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ABSTRACT
In this work, we deal with a problem of thermal convection for a fluid satisfying Navier–Stokes equation containing
the spatial derivatives of the velocity field of sixth order, with the introduction of a tri-Laplacian term. It was pointed
out by several authors, for example, Fried andGurtin, that contributions of higher order take into accountmicrolength
effects; these phenomena are relevant inmicrofluidic flows. In particular, we follow the isothermal model of Musesti,
using a Boussinesq approximation, so that the density in the body force term depends on the temperature to consider
buoyancy effects that occur when the fluid is heated and it expands. We discuss different meaningful boundary
conditions that have a key role to understand the effects of higher-order derivatives in microfluidic scenarios with
convection. We carry out the complete study of linear and nonlinear stability for the flow. In addition, we complete
the treatment with the analysis of critical wavenumbers and Rayleigh numbers for convection in the fluid.

1 Introduction

In recent years, nonstandard fluids which may be called generalized Navier–Stokes fluids have gained considerable
interest both from the theoretical and the experimental point of view, see, for instance [1, 2]. As an example, Navier–
Stokes–Voigt fluids (see, e.g., [3–9]), which are a zero-order theory in a larger class called Kelvin–Voigt fluids, have been
deeply investigated by the Russian school, also with possible thermal effects [10–17]. Besides these, also Ladyzhenskaya’s
alternative formulations are worth mentioning [18–21].
Among these formulations, the ones which involve higher spatial derivatives of the velocity field are of particular interest
to this study. As a matter of fact, they may be helpful in the rapidly expanding theory of flow in microdevices, as well as
in the area of microfluidics (cf. [22–24]). Generalized Newtonian theories of this type were studied by [22, 25, 26], while
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the higher derivative theories in [27–30]. In [31], it also has been proved that these theories are fully compatible with a
generalized balance law of higher gradient powers.
To be more precise, the prime aim of the present paper is to analyze a class of generalized Navier–Stokes fluids having the
viscous term involving not only the Laplacian of the velocity field, but also the bi- and the tri-Laplacian of the velocity
field, this theory having been developed by [28]. We notice that theories of sixth order were previously considered by
Nikolaevskiy [32] in the context of viscoelasticty and Beresnev and Nikolaevskiy [33] in themodeling of nonlinear seismic
waves. The Nikolaevskiy equation has been more recently studied also in [34, 35]. Interestingly, a sixth-order thin-film
equation appears in the context of reduced models for fluid-structure interaction systems (see [36, 37]).
In classical viscous fluid dynamics, the Cauchy stress tensor 𝑇𝑖𝑗 depends linearly on the symmetric part of the velocity
gradient,

𝑑𝑖𝑗 =
1

2
(𝑣𝑖,𝑗 + 𝑣𝑗,𝑖) ,

where 𝐯(𝐱, 𝑡) denotes the velocity field at a point 𝐱 at time 𝑡, and 𝑣𝑖,𝑗 ≡ 𝜕𝑣𝑖∕𝜕𝑥𝑗 .
This theory is well-established for ordinary fluids, but for situations where the composition of the fluid may involve long
molecules, or where the length scales involved are extremely small, the sixth-order theory of [28]may be very relevant. The
new theory argues that the total stress tensor depends not just upon the velocity gradient, but also upon the first spatial
derivative of the spatial gradient of the velocity, and also upon the second spatial derivatives of the gradient of the velocity,
that is, upon 𝑣𝑖,𝑗𝑘 ≡ 𝜕2𝑣𝑖∕𝜕𝑥𝑗𝜕𝑥𝑘 and upon 𝑣𝑖,𝑗𝑘ℎ ≡ 𝜕3𝑣𝑖∕𝜕𝑥𝑗𝜕𝑥𝑘𝜕𝑥ℎ.
This article studies the thermal convection in the sixth-order theory including temperature effects via a Boussinesq
approximation (see, e.g., [38]). We analyze thermal convection, in particular both global nonlinear stability and linear
instability theory, and we find that this leads to novel behavior. Indeed, stability in thermal convection is an area where
many novel effects are being found (see, e.g., [39–42]). Novel results are being achieved especially using the nonlinear
energy stability method (see, e.g., [43–46]). Moreover, thermal convection in fluids is yielding very novel and important
results in the field of renewable energy, as pointed out in [47].
One of the key aspects of the present work is to pay particular attention to the correct form of boundary conditions needed
when higher-order derivatives are present. A set of partial differential equations is generally useless if it is not completed
by correct boundary conditions which are applicable to real-life situations and which describe the interaction with the
outside. Since for the model we investigate the momentum equation involves the bi- and tri-Laplacian terms Δ2𝑣𝑖 , Δ3𝑣𝑖 ,
Δ being the usual Laplace operator, finding the further boundary conditions for the problem is a difficult matter. In this
regard, we appeal to the fundamental paper [27] regarding boundary conditions, although the extension to the present
sixth-order theory [28] requires a new approach.
In this work, we present themodel for thermal convection in a generalized sixth-order Navier–Stokes fluid, followed by its
application to study Bénard convection—a phenomenon in which a layer of fluid, heated from below, exhibits convective
motion. We examine the stability conditions for this problem from both a linear instability perspective and a nonlinear
viewpoint using energetic methods. The boundary conditions are broken down into three main physically relevant cases
and detailed numerical results are presented and interpreted.

2 The Model for ConvectionWith Higher-Order Spatial Derivatives

We start from [28, eq. 22] to study the convection problem, the system of equations describing the phenomena will also
involve a relation for the temperature, that will be an energy balance that exploits the classical Boussinesq approximation
[38]. The arising attention to phenomena occurring at small length scales justifies this generalization because terms with
higher derivatives affect the behavior of the fluid at these orders. Themain contribution in the literature to the description
and analysis of a viscous flow in the setting of higher-order contributions is due to Fried and Gurtin [27], where second-
gradient fluids and corresponding derivatives up to the fourth order are considered, with the definition of a hyperstress
by a tensor of third order denoted by 𝐺; this is extended in [28] by the introduction of third gradients. They also carefully
study possible boundary conditions for this kind of fluids, that are relevant because of the introduction of new terms with
higher-order derivatives. This approach traces back to the work of Germain [48, 49], who first introduced higher-order
derivatives in the virtual displacements in order to describe the microstructure of a body.
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We proceed now to present the fundamental equations for an incompressible fluid considering also third gradients; we
have the system of equations

{ 𝜕𝐯

𝜕𝑡
+ (𝐯 ⋅ ∇)𝐯 = 𝐟 − 1

𝜌
∇𝑝 + 𝜈Δ𝐯 − 𝜉̂Δ2𝐯 + 𝛾̂Δ3𝐯

div 𝐯 = 0,
(1)

where 𝜌 is constant being an incompressible fluid, 𝐟 is an external body force, 𝑝(𝑥, 𝑡) is the effective pressure, Δ is the
Laplacian, and 𝜈 is the positive constant kinematic viscosity of the fluid, 𝜉̂, 𝛾̂ are the positive coefficients of [28] divided
by 𝜌.
We will denote a general point as 𝐱 = (𝑥1, 𝑥2, 𝑥3) ≡ (𝑥, 𝑦, 𝑧) and the components of the velocity as 𝐯 = (𝑣1, 𝑣2, 𝑣3) ≡
(𝑢, 𝑣, 𝑤). For the formulas written in components, we will use Einstein convention.
To treat the coupling between velocity and temperature, we assume that 𝜌 is linear in the temperature field, so that

𝜌 = 𝜌0
[
1 − 𝛼(𝑇 − 𝑇0)

]
, (2)

where 𝜌0 is a constant, 𝛼 denotes the thermal expansion coefficient of the fluid, and 𝑇0 is a reference temperature.
The density is assumed constant everywhere else. Using the Boussinesq approximation, we obtain the system of equations

