
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Non linear MEP

with  F
Fi

Fll

 =

 ρ
ρvi

ρv2 + 3(p + Π)

 =

∫
R3

∫ ∞
0

m

 1
ci
c2

 f Iα dI dc (30)

and

Gll = ρv2 + 2ρε =

∫
R3

∫ ∞
0

m(c2 + 2I/m)f Iα dI dc. (31)
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Theorem

The distribution function that maximizes the entropy (12) under the constraints
(30) (31) has the form:

f =
ρ

m (kBT )1+αΓ(1 + α)

(
m

2πkBT

1

1 + Π
p

)3/2(
1

1− 3
2(1+α)

Π
p

)1+α

exp

{
− 1

kBT

(
1

2
mC 2

(
1

1 + Π
p

)
+ I

(
1

1− 3
2(1+α)

Π
p

))}
. (32)

All the moments are convergent provided that

−1 <
Π

p
<

2

3
(1 + α), α > −1. (33)
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Then the system (29) is written in terms of the physical variables:

∂ρ

∂t
+

∂

∂xi
(ρvi ) = 0,

∂ρvj
∂t

+
∂

∂xi
[(p + Π)δij + ρvivj ] = 0, (34)

∂

∂t
(2ρε+ ρv2) +

∂

∂xi

{[
2(p + Π) + 2ρε+ ρv2

]
vi
}

= 0,

∂

∂t

[
3(p + Π) + ρv2

]
+

∂

∂xi

{[
5(p + Π) + ρv2

]
vi
}

= P̂ll .

(35)

with

P̂ll = −2

ν

(D − 3)2p3Π

D(p + Π)((D − 3)p − 3Π)
. (36)
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The non equilibrium entropy have the following expression:

k = − p

2T
log

 pD

(p + Π)3
(
p − 3Π

D−3

)D−3

 . (37)

The argument of log in (37) depends on a single variable Π/p. For D > 3, k
exists and is bounded in the domain that contains the equilibrium state:

− 1 <
Π

p
<

D − 3

3
, (38)

in which k(ρ, ε,Π) < 0,∀Π 6= 0 and k has a global maximum k(ρ, ε, 0) = 0 at the
equilibrium state.
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Figure: Nonequilibrium entropy density k as the function of Z for different values of D.
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The main field for which the system became symmetric hyperbolic have the
following components:

λ = − g

T
+ k +

v2

2T

(
1 +

Π

p

)−1

,

λi = − vi
T

(
1 +

Π

p

)−1

,

µll =
1

2T

(
1− 3

D − 3

Π

p

)−1

,

λll = − 1

2T

D

D − 3

Π

p

(
1 +

Π

p

)−1(
1− 3

D − 3

Π

p

)−1

.

(39)

Notice that, in equilibrium where Π = 0, the first five components of the main
field (39) coincide with those obtained by Godunov for the Euler fluid [21]:

λ|E = − 1

T

(
g − v2

2

)
, λi |E = − vi

T
, µll |E =

1

2T
,

while λll |E = 0 according to the fact that the Euler fluid is a principal subsystem
of the 6-moment system.
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The field equations for linear production become:

ρ̇+ ρ div v = 0,

ρv̇i +
∂

∂xi
(p + Π) = 0,

ρε̇+ (p + Π)div v = 0,

τ Π̇ +

(
ν + τ

5D − 6

3D
Π

)
div v = −Π,

(40)

where the bulk viscosity ν ∝ D − 3. When D → 3 (monatomic gas) the previous
system have the same solution of the Euler fluid provided Π(x, 0) = 0.
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The parabolic case τ → 0:

ρ̇+ ρ div v = 0,

ρv̇i +
∂

∂xi
(p + Π) = 0,

ρε̇+ (p + Π)div v = 0,

ν div v = −Π,

(41)

was studied in same papers, e.g. :

- P. Secchi - Rend. Sem. Padova (1984)
- V. Shelukhin - Journal of Differential Equations (2000)
- H. Frid & V. Shelukhin - Siam J. Math. Anal. (2000)
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Comparison between the nonlinear systems of the ET6
theory and of Meixner’s theory

