
The problem of interest consists in finding the smallest solution x1 of the equation
x2−2px+q under the assumption p, q > 0 and p2 > q. In particular we are interested
in the situation p2 >> q.
Of course we have an explicit solving formula for this problem, namely

x1 = p−
√
p2 − q =: f(p, q).

It allows us to compute the condition number of the problem with the formula
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Using the upper bound, we obtain:
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This can grow to infinity. This happens when p2 ≈ q, the case of two almost
coincident roots. however if p2 >> q, we have q/p2 << 1 and

√
1− q/p2 ≈ 1,

giving a condition number K ≈ A+B < 2: the problem is well-conditioned.
The obvious algorithm to compute x1 is given by

flt(p−
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however the external subtraction (last nontrivial residual transformation) incurs in

a cancellation error, if p2 >> q, since p ≈
√
p2 − q. The rounding error generated

e.g. by the square root (εM ) will be amplified by a factor
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Denoting by s := q/p2 (a small quantity, if p2 >> q) we can Taylor-expand the
square root as
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As an example, if p ≈ 1/2 · 108 and q ≈ 1/3 · 108 (values chosen such that the
solutions are x1 = 1/3 and x2 = 108) we have s ≈ 4/3 · 10−8 and the condition
number of the residual transformation is of the order of magnitude of 108, meaning
that we lose (in a single floating point operation) eight significant digits in base 10.
The alternative algorithm

flt

(
q
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√
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)
is on the contrary stable. This is a direct consequence of the fact that all involved
elementary operations are well conditioned (in the regime p2 >> q), so that also
the residual transformations (obtained by composition) are well conditioned.