⎧⎪⎪⎨⎪⎪⎩

𝜕𝐯

𝜕𝑡
+ (𝐯 ⋅ ∇)𝐯 = − 1

𝜌
∇𝑝 + 𝜈Δ𝐯 − 𝜉̂Δ2𝐯 + 𝛾̂Δ3𝐯 + 𝛼𝑔𝑇𝒌

div 𝐯 = 0
𝜕𝑇

𝜕𝑡
+ 𝐯∇𝑇 = 𝜅Δ𝑇,

(3)

where 𝑔 denotes the gravity along the 𝑧-direction, with negative verse, 𝜅 represents the thermal diffusivity and𝒌 = (0, 0, 1).
The problem of existence of a flow satisfying the isothermalmodel with bi-Laplacian is studied in [30] and [29]. Interesting
instability results for the isothermal model (1) have been given by [50], assuming boundary conditions periodic in space.
In this work, we will present the study of linear and nonlinear instability for the setting just presented for Bénard
convection. As regards the possible boundary conditions to be assigned to the flow, we follow the approach of [27],
completing them with the necessary modifications because of the presence of the tri-Laplacian, as in [28], that originates
a richer structure. We will present and treat three classes of different boundary conditions, called strong adherence, weak
adherence, and general adherence, inspired to the ones treated in [27] for second-gradient fluids.

3 Stationary State, Perturbation, and Adimensionalization of the Problem

The domain of the problem is the layer {(𝑥, 𝑦) ∈ ℝ2} × {0 < 𝑧 < 𝑑}. Let 𝑇𝐿 and 𝑇𝑈 be two constants such that 𝑇𝐿 > 𝑇𝑈 .
We require that it holds 𝑣3 = 0 at 𝑧 = 0, 𝑑, that the temperature is 𝑇 = 𝑇𝐿 at 𝑧 = 0 and that the temperature is 𝑇 = 𝑇𝑈 at
𝑧 = 𝑑.
The system of governing equations is satisfied by the basic state

𝑣𝑖 ≡ 0, 𝑇̄ = −𝛽𝑧 + 𝑇𝐿 , (4)

where 𝛽 is the temperature gradient, namely,

𝛽 =
𝑇𝐿 − 𝑇𝑈

𝑑

and 𝑝̄ can be determined from the momentum equation.
The stationary solution is denoted by (𝑣𝑖, 𝑇̄, 𝑝̄) and we consider its perturbation denoted by (𝑢𝑖, 𝜃, 𝜋), with

𝑣𝑖 = 𝑣𝑖 + 𝑢𝑖, 𝑇 = 𝑇̄ + 𝜃, 𝑝 = 𝑝̄ + 𝜋 ,
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where 𝑝̄ is the steady-state pressure. We adimensionalize the governing equations of the perturbation with the quantities

𝑢𝑖 = 𝑢∗
𝑖
𝑈, 𝑥𝑖 = 𝑥∗

𝑖
𝑑, 𝑡 = 𝑡∗ , 𝜉 =

𝜉̂

𝜈𝑑2
,

𝜃 = 𝜃∗𝑇♯, 𝜋 = 𝜋∗𝑃̃, 𝑃 =
𝜌0𝜈𝑈

𝑑
, 𝛾 =

𝛾̂

𝑑2𝜈
,

𝑇♯ = 𝑈

√
𝛽𝜈

𝜅𝛼𝑔
, 𝑅𝑎 = 𝑅2 =

𝛼𝛽𝑔𝑑4

𝜅𝜈
,

where 𝑅𝑎 is the Rayleigh number.
We thus obtain the adimensional equations for the perturbation:

⎧⎪⎨⎪⎩
𝜕𝐮

𝜕𝑡
+ (𝐮 ⋅ ∇)𝐮 = −∇𝜋 + Δ𝐮 − 𝜉Δ2𝐮 + 𝛾Δ3𝐮 + 𝑅𝜃𝒌

div 𝐮 = 0

𝑃𝑟
(
𝜕𝜃

𝜕𝑡
+ 𝐮∇𝜃

)
= 𝑅𝑤 + 𝜅Δ𝜃,

(5)

where 𝑃𝑟 = 𝜈∕𝜅 is the Prandtl number.

4 Boundary Conditions

Although we follow the development of boundary conditions as in [27], it is necessary to incorporate the structure
presented by the sixth-order theory of [28]. This leads to a different set of boundary conditions from those obtained for
the four derivatives model of [27] and [28]. As stressed in [27], the importance of the boundary conditions is not only a
matter of correct physical description, but also key to any stability study. The external power on a body is that generated
by the tractions and velocities on the boundary together with any external body forces, while the internal power is that
generated by internal stresses paired with velocity gradients. The principle of virtual power requires these to be equal on
any control volume, see [27, p. 522] and a dissipation inequality is provided by the free energy imbalance. In other words,
the temporal increase in free energy of an arbitrary region in the body is less than or equal to the power expended in that
region, [27, p. 528]. This allowed [30] to obtain restrictions on coefficients of the power expended and essentially in our
case leads to the right-hand side of (24) being nonnegative. This is very important for asymptotic stability.
The topic of boundary conditions in thermal convection has garnered significant recent interest. It is essential to take great
care in selecting the form of boundary conditions to properly represent the physical problem at hand (cf. [51–57]).
The governing equations for the perturbation variables are presented in (5). The solution is supposed to be periodic in 𝑥, 𝑦
and satisfies a plane tiling planform, typically having a hexagonal shape (cf. the detailed discussion in [58, pp. 43–52]). The
temperature boundary conditions are as usual

𝜃 = 0 on 𝑧 = 0, 1. (6)

Muchmore care has to be takenwith the boundary conditions for the velocity perturbation𝑢𝑖 .We denote by𝑉 a convection
cell, which is typically hexagonal, and the boundary intersecting with 𝑧 = 0 will be denoted by Γ1, while the boundary
intersecting with 𝑧 = 𝑑 by Γ2.
The discussion below applies to boundary conditions for the perturbation velocity. Since the boundary conditions for the
sixth-order case were not derived by [28], we first derive the correct boundary conditions for a general three-dimensional
domainΩ having Γ as boundary, and the general boundary conditions are specialized to the thermal convection problem
between two planes afterward.
Equation (5) has, in general, the form

𝑢𝑖,𝑡 + 𝑢𝑗𝑢𝑖,𝑗 = 𝜎𝑖𝑗,𝑗 + 𝑅𝜃𝑘𝑖 , (7)

4 of 20 Studies in Applied Mathematics, 2025
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where 𝜎𝑖𝑗 is the total stress tensor. This tensor is composed of three parts. There is the symmetric Cauchy stress, 𝑇𝑖𝑗 , which
has the classical expression

𝑇ij = −𝜋̃𝛿ij + 𝑇0ij = −𝜋̃𝛿ij + 2𝑑ij,

where 𝜋̃ is the fluid pressure, and 𝑇0
𝑖𝑗
is the symmetric extra stress which depends only on 𝑑𝑖𝑗 . Notice that usually there is

a coefficient 𝜇, representing the dynamic viscosity, in front of 𝑑𝑖𝑗 but this is normalized due to our nondimensionalization.
To handle the extra complexity of the second gradients of 𝑢𝑖 , [27] and [28] introduce a third-order tensor which [27] refer
to as a hyperstress, 𝐺𝑖𝑗𝑘, which has the form

𝐺𝑖𝑗𝑘 = −𝜋̃𝑘𝛿𝑖𝑗 + 𝐺0𝑖𝑗𝑘 , (8)

where 𝜋̃𝑘 is a pressure vector and 𝐺0𝑖𝑗𝑘 is the extra hyperstress involving only 𝑢𝑖,𝑗𝑘 . To incorporate the extra complexity
involved with the third gradients of 𝑢𝑖 , [28] introduces a fourth-order tensor𝐻𝑖𝑗𝑘ℎ of the form

𝐻𝑖𝑗𝑘ℎ = −𝛿𝑖𝑗Π𝑘ℎ +𝐻0
𝑖𝑗𝑘ℎ

,

where Π𝑘ℎ is a pressure tensor and𝐻0
𝑖𝑗𝑘ℎ

is the fourth-order extra stress which involves only 𝑢𝑖,𝑗𝑘ℎ.

