Proposed algorithm to evaluate $\log (1+x)$ for $|x| \ll 1$:

$$
\text { flt }\left(\frac{x \log (1+x)}{(1+x)-1}\right)
$$

The residual transformation to which we are interested is given by

$$
y \mapsto \frac{x \log y}{y-1}=: f(y)
$$

where x has to be considered just a parameter; errors on x are already dealth with when computing the whole problem conditioning. The condition number is then obtained with the usual formula

$$
K \approx\left|\frac{y f^{\prime}(y)}{f(y)}\right|
$$

Carrying out the computation, we get (after a few passages, also observe that the x simplifies)

$$
K \approx\left|\frac{1-y+y \log y}{(y-1) \log y}\right|
$$

and we are interested in its value for $y \approx 1$. It is then convenient to write $y=1+\xi$ (I purposefully avoid to use the letter x in order to avoid confusion) and Taylor-expand around $\xi=0$

$$
\begin{equation*}
K \approx\left|\frac{(\xi+1)\left(\xi-\frac{1}{2} \xi^{2}+\mathcal{O}\left(\xi^{3}\right)\right)-\xi}{\xi\left(\xi+\mathcal{O}\left(\xi^{2}\right)\right)}\right|=\left|\frac{\xi^{2}-\frac{1}{2} \xi^{3}+\xi-\frac{1}{2} \xi^{2}-\xi+\mathcal{O}\left(\xi^{3}\right)}{\xi^{2}+\mathcal{O}\left(\xi^{3}\right)}\right| \tag{1}
\end{equation*}
$$

After simplification we finally obtain

$$
K \approx\left|\frac{\frac{1}{2}+\mathcal{O}(\xi)}{1+\mathcal{O}(\xi)}\right| \rightarrow \frac{1}{2}
$$

as $\xi \rightarrow 0$. So that we have a well-conditioned contribution even from this (delicate) residual transformation.

You should notice that it is essential that the two ξ in the numerator of (1) simplify. this cancellation is the main reason why the algorithm is actually stable.