The Meixner theory may be regarded as the prototype of the theories of internal
variables, but it is still frequently applied to various nonequilibrium phenomena.
The simplest version of Meixner’s theory composed of the Euler equations and
only one relaxation equation for an internal variable ξ:

ρ̇+ ρ
∂vk
∂xk

= 0,

ρv̇i +
∂P
∂xi

= 0,

ρĖ + P ∂vk
∂xk

= 0,

ξ̇ = −βA,

(42)

where P, E and A are, respectively, the pressure, the specific internal energy and
the affinity of relaxation processes, and β is a positive phenomenological
coefficient.
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The generalized Gibbs relation in Meixner’s theory is assumed to be:

T dS = dE − P
ρ2

dρ−Adξ, (43)

where T is the temperature and S is the specific entropy. Note that the quantities
T , S, P and A depend not only on the mass density ρ and the specific internal
energy E but also on the internal variable ξ. From (43), taking into account (42),
we obtain:

Ṡ = β
A2

T
. (44)

Comparing the system of the ET6 theory (41) and (??) with the system of
Meixner’s theory (42) and (44), we obtain the perfect correspondence provided
that

ξ =
p + Π

ρ
− 2

3
ε, P = p + Π

E = ε, A = − T kΠ,

S = s +
k

ρ
, β =

α

3 ρ T
,

(45)

where T is given by

1

T
=

1

T
+

{
1

ρ
kε +

(
2

3
− pε

ρ

)
kΠ

}
. (46)
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Qualitative Analysis

In the general theory of hyperbolic conservation laws and hyperbolic-parabolic
conservation laws, the existence of a strictly convex entropy function, which is a
generalization of the physical entropy, is a basic condition for the well-posedness
(K. O. Friedrichs & P. D. Lax, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), S.
Kawashima, Proc. Roy. Soc. Edinburgh 106A (1987)). In fact if Fα and the
production f are smooth enough, in a suitable convex open set D ∈ Rn it is well
known that the Cauchy problem has a unique local (in time) smooth solution for
smooth initial data.

However, in the general case, and even for arbitrarily small and smooth initial
data, there is no global continuation for these smooth solutions, which may
develop singularities, shocks or blow up, in finite time, see for instance Majda -
1978 and C. M. Dafermos, Hyperbolic conservation laws in continuum physics,
Springer-Verlag, Berlin, 2000.

On the other hand, in many physical examples, thanks to the interplay between
the dissipation due to the source term and the hyperbolicity there exist global
smooth solutions for a suitable set of initial data.
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Example : ut + uux = −νu Inviscid Burgers’ equation with friction term
(ν = const. ≥ 0).
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Figure: a) ν = 0, b) ν small,c) ν large.

Tommaso Ruggeri Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 6



Systems of mixed type

In physical dissipative case the hyperbolic systems are of mixed type, some
equations are conservation laws and other ones are real balance laws, i.e., we are
in the case in which

ut + ∂iF
i (u) = F(u)

with

F(u) ≡
(

0
g(u)

)
; g ∈ RN−M .

In this case the coupling condition discovered for the first time by Kawashima and
Shizuta (K-condition) such that the dissipation present in the second block have
effect also to the first block of equation plays a very important role in this case for
global existence of smooth solutions.
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Global Existence of smooth solutions

In fact, if the system of balance law is endowed with a convex entropy law, and it
is dissipative, then the K-condition becomes a sufficient condition for the existence
of global smooth solutions provided that the initial data are sufficiently smooth
(Hanouzet and Natalini 2003, Wen-An Yong 2004, Bianchini, Hanouzet and
Natalini 2007)

Theorem (Global Existence)

Assume that the system of balance laws is strictly dissipative and the K-condition
is satisfied. Then there exists δ > 0, such that, if ‖u(x , 0)‖2 ≤ δ, there is a unique
global smooth solution, which verifies

u ∈ C0
(
[0,∞); H2(R) ∩ C1

(
[0,∞);H1(R).