The total stress which arises in Equation (5) is 𝜎𝑖𝑗 = 𝑇𝑖𝑗 − 𝐺𝑖𝑗𝑘,𝑘 +𝐻𝑖𝑗𝑘ℎ,ℎ𝑘 and this yields the terms−𝜋,𝑖 + Δ𝑢𝑖 − 𝜉Δ2𝑢𝑖 +
𝛾Δ3𝑢𝑖 , that is, in Equation (5),

𝜎ij,𝑗 = −𝜋,𝑖 + Δ𝑢𝑖 − 𝜉Δ2𝑢𝑖 + 𝛾Δ3𝑢𝑖 = (𝑇ij − 𝐺ijk,𝑘 +𝐻ijkh,hk),𝑗 , (9)

where 𝜋 = 𝜋̃ + 𝜋̃𝑘,𝑘 +Π𝑘ℎ,ℎ𝑘 is the total pressure.
Musesti [28, p. 87] writes: “A discussion about boundary conditions of third order fluids [. . . ] would be desirable.” To analyze
thermal convection, it is essential and so we now do this. To develop a complete set of boundary conditions, we commence
bymultiplying 𝜎𝑖𝑗,𝑗 by 𝑢𝑖 and integrate over the domainΩ. Let ‖ ⋅ ‖ and (⋅, ⋅) denote the norm and inner product on 𝐿2(Ω).
Throughout, we suppose we have no-slip boundary conditions so that 𝑢𝑖 = 0 on Γ. Under these conditions, (𝑢𝑖, 𝜋,𝑖) =
−(𝑢𝑖,𝑖 , 𝜋) = 0. Hence, we obtain after integration by parts and use of the boundary conditions on 𝑢𝑖 ,

(𝜎ij,𝑗, 𝑢𝑖) = −(𝜎ij, 𝑢𝑖,𝑗) = −(𝑇0ij, 𝑢𝑖,𝑗) + (𝐺
0
ijk,𝑘, 𝑢𝑖,𝑗) − (𝐻

0
ijkh,hk, 𝑢𝑖,𝑗) . (10)

We deal with each integral on the right of (10) below. First,

−(𝑇0ij, 𝑢𝑖,𝑗) = −2(𝑑ij, 𝑢𝑖,𝑗) = −‖∇𝐮‖2 . (11)

Second,

(𝐺0
𝑖𝑗𝑘,𝑘

, 𝑢𝑖,𝑗) = −(𝐺0
𝑖𝑗𝑘
, 𝑢𝑖,𝑗𝑘) + ∮Γ 𝐺

0
𝑖𝑗𝑘
𝑛𝑘𝑢𝑖,𝑗 𝑑𝐴 , (12)

where 𝑑𝐴 denotes the element of integration over Γ.
To handle the boundary term, we follow the notation of [59] and we denote with 𝛼 = 1, 2 the indices with respect to the
two surface coordinates on Γ and let 𝑎𝛼𝛽 be the fundamental surface tensor for the surface Γ. This allows one to write
on Γ,

𝑢𝑖,𝑗 = 𝑛𝑗
𝜕𝑢𝑖
𝜕𝑛

+ 𝑥𝑗;𝛼𝑎𝛼𝛽𝑢𝑖;𝛽 , (13)

where ; 𝛼 denotes surface covariant differentiation, that is, it allows one to split 𝑢𝑖,𝑗 into components normal to the surface
Γ, and tangential to this surface. Since 𝑢𝑖 ≡ 0 on Γ, the tangential components, which are derivatives along the directions
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of the surface coordinates, are zero. Hence, (12) becomes

(𝐺0
𝑖𝑗𝑘,𝑘

, 𝑢𝑖,𝑗) = −(𝐺0
𝑖𝑗𝑘
, 𝑢𝑖,𝑗𝑘) + ∮Γ 𝑚𝑖

𝜕𝑢𝑖
𝜕𝑛

𝑑𝐴 , (14)

where

𝑚𝑖 = 𝐺0
𝑖𝑗𝑘
𝑛𝑘𝑛𝑗 . (15)

We now employ integration by parts to derive an expression for the𝐻𝑖𝑗𝑘ℎ term. We may derive

−(𝐻0
ijkh,hk, 𝑢𝑖,𝑗) = (𝐻0

ijkh,ℎ, 𝑢𝑖,jk) − ∮
Γ

𝐻0
ijkh,ℎ𝑛𝑘𝑛𝑗

𝜕𝑢𝑖
𝜕𝑛

dA = −(𝐻0
ijkh, 𝑢𝑖,jkh) + ∮

Γ

𝐻0
ijkh𝑢𝑖,jk𝑛ℎdA − ∮

Γ

𝐻ijkh,ℎ𝑛𝑘𝑛𝑗
𝜕𝑢𝑖
𝜕𝑛

dA .

(16)

Treatment of the second integral on the right of (16) is quite involved. We repeatedly use the decomposition (13) into
normal and tangential components on Γ. Write

𝐼 = ∮Γ 𝐻
0
𝑖𝑗𝑘ℎ

𝑢𝑖,𝑗𝑘𝑛ℎ 𝑑𝐴 = 𝐼1 + 𝐼2, (17)

where

𝐼1 = ∮Γ 𝐻
0
𝑖𝑗𝑘ℎ

𝑛ℎ
𝜕

𝜕𝑛
(𝑢𝑖,𝑗) 𝑛𝑘 𝑑𝐴 , (18)

and

𝐼2 = ∮Γ 𝐻
0
𝑖𝑗𝑘ℎ

𝑛ℎ𝑥𝑘;𝛼𝑎
𝛼𝛽 (𝑢𝑖,𝑗);𝛽 𝑑𝐴 . (19)

The term 𝐼1 is written as

𝐼1 = ∮Γ 𝐻
0
𝑖𝑗𝑘ℎ

𝑛𝑘𝑛ℎ𝑛𝑞𝑢𝑖,𝑗𝑞𝑑𝐴

= ∮Γ 𝐻
0
𝑖𝑗𝑘ℎ

𝑛𝑘𝑛ℎ𝑛𝑞(𝑢𝑖,𝑞),𝑗𝑑𝐴

= ∮Γ 𝐻
0
𝑖𝑗𝑘ℎ

𝑛𝑘𝑛ℎ𝑛𝑞
𝜕

𝜕𝑛
(𝑢𝑖,𝑞) 𝑛𝑗 𝑑𝐴 + ∮Γ 𝐻

0
𝑖𝑗𝑘ℎ

𝑛𝑘𝑛ℎ𝑛𝑞 𝑥𝑗;𝛼𝑎
𝛼𝛽(𝑢𝑖,𝑞);𝛽 𝑑𝐴.

Then,

𝐼 = ∮Γ 𝐻
0
𝑖𝑗𝑘ℎ

𝑛𝑗𝑛𝑘𝑛ℎ
𝜕2𝑢𝑖
𝜕𝑛2

𝑑𝐴 + 𝐽1 + 𝐽2 ,

where

𝐽1 = ∮Γ 𝐻
0
𝑖𝑗𝑘ℎ

𝑛ℎ𝑥𝑘;𝛼𝑎
𝛼𝛽(𝑢𝑖,𝑗);𝛽 𝑑𝐴,

𝐽2 = ∮Γ 𝐻
0
𝑖𝑗𝑘ℎ

𝑛ℎ𝑛𝑘𝑛𝑞 𝑥𝑗;𝛼𝑎
𝛼𝛽(𝑢𝑖,𝑞);𝛽 𝑑𝐴.

