Test di Algebra lineare

22 marzo 2011

Esercizio 1. Si considerino i sottospazi di $Mat_2(\mathbb{R})$

•
$$U = \left\{ \begin{pmatrix} k(a+b) & 0 \\ a-b & k^2a+b \end{pmatrix} \in M_2(\mathbb{R}) \mid a,b \in \mathbb{R} \right\}$$

•
$$W = \left\{ \begin{pmatrix} x & ky \\ 0 & k(x+y) \end{pmatrix} \in M_2(\mathbb{R}) \mid x, y \in \mathbb{R} \right\}$$

1. Determinare una base e la dimensione di U e W al variare del parametro reale k;

Determinare una base e la dimensione di
$$U$$
 e W al va
$$\begin{bmatrix} U = \left\langle \begin{pmatrix} k & 0 \\ 1 & k^2 \end{pmatrix}, \begin{pmatrix} k & 0 \\ -1 & 1 \end{pmatrix} \right\rangle, \ \dim U = 2 \ \forall k \in \mathbb{R}, \\ W = \left\{ \left\langle \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}, \begin{pmatrix} 0 & k \\ 0 & k \end{pmatrix} \right\rangle, \ \dim W = 2, \ \forall k \neq 0 \\ \left\langle \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\rangle, \ \dim W = 1, \ \operatorname{per} k = 0 \end{bmatrix}$$

2. Stabilire per quali valori di k U+W è somma diretta. $[U+W=U\oplus W \Leftrightarrow k\neq \pm 1]$

Esercizio 2. In $\mathbb{R}_3[x]$ si dica per quali valori reali di a il vettore $v_a = a + (1-a)x^3$ appartiene alla chiusura di $A_a = \{(a-1)x^2, 2+x+x^3, 4+(a-1)x+x^2+(a-1)x^3\}.$ $[\nexists a]$

Esercizio 3. Sia f_k l'endomorfismo di $\mathbb{R}^3(\mathbb{R})$ rappresentato dalla matrice

$$A_k = \begin{bmatrix} k & 4 & 3 \\ 2 & -(k+1) & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

rispetto alla base canonica.

- 1. Determinare, al variare di $k \in \mathbb{R}$, le dimensioni di Imf_k e di $Kerf_k$; [per $k \neq 3, -1$: dim $Imf_k = 3$, dim $Kerf_k = 0$; per $k = 3 \lor k = -1$: dim $Imf_k = 2$, dim $Kerf_k = 1$]
- 2. stabilire per quali valori di $k \in \mathbb{R}$ il vettore v = (k, 5 + k, 4 + k) appartiene ad $Im f_k$. [$v \in Im f_k \Leftrightarrow k \neq 3, -1$]

Esercizio 4. In $\mathbb{C}_1[x]$ su \mathbb{R} si costruisca per ciascuna delle seguenti condizioni, se possibile, un endomorfismo f che le soddisfi:

2.
$$Im f = A$$
. [per esempio sia f t.c. $\tilde{f} = L_M$, con $M = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$]

dove $A = \langle i(1+x), 1+ix, 1+x \rangle$.

Esercizio 5. Si consideri la matrice reale

$$A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & -2 & 3 \\ 3 & 4 & -1 \end{array}\right)$$

1. Si determinino gli autovalori di A e, per ogni autovalore trovato, le molteplicità algebrica e geometrica e il relativo autospazio;

[autovalori 0, 4, 5, con
$$a_0 = a_4 = a_5 = 1 = g_0 = g_4 = g_5$$
 ; autospazi $V_0 = \langle (-1, 1, 1) \rangle$, $V_4 = \langle (9, 7, 11) \rangle$, $V_5 = \langle (0, 1, -1) \rangle$]

2. Si costruisca una matrice diagonale D simile ad A e con relativa matrice dia-

gonalizzante
$$M$$
. [$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -5 \end{pmatrix} = M^{-1}AM$, con $M = \begin{pmatrix} -1 & 9 & 0 \\ 1 & 7 & 1 \\ 1 & 11 & -1 \end{pmatrix}$]