)
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Moreover Ruggeri and Serre have proved in the one-dimensional case that the
constant states are stable:

Theorem (Stability of Constant State)

Under natural hypotheses of strongly convex entropy, strict dissipativeness,
genuine coupling and “zero mass” initial for the perturbation of the equilibrium
variables, the constant solution stabilizes

‖u(t)‖2 = O
(
t−1/2

)
.

Lou and Ruggeri have observed that the weaker K-condition in which we require
the K-condition only for the right eigenvectors corresponding to genuine non linear
is a necessary (but not sufficient) condition for the global existence of smooth
solutions.
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Shock wave structure in a rarefied polyatomic gas

The shock wave structure in a rarefied polyatomic gas is, under some conditions,
quite different from the shock wave structure in a rarefied monatomic gas due to
the presence of the microscopic internal modes in a polyatomic molecule such as
the rotational and vibrational modes. For examples: 1) The shock wave thickness
in a rarefied monatomic gas is of the order of the mean free path. On the other
hand, owing to the slow relaxation process involving the internal modes, the
thickness of a shock wave in a rarefied polyatomic gas is several orders larger than
the mean free path. 2) As the Mach number increases from unity, the profile of
the shock wave structure in a polyatomic rarefied gas changes from the nearly
symmetric profile (Type A) to the asymmetric profile (Type B), and then changes
further to the profile composed of thin and thick layers (Type C)
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Schematic profiles of the mass density are shown in Figure 3. Such change of the
shock wave profile with the Mach number cannot be observed in a monatomic gas.

x

ρ Type A

x

ρ Type B

x

ρ Type C

∆

Ψ

Figure: Schematic representation of three types of the shock wave structure in a rarefied
polyatomic gas, where ρ and x are the mass density and the position, respectively. As
the Mach number increases from unity, the profile of the shock wave structure changes
from Type A to Type B, and then to Type C that consists of the thin layer ∆ and the
thick layer Ψ.
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In order to explain the shock wave structure in a rarefied polyatomic gas, there
have been two well-known approaches. One was proposed by Bethe and Teller and
the other is proposed by Gilbarg and Paolucci. Although the Bethe-Teller theory
can describe qualitatively the shock wave structure of Type C, its theoretical basis
is not clear enough. The Gilbarg-Paolucci theory, on the other hand, cannot
explain asymmetric shock wave structure (Type B) nor thin layer (Type C).
Recently it was shown that the ET14 theory can describe the shock wave structure
of all Types A to C in a rarefied polyatomic gas In other words the ET14 theory
has overcome the difficulties encountered in the previous two approaches. This
new approach indicates clearly the usefulness of the ET theory for the analysis of
shock wave phenomena.
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Shock structure in ET14
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Riemann Problem in ET6
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Rational extended thermodynamics (RET) is a thermodynamic theory that is applicable to
non-equilibrium phenomena. It is described by differential hyperbolic systems of balance
laws with local constitutive equations. As RET has been strictly related to the kinetic theory
through the closure method of moment hierarchy associated to the Boltzmann equation,
the applicability range of the theory has been restricted within rarefied monatomic gases. 
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polyatomic gas, dense gas, and mixture of gases in non-equilibrium. In particular we
present the theory of dense gases with 14 fields, which reduces to the Navier-Stokes
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on an extra variable that takes into account a molecule’s internal degrees of freedom. 
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natural definition of the average temperature.  The qualitative analysis and, in particular,
the existence of the global smooth solution and the convergence to equilibrium are
also studied by taking into account the fact that the differential systems are symmetric
hyperbolic.  Applications to shock and sound waves are analyzed together with light
scattering and heat conduction, and the results are compared with experimental data.
 
The book represents a valuable resource for applied mathematicians, physicists and
engineers, offering powerful models for potential applications like satellites reentering the
atmosphere, semiconductors, and nano-scale phenomena.
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