This procedure leads to

𝐽1 = −∮ Γ
𝐻0
ijkh,𝑚𝑛ℎ𝑥𝑚;𝛽𝑥𝑘;𝛼𝑎

𝛼𝛽𝑢𝑖,𝑗 dA − ∮ Γ
𝐻0
ijkh𝑛ℎ;𝛽𝑥𝑘;𝛼𝑎

𝛼𝛽𝑢𝑖,𝑗dA − ∮ Γ
𝐻0
ijkh𝑛ℎ𝑥𝑘;𝛼𝛽𝑎

𝛼𝛽𝑢𝑖,𝑗dA.
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We now need to employ the Gauss equations 𝑥𝑖;𝛼𝛽 = 𝑏𝛼𝛽𝑛𝑖 and the Gauss–Weingarten relations 𝑛𝑖;𝛼 = −𝑏𝛽𝛼𝑥𝑖;𝛽 , where
𝑏𝛼𝛽 arises in the second fundamental form of the surface Γ. In this way, we derive

𝐽1 = −∮ Γ
𝐻0
ijkh,𝑚𝑛ℎ𝑥𝑚;𝛽𝑥𝑘;𝛼𝑎

𝛼𝛽𝑢𝑖,𝑗 dA + ∮ Γ
𝐻0
ijkh𝑏

𝜉
𝛽
𝑥ℎ;𝜉𝑥𝑘;𝛼𝑎

𝛼𝛽𝑢𝑖,𝑗 dA − ∮ Γ
𝐻0
ijkh𝑛ℎ𝑛𝑘𝑏

𝛼
𝛼𝑢𝑖,𝑗dA, (20)

where 2𝐻 = 𝑏𝛼𝛼 = 𝑎𝛼𝛽𝑏𝛼𝛽 is twice the mean curvature of the surface Γ. A similar calculation with 𝐽2 leads to

𝐽2 = − ∮Γ 𝐻
0
𝑖𝑗𝑘ℎ,𝑚

𝑛𝑘𝑛ℎ𝑛𝑞 𝑥𝑚;𝛽𝑥𝑗;𝛼𝑎
𝛼𝛽𝑢𝑖,𝑞 𝑑𝐴

− ∮Γ 𝐻
0
𝑖𝑗𝑘ℎ

𝑥𝑗;𝛼
[
𝑛𝑘;𝛽𝑛ℎ𝑛𝑞 + 𝑛𝑘𝑛𝑞𝑛ℎ;𝛽 + 𝑛𝑘𝑛ℎ𝑛𝑞;𝛽

]
𝑎𝛼𝛽𝑢𝑖,𝑞 𝑑𝐴

− ∮Γ 𝐻
0
𝑖𝑗𝑘ℎ

𝑛𝑘𝑛ℎ𝑛𝑞𝑥𝑗;𝛼𝛽𝑎
𝛼𝛽𝑢𝑖,𝑞𝑑𝐴

= − ∮Γ 𝐻
0
𝑖𝑗𝑘ℎ,𝑚

𝑛𝑘𝑛ℎ𝑥𝑚;𝛽𝑥𝑗;𝛼𝑎
𝛼𝛽 𝜕𝑢𝑖

𝜕𝑛
𝑑𝐴

+ ∮Γ 𝐻
0
𝑖𝑗𝑘ℎ

𝑥𝑗;𝛼
[
𝑏
𝜉
𝛽
𝑥𝑘;𝜉𝑛ℎ + 𝑏

𝜉
𝛽
𝑥ℎ;𝜉𝑛𝑘

]
𝑎𝛼𝛽

𝜕𝑢𝑖
𝜕𝑛

𝑑𝐴

+ ∮Γ 𝐻
0
𝑖𝑗𝑘ℎ

𝑏
𝜉
𝛽
𝑥𝑞;𝜉𝑎

𝛼𝛽𝑛𝑘𝑛ℎ𝑥𝑗;𝛼𝑢𝑖,𝑞 𝑑𝐴

− ∮Γ 𝐻
0
𝑖𝑗𝑘ℎ

𝑏𝛼𝛼𝑛𝑘𝑛ℎ𝑛𝑗
𝜕𝑢𝑖
𝜕𝑛

𝑑𝐴 . (21)

We now use expression (13) in (20) and (21) and recognize that the tangential parts of 𝑢𝑖,𝑞 yield zero contribution. In this
way, combining (16), (17), (18), (19), (20), and (21), we may see that

−(𝐻0
ijkh,hk, 𝑢𝑖,𝑗) = −(𝐻0

ijkh, 𝑢𝑖,jkh) + ∮ Γ
ℎ𝑖
𝜕2𝑢𝑖
𝜕𝑛2

dA + ∮ Γ
𝑞𝑖
𝜕𝑢𝑖
𝜕𝑛

dA , (22)

where

𝑞𝑖 = −𝐻0
𝑖𝑗𝑘ℎ,ℎ

𝑛𝑘𝑛𝑗 −𝐻0
𝑖𝑗𝑘ℎ,𝑚

𝑛𝑗𝑛ℎ𝑎
𝛼𝛽𝑥𝑚;𝛽𝑥𝑘;𝛼

−𝐻0
𝑖𝑗𝑘ℎ,𝑚

𝑛𝑘𝑛ℎ𝑎
𝛼𝛽𝑥𝑚;𝛽𝑥𝑗;𝛼 +𝐻0

𝑖𝑗𝑘ℎ
𝑏𝜉𝛼𝑥ℎ;𝜉𝑥𝑘;𝛼𝑛𝑗

−𝐻0
𝑖𝑗𝑘ℎ

𝑛ℎ𝑛𝑘𝑛𝑗𝑏
𝛼
𝛼 +𝐻0

𝑖𝑗𝑘ℎ
𝑥𝑗;𝛼𝑏

𝜉
𝛽
(𝑛ℎ𝑥𝑘;𝜉 + 𝑛𝑘𝑥ℎ;𝜉)𝑎𝛼𝛽

+𝐻0
𝑖𝑗𝑘ℎ

𝑛𝑘𝑛ℎ𝑛𝑞𝑥𝑗;𝛼𝑥𝑞;𝜉𝑏
𝜉𝛼 −𝐻0

𝑖𝑗𝑘ℎ
𝑏𝛼𝛼𝑛𝑘𝑛ℎ𝑛𝑗 .

(23)

Finally, we obtain from (10), (11), (14), and (22),

(𝜎ij,𝑗, 𝑢𝑖) = −‖∇𝐮‖2 − (𝐺0ijk, 𝑢𝑖,jk) − (𝐻0
ijkh, 𝑢𝑖,jkh) + ∮ Γ

ℎ𝑖
𝜕2𝑢𝑖
𝜕𝑛2

dA + ∮ Γ
𝑝𝑖
𝜕𝑢𝑖
𝜕𝑛

dA , (24)

where

ℎ𝑖 = 𝐻0
𝑖𝑗𝑘ℎ

𝑛𝑗𝑛𝑘𝑛ℎ and 𝑝𝑖 = 𝑚𝑖 + 𝑞𝑖 .

To employ (24) in practice, we need expressions for 𝐺0
𝑖𝑗𝑘

and𝐻0
𝑖𝑗𝑘ℎ

and these are given by [28]. They have the form

𝐺0ijk = 𝜂1𝑢𝑖,jk + 𝜂2(𝑢𝑗,ik + 𝑢𝑘,ij − 𝛿jkΔ𝑢𝑖) + 𝜂3(𝛿ijΔ𝑢𝑘 + 𝛿ikΔ𝑢𝑗 − 4𝛿jkΔ𝑢𝑖) , (25)
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and

𝐻0
𝑖𝑗𝑘ℎ

=𝔄(𝛿𝑖𝑗[Δ𝑢𝑘,ℎ + Δ𝑢ℎ,𝑘] + 𝛿𝑖𝑘[Δ𝑢𝑗,ℎ + Δ𝑢ℎ,𝑗] + 𝛿𝑖ℎ[Δ𝑢𝑘,𝑗 + Δ𝑢𝑗,𝑘])

+𝔇(𝛿𝑗𝑘Δ𝑢𝑖,ℎ + 𝛿𝑗ℎΔ𝑢𝑖,𝑘 + 𝛿𝑘ℎΔ𝑢𝑖,𝑗)

+𝔈𝑢𝑖,𝑗𝑘ℎ +𝔉(𝛿𝑘ℎΔ𝑢𝑗,𝑖 + 𝛿𝑗𝑘Δ𝑢ℎ,𝑖 + 𝛿𝑗ℎΔ𝑢𝑘,𝑖)

+𝔊(𝑢𝑗,𝑖𝑘ℎ + 𝑢𝑘,𝑖𝑗ℎ + 𝑢ℎ,𝑖𝑗𝑘) .

