The problem of interest consists in finding the smallest solution x_{1} of the equation $x^{2}-2 p x+q$ under the assumption $p, q>0$ and $p^{2}>q$. In particular we are interested in the situation $p^{2} \gg q$.
Of course we have an explicit solving formula for this problem, namely

$$
x_{1}=p-\sqrt{p^{2}-q}=: f(p, q) .
$$

It allows us to compute the condition number of the problem with the formula

$$
\begin{gathered}
K_{f} \approx\left|\frac{p \frac{\partial f}{\partial p}}{f}\right|+\left|\frac{q \frac{\partial f}{\partial q}}{f}\right|=: A+B \\
\frac{\partial f}{\partial p}=1-\frac{p}{\sqrt{p^{2}-q}}=-\frac{p-\sqrt{p^{2}-q}}{\sqrt{p^{2}-q}}
\end{gathered}
$$

so that

$$
A=\frac{p}{\sqrt{p^{2}-q}}=\frac{1}{\sqrt{1-q / p^{2}}}
$$

On the other hand

$$
\frac{\partial f}{\partial q}=-\frac{-1}{2 \sqrt{p^{2}-q}}
$$

so that, multiplying and dividing by $p+\sqrt{p^{2}-q}$ and then simplifying q

$$
B=\left|\frac{q}{2\left(p-\sqrt{p^{2}-q}\right) \sqrt{p^{2}-q}}\right|=\frac{1+\sqrt{1-q / p^{2}}}{2 \sqrt{1-q / p^{2}}}
$$

Using that $0<\sqrt{1-q / p^{2}}<1$, we obtain the bounds

$$
\frac{1}{2 \sqrt{1-q / p^{2}}}<B<\frac{1}{\sqrt{1-q / p^{2}}}
$$

Using the upper bound, we obtain:

$$
A+B<\frac{2}{\sqrt{1-q / p^{2}}}
$$

This can grow to infinity. This happens when $p^{2} \approx q$, the case of two almost coincident roots. however if $p^{2} \gg q$, we have $q / p^{2} \ll 1$ and $\sqrt{1-q / p^{2}} \approx 1$, giving a condition number $K \approx A+B<2$: the problem is well-conditioned.

The obvious algorithm to compute x_{1} is given by

$$
\begin{equation*}
\operatorname{flt}\left(p-\sqrt{p^{2}-q}\right) \tag{1}
\end{equation*}
$$

however the external subtraction (last nontrivial residual transformation) incurs in a cancellation error, if $p^{2} \gg q$, since $p \approx \sqrt{p^{2}-q}$. The rounding error generated e.g. by the square $\operatorname{root}\left(\epsilon_{M}\right)$ will be amplified by a factor

$$
K_{-} \approx \frac{p+\sqrt{p^{2}-q}}{p-\sqrt{p^{2}-q}} \approx \frac{2}{1-\sqrt{1-q / p^{2}}}
$$

Denoting by $s:=q / p^{2}$ (a small quantity, if $p^{2} \gg q$) we can Taylor-expand the square root as $\sqrt{1-s}=1-\frac{1}{2} s+\mathcal{O}\left(s^{2}\right)$ to obtain

$$
K_{-} \approx \frac{4}{s}
$$

As an example, if $p \approx 1 / 2 \cdot 10^{8}$ and $q \approx 1 / 3 \cdot 10^{8}$ (values chosen such that the solutions are $x_{1}=1 / 3$ and $x_{2}=10^{8}$) we have $s \approx 4 / 3 \cdot 10^{-8}$ and the condition number of the residual transformation is of the order of magnitude of 10^{8}, meaning that we lose (in a single floating point operation) eight significant digits in base 10. The alternative algorithm

$$
\mathrm{flt}\left(\frac{q}{p+\sqrt{p^{2}-q}}\right)
$$

is on the contrary stable. This is a direct consequence of the fact that all involved elementary operations are well conditioned (in the regime $p^{2} \gg q$), so that also the residual transformations (obtained by composition) are well conditioned.

