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Anisotropy (d=2,3)
B o

¢ : R? — R* describes the anisotropy:
® 0(§) >0 YEeR, () =0 < £=0
® (t&) =tp(§), vt >0 (Homogeneity of degree one)

® pisconvex, l.e. (& +1n) < (&) + @(n): triangular
iInequality

That is, ¢ Is a (possibly nonsymmetric) norm.
W, = {(€) < 1} (Wulff shape)

p regular <= W, Is smooth and strictly convex
p crystalline < W, Is a polygon/polyhedron
We shall mainly focus on a cylindrical W,
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Anisotropy (2)

Dual norm ©° : RY — RT:

(&%) = ggggif &

(¢? 1s also a norm, giving the surface energy density)
F,={¢:¢°(&) <1} (Frank diagram)

T°: RY — RY given by T°(&) = ¢°(€)Vew® (&) = 5Ve[p°(€))?

o Duality mapping, nonlinear, monotone, 7 : I, < W,
homogeneous of degree one (regular )

# Multivalued maximal monotone graph (crystalline )

(0] L 1 0]
o T°(€) = 50¢[¢°(§))* N
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Some examples: 2D

@ Regular anisotropy
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Some examples: 2D

@ Regular anisotropy
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Crystalline anisotropy



Some examples: 3D

(Y

Crystalline anysotropy in 3D (hexagonal prism)




Some examples: 3D

(Y

Crystalline anysotropy in 3D (hexagonal prism)

N
L Mixed-type anisotropy in 3D (cylinder) J
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Anisotropic MCF

e Cahn-Hoffmann vector field:

1%
n, = T°(v where v, = ——
() v ( 90) Y gpo(y)

Anisotropic curvature:

Ky = div ng, note that x = div v

o -
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Anisotropic MCF (2)
I o

Evolution law:
V = —Kpny
[“Gradient flow” of P, = [ ¢°(v) ]

Also equivalentto V, = —p°(v)ky

Known exact evolution: The Wulff shape shrinks
selfsimilarly

=+/1—-2(d— 1)t oW,

o -
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Crystalline evolution

- -

What if ¢ Is crystalline?
n, 1S not determined by v:

ny € T7%(vy)

Consequently the curvature «, = div n, cannot be derived
pointwise from the shape of X(¢). n, must be treated as an

unknown itself.
Selfsimilar evolution starting from the Wulff shape still gives
an explicit solution by choosing

n(@) = zfp(z), @€ X(t)

o -
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Examples of computation ofn,,

Cubic Wulff shape

Octahedral Wulff shape

1, o

o ’ ~Ya

e 0
s *. 4 L y

-
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Crystalline evolution 2

- .

Existence and unigueness of the resulting evolution is
expected, partial results:

# EXxistence and uniqueness of evolution starting from a
convex initial set

# Uniqueness and comparison with the Allen-Cahn

[show numerical simulations, Ctrl-F3, wulffmovies.sh]

# Local velocity is not always determined only by the local
shape: |nonlocal evolution law

o -
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Cylindrical anisotropy

=

We shall now focus on the cylindrical anisotropy, which is
of mixed type. Frank diagram (left) and Wulff shape (right):

(/2

S

-

Preferred normals to an evolving surface correspond to the
North and South poles and to the equator in the sphere of
unit normals. A typical evolution presents plateaus and ver-

Ltical walls (Admissible evolution ). J
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A top face

Let /' = F'(t) denote a top face: a plateau which is a local T
maximum for the surface. We are interested in the evolution

of F'. _
Two ingredients:

# Erosion from the surrounding

walls /M\LCV(\*
o Vertical velocity of F (possible

creation of fractures/bending)

On F restriction n, € T°(v,) means n,, in the top face of the
Waulff shape, i.e. n, = (n,, 1) with n, € R?, [n,| < 1

[show numerical simulation, Ctrl-F3, bendevolution.sh]

-
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Canonical selection

- .

Loosely speaking the evolution is a gradient flow with a
(not strictly) convex energy. In spite of the apparent
freedom in the choice of n, € T°(v,) on the top face F, the

evolution law selects a canonical representative obtained
by solving the minimum problem

/ div £]* — min, EeR? €] <1, &=vatdF

F

Let £ by a minimizer. The vertical velocity is then given by
V = —div £

# div ¢ = constant <= F does not break/bend

o -
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The problem
=

F ¢ R? bounded, open, smooth
IC = {§ . F — R?: div £ € LQ,HfHLoo < 17€|8F — }

F(§) =3 [p|div £

1%
Problem: |Find min{F (&) : £ € K} -
# Convex minimization problem @
# Existence of a minimizer ¢
# Uniqueness up to divergence-free vector fields
. ke
Remark: V¢ € K we have —Viean = |F| [pdivE = —F|‘

hence if there exists ¢ € K with constant divergence (F
Lcalibrable ), then ¢ is a minimizer of F J
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Remarks and guestions

=

Elasticity problem with a constraint on the deformation
vector

Select a canonical minimizer: gradient of a scalar
field? NO

Find a numerical approximation of a solution
Find equivalent formulations

-
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Numerical approximation

- .

Pliecewise affine finite elements:

T;, triangular mesh; h > 0 mesh size; N internal nodes
Fh L= UKET}LK ~ F

Vi, = {U S Hl(Fh) L VIK cP; VK € Th}

ICr, = [Vh]Q NIKC

© o o @

Problem: |Find min{ [}, |div £,]* : &, € Ky}

Convex minimization problem in dimension 2N (in fact:
guadratic minimization with quadratic constraints)

o -
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Minimization technique

- .

Eekn = E=&+ Y, Lidi

where &; € R? is the nodal value of ¢ at the internal node z;;
&, € Ky, vanished at all internal nodes; {¢; }; IS the canonical
basis (hat functions) of V,.