(26)

The coefficients 𝜂1, 𝜂2, and 𝜂3 satisfy the relation

𝜉 = 𝜂1 − 𝜂2 − 4𝜂3 ≥ 0,

and, by identifying 18 individual components and a very clever splitting of the matrix in a quadratic form, in [30] the
optimal conditions for the dissipation inequality are given:

𝜂1 + 2𝜂2 ≥ 0, 𝜂1 − 𝜂2 ≥ 0, 𝜂1 − 𝜂2 − 6𝜂3 − 2
√
𝜂22 + 4𝜂2𝜂3 + 9𝜂

2
3 ≥ 0 .

The coefficients𝔄,𝔇,𝔈,𝔉, and𝔊 satisfy

𝛾 = 3𝔇 +𝔈 ≥ 0 .

We may now define various classes of boundary conditions for a sixth-order fluid. We define ℎ𝑖 = 𝐻𝑖𝑗𝑘ℎ𝑛𝑗𝑛𝑘𝑛ℎ. We only
deal with no-slip conditions, and we say that the boundary conditions are of strong adherence type if

𝑢𝑖 = 0,
𝜕𝑢𝑖
𝜕𝑛

= 0 ,
𝜕2𝑢𝑖
𝜕𝑛2

= 0 on Γ.

They are of weak adherence type if

𝑢𝑖 = 0,
𝜕𝑢𝑖
𝜕𝑛

= 0 , ℎ𝑖 = 0 on Γ.

They are of general adherence type if

𝑢𝑖 = 0,
𝜕𝑢𝑖
𝜕𝑛

= 0 , ℎ𝑖 = −𝓁
𝜕2𝑢𝑖
𝜕𝑛2

on Γ,

where 𝓁 > 0 is a constant to be prescribed.
In this work, we concentrate on the above three types of boundary conditions and we refer to these as cases I, II and
III, respectively.
The sixth-order theory presented in [28] has a richer structure, and onemay define a further four types of no-slip boundary
conditions. These are

𝑢𝑖 = 0, ℎ𝑖 = 0 , 𝑝𝑖 = 0 on Γ,

then for a constant 𝓁1 > 0,

𝑢𝑖 = 0, ℎ𝑖 = −𝓁1
𝜕2𝑢𝑖
𝜕𝑛2

, 𝑝𝑖 = 0 on Γ,

or for a constant 𝓁2 > 0,

𝑢𝑖 = 0, ℎ𝑖 = 0, 𝑝𝑖 = −𝓁2
𝜕𝑢𝑖
𝜕𝑛

, on Γ,

8 of 20 Studies in Applied Mathematics, 2025
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and

𝑢𝑖 = 0, ℎ𝑖 = −𝓁1
𝜕2𝑢𝑖
𝜕𝑛2

, 𝑝𝑖 = −𝓁2
𝜕𝑢𝑖
𝜕𝑛

on Γ.

We do not treat the latter four classes of boundary conditions in the context of thermal convection, they involve explicit
values of the Musesti coefficients 𝜂1, 𝜂2, 𝜂3,𝔄,𝔇,𝔈,𝔉, and 𝔊. However, these boundary conditions should prove to be
of importance in microfluidic situations and will be the subject of future work. We finally mention that one could also
produce a further class of boundary conditions corresponding to the stress vector being zero on a surface Γ. The necessary
details may be worked out in a similar manner to the above.

5 Nonlinear Stability

We now focus on the Musesti model and collect the perturbation equations. We recall that system (5) gives

𝑢𝑖,𝑡 + 𝑢𝑗𝑢𝑖,𝑗 = −𝜋,𝑖 + 𝑅𝜃𝑘𝑖 + Δ𝑢𝑖 − 𝜉Δ2𝑢𝑖 + 𝛾Δ3𝑢𝑖 ,

𝑢𝑖,𝑖 = 0,

𝑃𝑟(𝜃,𝑡 + 𝑢𝑖𝜃,𝑖) = 𝑅𝑤 + Δ𝜃,

(27)

where 𝜋 collects the contributions of 𝜋̃, 𝜋̃𝑘, and Π𝑗𝑘 .
Equations (27) are defined on the domainℝ2 × {𝑧 ∈ (0, 1)} × {𝑡 > 0}. Denote by ‖ ⋅ ‖ and (⋅, ⋅) the norm and inner product
on 𝐿2(𝑉). We now rewrite system (27), together with any of the boundary conditions I, II, or III, in the form of an abstract
operator equation

𝐵𝑈𝑡 + 𝐿𝑈 +𝑁(𝑈) = 0, (28)

where 𝑈 = (𝑢, 𝑣, 𝑤, 𝜃, 𝜋)𝑇 and where 𝐵 is a linear symmetric operator, 𝐿 is an unbounded linear operator and 𝑁(𝑈)
represents the nonlinear terms, defined on a dense domain of the Hilbert space𝐻 = [𝐿2(𝑉)]4 (cf. [60, pp. 212–215]). In the
present case, the operator 𝐵 has form 𝐵 = 𝑑𝑖𝑎𝑔{1, 1, 1, 𝑃𝑟, 0}, the nonlinearities𝑁(𝑈) consist of 𝑢𝑗𝑢𝑖,𝑗 and 𝑢𝑖𝜃,𝑖 , while 𝐿 is
represented by the right-hand side of (27). The solution is understood to be periodic in 𝑥, 𝑦 and the components of 𝑢𝑖 in
addition to being zero on 𝑧 = 0, 1 also satisfy boundary conditions of case I, II, or III.
We start by deriving a general energy equality. We multiply (27)1 by 𝑢𝑖 and integrate over 𝑉 and then multiply (27)3 by 𝜃
and integrate over 𝑉. Upon employing the boundary condition I or II, we may obtain the energy equation

𝑑

𝑑𝑡

(1
2
‖𝐮‖2 + 𝑃𝑟

2
‖𝜃‖2) = 2𝑅(𝜃, 𝑤) − ‖∇𝐮‖2 − ‖∇𝜃‖2 − Υ, (29)

where the stabilizing term involving the second and third spatial gradients is defined by

Υ = (𝐺0
𝑖𝑗𝑘
, 𝑢𝑖,𝑗𝑘) + (𝐻0

𝑖𝑗𝑘ℎ
, 𝑢𝑖,𝑗𝑘ℎ).

In the situation where boundary conditions III are employed, it is necessary to add

−𝓁∮𝜕𝑉
𝜕2𝑢𝑖
𝜕𝑛2

𝜕2𝑢𝑖
𝜕𝑛2

𝑑𝐴

to the right-hand side of (29).
The tensors𝐺0

𝑖𝑗𝑘
and𝐻0

𝑖𝑘𝑗ℎ
are given in (25) and (26) and it is useful to introduce the symmetric and skew-symmetric parts

of 𝑢𝑖,𝑗:

𝑑𝑖𝑗 =
1

2

(
𝑢𝑖,𝑗 + 𝑢𝑗,𝑖

)
, 𝜔𝑖𝑗 =

1

2

(
𝑢𝑖,𝑗 − 𝑢𝑗,𝑖

)
.
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We can now rewrite Υ (i.e., the higher-order gradient term) as

Y = 𝜂1(𝑢𝑖,jk, 𝑢𝑖,jk) + 2𝜂2
[
(𝑑ij,𝑘, 𝑑ij,𝑘) − (𝜔ij,𝑘, 𝜔ij,𝑘)

]
− (𝜂2 + 4𝜂3)‖Δ𝐮‖2

+ 3𝔇(Δ𝑢𝑖,𝑘, Δ𝑢𝑖,𝑘) +𝔈(𝑢𝑖,jkh, 𝑢𝑖,jkh) + 3𝔉(Δ𝑢𝑖,𝑗, Δ𝑢𝑗,𝑖) + 3𝔊(𝑢𝑖,jkh, 𝑢𝑗,ikh),

= (𝜂1 + 2𝜂2)(𝑑ij,𝑘, 𝑑ij,𝑘) + (𝜂1 − 2𝜂2)(𝜔ij,𝑘, 𝜔ij,𝑘) − (𝜂2 + 4𝜂3)‖Δ𝐮‖2
+ 3(𝔇 +𝔉)(Δ𝑑ij, Δ𝑑ij) + 3(𝔇 −𝔉)(Δ𝜔ij, Δ𝜔ij)

+ (𝔈 + 3𝔊)(𝑑ij,kh, 𝑑ij,kh) + (𝔈 − 3𝔊)(𝜔ij,kh, 𝜔ij,kh). (30)

The right-hand side of (29) together with (30) allows us to introduce a bilinear form on𝐻. Let𝑈 = (𝑢1, 𝑣1, 𝑤1, 𝜃, 𝜋1)
𝑇
and

𝑊 = (𝑢2, 𝑣2, 𝑤2, 𝜙, 𝜋2)
𝑇
be solutions to (27) subject to boundary conditions of case I, II, or III. Let 𝑑𝑖𝑗, 𝜔𝑖𝑗 be the symmetric

and skew-symmetric parts of 𝑢1
𝑖,𝑗
, and let 𝑒𝑖𝑗, 𝜁𝑖𝑗 be the symmetric and skew-symmetric parts of 𝑢2𝑖,𝑗 . Then define a bilinear

form on𝐻 by

(𝑊,LU) = 2𝑅
[
(𝑤2, 𝜃) + (𝑤1, 𝜙)

]
− (∇𝐮1,∇𝐮2) − (∇𝜃,∇𝜙)

− (𝜂1 + 2𝜂2)(𝑑ij,𝑘, 𝑒ij,𝑘) − (𝜂1 − 2𝜂2)(𝜔ij,𝑘, 𝜁ij,𝑘)

+ (𝜂2 + 4𝜂3)(Δ𝐮1, Δ𝐮2) − 3(𝔇 +𝔉)(Δ𝑑ij, Δ𝑒ij)

− 3(𝔇 −𝔉)(Δ𝜔ij, Δ𝜁ij) − (𝔈 + 3𝔊)(𝑑ij,kh, 𝑒ij,kh)

− (𝔈 − 3𝔊)(𝜔ij,kh, 𝜁ij,kh) − 𝓁∮ 𝜕𝑉

𝜕2𝐮1

𝜕𝑛2
⋅
𝜕2𝐮2

𝜕𝑛2
dA , (31)

where the boundary term is present in case III, but is not present for cases I and II.
We have that 𝐿 is a symmetric operator, because one can easily prove that (𝑊, 𝐿𝑈) = (𝑈, 𝐿𝑊).
Moreover,

(𝑈,𝑁(𝑈)) = (𝑢𝑗𝑢𝑖,𝑗, 𝑢𝑖) + (𝑢𝑖𝜃,𝑖 , 𝜃) = 0,

asmay be seen by integration by parts, the fact that𝑢𝑖,𝑖 = 0, and use of the boundary conditions, and the resulting nonlinear
stability is global. Therefore, following [60], we have that the linear threshold for instability is equal to the threshold for
nonlinear stability. Actually, this may also be seen by examining the linear theory and showing that the growth rate is
zero. In particular, denoting by 𝜎 the growth rate in a representation of time like 𝑒𝜎𝑡 and the complex conjugate of 𝑈
by 𝑈∗, we have 𝜎(𝑈∗, 𝐵𝑈) = (𝑈∗, 𝐿𝑈) which gives Im𝜎 = 0. Then, the energy equation can be adjusted and one can
determine the critical Rayleigh number for nonlinear energy stability by using the dissipation terms and the maximum of
the production. With this procedure, one obtains the same Euler–Lagrange equations that appear in the linear instability
equations. Nevertheless, the main finding is that the nonlinear stability issue can be fully captured by determining the
threshold of instability through linear instability theory.

Remark. Regarding case I, the domain 𝐷(𝐿) of the operator 𝐿 consists of {𝐮 ∈ (𝑊3,2
0 (𝑉))3} × {𝜃 ∈ 𝑊1,2

0 (𝑉)} and the
relevant functional spaces for addressing the existence and uniqueness of a solution are analogous to those carefully
introduced by [29, Section 7.2.2] for a similar problem, which considers only the second and fourth derivatives. Existence
and uniqueness of a solution in case I can be established by following the approach in [61], with the key modification of
adding a third Laplacian to the fluid equation and dropping the bi-Laplacian term in the temperature equation, using the
analytical techniques outlined in [29]. For cases II and III, existence theory becomes more complicated: proving existence
and uniqueness under these boundary conditions would shift the focus of this paper, which aims to provide a concise yet
comprehensive analysis of the problem. This aspect will be addressed in a forthcoming study. However, in the interests of
analyzing convection scenarios within the current model, we study here the impact of these cases on the stability.

10 of 20 Studies in Applied Mathematics, 2025
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6 Assessment of the Critical Rayleigh Number AssociatedWith Instability

The standard approach to determine the critical Rayleigh numbers for instability involves linearizing (27) and searching
for solutions of the form

𝑢𝑖 = 𝑢𝑖(𝐱)e𝜎𝑡, 𝜃 = 𝜃(𝐱)e𝜎𝑡, 𝜋 = 𝜋(𝐱)e𝜎𝑡.

Here, we follow this approach, noting that since 𝜎 ∈ ℝ, the threshold for linear stability occurs at 𝜎 = 0. We proceed
by linearizing, setting 𝜎 = 0, and then applying the curl–curl operator to (27)1 to eliminate 𝜋. Retaining only the third
component of the resulting expression, we arrive at the following system that must be solved:

0 = −Δ2𝑤 + 𝜉Δ3𝑤 − 𝛾Δ4𝑤 − 𝑅Δ∗𝜃,

0 = 𝑅𝑤 + Δ𝜃,

where Δ∗ = 𝜕2∕𝜕𝑥2 + 𝜕∕𝜕𝑦2. We solve this system numerically using a Chebyshev tau method. It is preferable to work
with the following equivalent system to mitigate issues with spurious eigenvalues:

0 = −Δ2𝑤 + 𝜉Δ3𝑤 − 𝛾Δ4𝑤 − 𝑅2Δ∗𝜃,

0 = 𝑤 + Δ𝜃,
(32)

where 𝑅2 = 𝑅𝑎. The system will be solved with the following boundary conditions, corresponding to cases I, II, and III.

6.1 Boundary Conditions for Case I

Here,

𝑢𝑖 = 0,
𝜕𝑢𝑖
𝜕𝑛

= 0 ,
𝜕2𝑢𝑖
𝜕𝑛2

= 0 , on 𝑧 = 0, 1, 𝑖 = 1, 2, 3,

while periodic boundary conditions are applied along the lateral walls of the cell 𝑉. Hence,

𝑤 = 0, 𝑤𝑧 = 0, 𝑤𝑧𝑧 = 0, 𝑢𝑧𝑧 = 0, 𝑣𝑧𝑧 = 0, on 𝑧 = 0, 1.