Then | F, (&) = 5 [ |div & |* = 3UTAU —b'U + ¢

where U € R?" is the concatenation of &;, i = 1, ..., N;

Als a2N x 2N matrix (stiffness matrix) made of N x N
blocks A;; € M(2) defined by A;; = [, Vi ® Ve, b e R*Y
and ¢ € R come from the boundary condition

Matrix A turn out to be symmetric and positive definite
The difficulty then comes from the constraints

&P =€ <1,i=1,..,N
- B
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Minimization technique (2)

- .

#® First we solve AU = b (unconstrained global minimizer)
with conjugate gradient and project the result on the
constraint

# Then we iterate with a (projected) gradient method with
a projection on the constraint after each iteration.

Test example F'is the unit circle

h = 0.07, N = 480, 210 conjugate
gradient steps, no gradient itera-
tions. F'is calibrable, hence the con-
straint is not involved. div ¢ ranges
from 1.996247 to 2.002405
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Velocity field for the circle

Some aspects in the numerical approximation of surfaces evolving by anisotropic mean curvature — p.20/3!



Example with corner
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9243 gradient steps,

5484 Internal nodes, 3829 C.G. iterates

divergence ranges from 1.18 to 12.7
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Velocity field for the corner
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Nonconvex example
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2564 internal nodes, 2299 C.G. iterates, 22675 gradient
steps, divergence ranges from 0.90 to 4.22
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Velocity field for the nonconvex example

- . .




Why Is A positive definite?

- .

The continuous problem is highly degenerate, due to the
Invariance w.r.t. divergence-free vector fields; we should
expect roughly half of the eigenvalues of A to vanish. This
does not happen due to the choice of the finite element
space that does not contain divergence-free vector fields
(except the trivial constant ones).

g

. Circular domain. Plot of the
| 960 eigenvalues of A

0 | I I I I I I I
0 100 200 300 400 500 600 700 800 900
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Calibrability of face F = F(t)
-

# [ does not break/bend at time ¢ during evolution
® There esists ¢ : F — R? such that

s [§[ <1

s §pr = v (outward normal to OF)

s div £ IS constant
® Forall £ C F.

OF| > ](9_F_| . 5\
El = [F]

|
sy

L »® (if Fis convex) F is calibrable <= max,cyr kopr(z) < XJ

(comparison principle)
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Prescribed curvature problem

- .

# For )\ € R solve a prescribed curvature problem
F\(E)=|0E| — A\|F| — min, £ C F. Set
M(X) == mingcp Fr(F)

The boundary 0FE N F' of a minimizer has curvature A and

has tangential contact with 0F

Set 5\:% and A*:inngF% (A* <))

VA M(X) <0, M(\) IS honincreasing in A
AN = M) =0

A> N = M\ <0

Fis calibrable <= M =)\ <= M(\) =0

o -
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Finding the contours of the velocity fielc

-

9

: .

Find M (\) (by solving a prescribed curvature problem).
If result is 0 then STOP (the velocity field is constant
Decrease ) and find M (\) untill the result is zero
(bisection method). Let \* be the limiting value

Let £* minimize Fy-(F), I.e. Fy«(E*) = 0, then the
velocity field is \* in £

Find the minimizer for F,(£) for A > \* and obtain the
level set where velocity is A (boundary of the minimizer)

-
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Prescribed curvature problem 2

- .

ldentifying £ with its characterestic function v we have
equivalently

FA(U):/F]DU\—/F)\er/aFv, v € BV(F:{0,1})

Using the coarea formula F, can be equivalently minimized
on K = BV{F;|0,1]} which is a convex set

Numerical solution: convex minimization algorithm using

P! finite elements plus regularization |Dv| ~ /€2 + |Vv|2.

o -
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A capillarity problem

Vessel F x [-L,L], L large
enough, containing a fluid with
surface tension and tangential
contact + microgravity

To find an equilibrium configu-
ration we minimize the surface
energy subject to volume con-
straint of the fluid:

constant mean curvature = A\

(Lagrange multiplier)
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Capillarity 2
- o

If the surface can be represented by a function v : FF — R
then

—Vu
¢ = V' 1+ |Vul?
IS the horizontal component of the normal vector, we have
® [ <1InF
® (=vatoF

® div £ = )\ is constantin F

then ¢ |is a calibration | of F

There exists a graph-like solution iff £ is calibrable!

o -
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Total variation flow

- -

Strong connections with the “minimizing total variation flow’
(gradient flow for |, |Du|) defined by Caselles et all.

We seek an entropy solution of

, Du
o = div (m)

Starting from the characteristic function uy = yp of F
F'Is calibrable <= the solution is of the form u(t) = o(t)ug

for an appropriate rescaling scalar function o

o -
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Anisotropic Allen-Cahn

- .

e > 0 singular perturbation parameter, o
U : R — R a double well potential W
(e.g. ¥(s) = (1 —s%)?), ¢y =0 1 1

e% — ediv T°(Vu) + 1¢(u) = 0
+ Initial and boundary conditions

Typical profile of u: 1/

O(e)
If T° = Id then X, = {u = 0} approximates a surface

evolving by mean curvature

Lwith an error of order O(¢?|log ¢|?) J
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ldentifying the singular limit
- o

Now we can identify the singular limit of the anisotropic
Allen-Cahn when 7 is regular (nonlinear)

The zero level set X, of » (solution of the anisotropic
Allen-Cahn) approximates (with an error O(e?|log ¢|?) a

surface evolving by anisotropic mean curvature flow

Anisotropic Allen-Cahn is well defined also for crystalline
anisotropy (7 is a maximal monotone graph, and the equa-

tion must be interpreted suitably); what is the singular limit?

o -
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Thank you

Thank you!
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