Due to the fact that 𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧 = 0 in 𝑉, then we have (on 𝑧 = 0, 1,):

𝑢𝑥𝑧𝑧 + 𝑣𝑦𝑧𝑧 + 𝑤𝑧𝑧𝑧 = 0,

hence 𝑤𝑧𝑧𝑧 = 0 on 𝑧 = 0, 1. Thus, the following are the boundary conditions for case I:

𝑤 = 𝑤𝑧 = 𝑤𝑧𝑧 = 𝑤𝑧𝑧𝑧 = 0, 𝑧 = 0, 1. (33)

6.2 Boundary Conditions for Case II

In this case,

𝑢𝑖 = 0,
𝜕𝑢𝑖
𝜕𝑛

= 0 , ℎ𝑖 = 0, on 𝑧 = 0, 1,

where 𝑖 = 1, 2, 3 and ℎ𝑖 = 𝐻𝑖𝑗𝑘ℎ𝑛𝑗𝑛𝑘𝑛ℎ with 𝐧 = (0, 0, 1). Since

𝑤 = 0, 𝑤𝑧 = 0, 𝑢𝑧 = 0, 𝑣𝑧 = 0 on 𝑧 = 0, 1,

11 of 20
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and 𝐮 is solenoidal, it follows that

𝑤 = 0, 𝑤𝑧 = 0, 𝑤𝑧𝑧 = 0 on 𝑧 = 0, 1.

In addition for ℎ𝛼 = 0, 𝛼 = 1, 2, we find on 𝑧 = 0, 1,

ℎ𝛼 = 𝐻0
𝛼333 = 3𝔇Δ𝑢𝛼,𝑧 +𝔈𝑢𝛼,𝑧𝑧𝑧 + 3𝔉Δ𝑤,𝛼 + 3𝔊𝑤,𝑧𝑧𝛼 = 0, on 𝑧 = 0, 1.

Differentiate the equation for 𝛼 = 1 by 𝑥, differentiate the equation for 𝛼 = 2 by 𝑦, and then use the continuity equation to
see that on 𝑧 = 0, 1,

−(3𝔇 +𝔈)𝑤𝑧𝑧𝑧𝑧 + 3(𝔉 +𝔊 −𝔇)Δ∗𝑤𝑧𝑧 = 0.

Since 𝑤𝑧𝑧 = 0 on 𝑧 = 0, 1, it follows that 𝑤𝑧𝑧𝑧𝑧 = 0 there. Hence the boundary conditions for case II are

𝑤 = 𝑤𝑧 = 𝑤𝑧𝑧 = 𝑤𝑧𝑧𝑧𝑧 = 0, 𝑧 = 0, 1. (34)

Remark. To determine the pressure vector component Π33, the boundary condition ℎ3 = 0 is used.

6.3 Boundary Conditions for Case III

Here,

𝑢𝑖 = 0,
𝜕𝑢𝑖
𝜕𝑛

= 0 , ℎ𝑖 = −𝓁
𝜕2𝑢𝑖
𝜕𝑛2

, on 𝑧 = 0, 1,

where 𝑖 = 1, 2, 3 and

ℎ𝑖 = 𝐻ijkh𝑛𝑗𝑛𝑘𝑛ℎ = 𝐻𝑖333 = −Π33,3𝑖 + 6𝔄𝛿𝑖3Δ𝑤,3 + 3𝔇Δ𝑢𝑖,3 +𝔈𝑢𝑖,333 + 3𝔉Δ𝑤,𝑖 + 3𝔊𝑤,33𝑖.

Using ℎ1, ℎ2, and the continuity equation, we can apply similar reasoning as above to demonstrate that the general
adherence boundary conditions are

𝑤 = 𝑤𝑧 = 𝑤𝑧𝑧 = 0, 𝛾𝑤𝑧𝑧𝑧𝑧 + 𝓁𝑤𝑧𝑧𝑧 = 0,

on 𝑧 = 0, 1. Therefore, the general adherence boundary conditions are

𝑤 = 0, 𝑤𝑧 = 0, 𝑤𝑧𝑧 = 0, 𝑤𝑧𝑧𝑧𝑧 + 𝑞𝑤𝑧𝑧𝑧 = 0, on 𝑧 = 0, 1, (35)

where 𝑞 = 𝓁∕𝛾 > 0.

7 Numerical Methods and Numerical Results

To solve Equations (32) under boundary conditions I–III, we use a Chebyshev tau method (see [62]). For this, we express

𝑤 =𝑊(𝑧)ℎ(𝑥, 𝑦), 𝜃 = Θ(𝑧)ℎ(𝑥, 𝑦),

where ℎ satisfies Δ∗ℎ = −𝑎2ℎ, where 𝑎 is a wavenumber.
We solve (32) for the eigenvalues 𝑅𝑎 by writing these equations as a system

(𝐷2 − 𝑎2)𝑊 = 𝜒,

(𝐷2 − 𝑎2)𝜒 = 𝜓,

12 of 20 Studies in Applied Mathematics, 2025
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(𝐷2 − 𝑎2)𝜓 = 𝜂,

(𝐷2 − 𝑎2)𝜂 + 1

𝛾
𝜓 −

𝜉

𝛾
𝜂 = 𝑅𝑎

𝑎2

𝛾
Θ,

(𝐷2 − 𝑎2)Θ +𝑊 = 0, (36)

where 𝐷 = 𝑑∕𝑑𝑧. The boundary conditions may now be written in the form

Case I Θ =𝑊 = 𝐷𝑊 = 𝜒 = 𝐷𝜒 = 0, 𝑧 = 0, 1,

Case II Θ =𝑊 = 𝐷𝑊 = 𝜒 = 𝜓 = 0, 𝑧 = 0, 1,

Case III Θ =𝑊 = 𝐷𝑊 = 𝜒 = 0, 𝜓 + 𝑞𝐷𝜒 = 0, 𝑧 = 0, 1.

The solution to (36) is expressed as a sum of Chebyshev polynomials in the form

𝑊 =
𝑁∑
𝑖=0

𝑊𝑖𝑇𝑖(𝑧),

𝜒 =
𝑁∑
𝑖=0

𝜒𝑖𝑇𝑖(𝑧),

𝜓 =
𝑁∑
𝑖=0

𝜓𝑖𝑇𝑖(𝑧),

𝜂 =
𝑁∑
𝑖=0

𝜂𝑖𝑇𝑖(𝑧),

Θ =
𝑁∑
𝑖=0

Θ𝑖𝑇𝑖(𝑧).

This generates a generalized matrix eigenvalue problem of the following form:

𝐴𝐱 = 𝑅𝑎 𝐵𝐱,

where

𝐱 = (𝑊0,… ,𝑊𝑁, 𝜒0, … , 𝜒𝑁, 𝜓0, … , 𝜓𝑁, 𝜂0, … , 𝜂𝑁,Θ0, … ,Θ𝑁).

The boundary conditions are directly integrated into the appropriate rows of the system matrix 𝐴. The resulting matrix
eigenvalue problem is then solved using the QZ algorithm of [63].
We now report on numerical results for Equations (27). The values of 𝜉 and 𝛾 selected are chosen to display the type of
behavior witnessed. The typical new behavior is found for 𝛾 very small, while 𝜉 is also small it is comparatively larger. For
larger values of the parameters displayed here the stabilizing effects are seen with very large values of critical Rayleigh
number. Numerical results for boundary conditions of type I are given in Table 1 whereas those for boundary conditions
of type II are included in Table 2. Figures 1 and 2 show graphical output for the critical Rayleigh number and for the
critical wavenumber for strong andweak adherence boundary conditions. It is seen that for the strong adherence boundary
conditions, case I, the critical Rayleigh number increases strongly for 𝛾 as shown in the first five values of Table 1, whereas
the growth of the Rayleigh number is still increasing but at a much lesser rate when the variation is in 𝜉, as seen by
comparison with the next six values in Table 1. Clearly, the 𝛾 term which represents the tri-Laplacian has a stronger
stabilizing effect than the 𝜉 term which is for the bi-Laplacian. Physically, this is to be expected. The dominance of 𝛾 over
𝜉 continues to be observed in Table 2 which is for weak adherence boundary conditions, although the rate of growth in
the critical values of 𝑅𝑎 is less pronounced.
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TABLE 1 Critical Rayleigh andwave numbers for boundary conditions of Case I, strong adherence, versus 𝛾, 𝜉. The classical values
which hold for 𝛾 = 0, 𝜉 = 0 and fixed surfaces are 𝑅 = 1707.76, 𝑎2 = 9.712.

𝑹𝒂 𝒂𝟐 𝜸 𝝃

1707.76 9.712 0 0
2020.22 10.53 10−7 0
2333.33 11.00 10−6 0
3155.21 12.13 10−5 0
7009.72 13.70 10−4 0
3155.23 12.13 10−5 10−7

3155.42 12.13 10−5 10−6

3157.35 12.13 10−5 10−5

3176.66 12.13 10−5 10−4

3368.79 12.16 10−5 10−3

5236.80 12.28 10−5 10−2

3155.42 12.13 10−6 10−5

3157.35 12.13 10−5 10−5

7012.21 13.70 10−4 10−5

TABLE 2 Critical Rayleigh andwave numbers for boundary conditions of Case II, weak adherence, versus 𝛾, 𝜉. The classical values
which hold for 𝛾 = 0, 𝜉 = 0 and fixed surfaces are 𝑅 = 1707.76, 𝑎2 = 9.712.

𝑹𝒂 𝒂𝟐 𝜸 𝝃

2032.77 10.36 10−6 0
2476.26 10.85 10−5 0
4482.71 11.36 10−4 0
2476.45 10.85 10−5 10−6

2495.50 10.87 10−5 10−4

2667.65 10.97 10−5 10−3

4346.97 11.47 10−5 10−2

The behavior of the critical wavenumber for cases I and II is shown in Tables 1 and 2, and in Figures 1 and 2. In both cases,
the critical wavenumber rises as 𝛾 increases. This means that since the wavenumber is inversely proportional to the aspect
ratio of the convection cell (width to depth), increasing 𝛾means the cells become narrower for a fixed depth. The presence
of the tri-Laplacian appears to concentrate the convection cells more together to produce a smaller pattern when viewed
from above.
For the general adherence boundary conditions with 𝑞 = 𝓁∕𝛾, Figures 3 and 4 and Table 3 show the critical Rayleigh
number varies from the weak adherence value at 𝑞 = 0 (𝓁 = 0), to the strong adherence value as 𝑞 increases (𝓁 → ∞).
The variation is from 𝑅𝑎 = 2476 to 𝑅𝑎 = 3155 when 𝛾 = 10−5, 𝜉 = 0, with 𝑎2 increasing from 10.85 to 12.13 over the same
range. The variation is from 𝑅𝑎 = 4347 to 𝑅𝑎 = 5237when 𝛾 = 10−5, 𝜉 = 10−2, with 𝑎2 increasing from 11.47 to 12.28 over
the same range.

8 Conclusions

In this paper, we have investigated a model for thermal convection in a higher-order Navier–Stokes theory, introduced for
isothermal flow by [28]. In the model, the stress depends on spatial velocity gradients up to third-order derivatives, so that
the associated PDE is of sixth order. This kind of fluids are physically relevant, since the presence of such extra spatial
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FIGURE 1 Graph of 𝑅𝑎 versus 𝛾, case I boundary conditions, strong adherence are open circles, case II boundary
conditions, weak adherence are triangles; 𝜉 = 0. The value of 𝑅𝑎 when 𝛾 = 0, 𝜉 = 0 is 1707.76.

FIGURE 2 Graph of 𝑎2 versus 𝛾, case I boundary conditions, strong adherence are open circles, case II boundary
conditions, weak adherence are triangles; 𝜉 = 0. The value of 𝑎2 when 𝛾 = 0, 𝜉 = 0 is 9.712.

derivatives can capture, for instance, some features of the flow when the composition of the fluid involves longmolecules,
or in applications to microfluidic industry where length scales are very small (see [27, 64–66]).
By including also temperature into the model, we have studied the Bénard thermal convection problem, employing
meaningful boundary conditions, which have been derived up to the highest order. We have shown that linear instability
provides the same results of a global nonlinear energy stability analysis; this is an optimal result and shows that linear
instability theory is enough to capture the physics of the problem.
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FIGURE 3 Graph of 𝑅𝑎 versus 𝑞, case III boundary conditions, general adherence. 𝛾 = 10−5, 𝜉 = 0.01, 𝛾 = 10−5, and 𝜉 = 0.

FIGURE 4 Graph of 𝑎2 versus 𝑞, case III boundary conditions, general adherence. 𝛾 = 10−5, 𝜉 = 0.01, 𝛾 = 10−5, and 𝜉 = 0.

The study of thermal convection for higher-order fluids can be very interesting from the technological viewpoint: for
instance, in [47] it is described a novel method in energy production, where a convective motion in a bath of suitable fluid
induces the creation of electricity via the pyroelectric effect with a PZT ceramic plate of thickness several μm (see for more
details [47, 67]). A careful control of the convective motion is necessary in a small bath and we believe a fluid with long
molecules could be employed to ensure accuracy. Such a fluid will need to be modeled by higher spatial gradients.
Furthermore, recent applications of solar pond technology have incorporated phase-change materials and other additives
into the saline water to enhance electricity production efficiency (see [68–70]). The complexity of the resulting fluid
can be more accurately modeled with a higher-order Navier–Stokes theory. This approach, which predicts the onset of
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TABLE 3 Critical Rayleigh and wave numbers for boundary conditions of Case III, general adherence, versus 𝑞. The first two
columns with 𝑅𝑎, 𝑎2 are for 𝛾 = 10−5, 𝜉 = 0, whereas the second two columns with 𝑅𝑎, 𝑎2 are for 𝛾 = 10−5, 𝜉 = 0.01.

𝑹𝒂 𝒂𝟐 𝑹𝒂 𝒂𝟐 𝒒

2476.26 10.85 4346.97 11.47 0
2484.86 10.88 4354.86 11.47 1
2553.37 11.03 4420.06 11.56 10
2857.04 11.65 4766.95 11.90 100
3105.80 12.07 5147 12.28 1000
3155.21 12.13 5236.80 12.28 ∞

convective instability at a significantly higher Rayleigh number, could prove beneficial in advancing the effectiveness of
this technology. Moreover, it has been realized recently that the efficiency of a solar pond may be greatly increased by
using a mixture of coal and cinder at the base ([71–74]). Such a porous medium will have a double porosity structure and
in themicropores we believe a higher gradient theory for an incompressible fluid will be required for accurate assessment.
Such a porous material is known as bidisperse and convection in such is well-known [75, 76], although in the solar pond
case one would need to adapt the theory of convection in a fluid layer overlying a bidisperse porous medium developed in
[77].
Finally, convection in nanofluids is a very hot topic in heat transfer and renewable energy research (see, e.g., [78]). A
nanofluid is a suspension of typically metallic oxides in a carrier fluid and there is clear evidence that a nanofluid does
not behave like a linearly viscous Navier–Stokes fluid (see, e.g., [79]). For example, a CuO nanofluid suspension contains
particles of the shape of a prolate spheroid of aspect ratio 3 (see [79]). Such amolecular liquid is well-known to display non-
Newtonian behavior (see, e.g. [1]), where a flattened velocity profile is observed in Poiseuille flow instead of the parabolic
one of Navier–Stokes theory. Such behavior in fluid suspensions has been known for many years, see [80], and a higher-
order velocity gradient theory does not suffer from the drawback of a parabolic profile. Hence, a [28] sixth-order theory is
likely to also be suited to a proper description of convection in a nanofluid suspension.
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