Algebra lineare - Geometria 1

12 dicembre 2006

1) Nello spazio vettoriale \mathbb{R}^3 si considerino

il sottospazio $U = \langle (1, 0, 2), (-2, 1, 0), (0, 1, 4) \rangle$

il sottoinsieme
$$W = \{(x, y, z) \in \mathbb{R}^3 | x - y + z = 0 \land x - z = 0 \land 3x - y - z = 0\}$$

la funzione f: $\mathbb{R}^3 \to \mathbb{R}^3$ tale che $\forall (x, y, z) \in \mathbb{R}^3$ f (x, y, z) = (2x - y - z, -2z, -2z).

- i) Dopo avere verificato che W è un sottospazio vettoriale di \mathbb{R}^3 , se ne determini una base e la dimensione.
- ii) Si stabilisca se U è complemento diretto per W.
- iii) Dopo avere mostrato che f è un endomorfismo di \mathbb{R}^3 , si costruiscano i sottospazi Imf e Kerf.
- iv) Si verifichi se il sottospazio f(U) è complemento diretto per il sottospazio f(W).
- v) Si stabilisca se l'endomorfismo f è diagonalizzabile; in caso di risposta affermativa, si diagonalizzi f.

2) Si discuta la risolubilità del sistema reale

$$\begin{cases} x + 2y + (h+1)z &= h-1 \\ hx + 4y + 2(h+1)z &= 2(h-1) \\ hx - y + z &= 1 \end{cases}$$

ove $h \in \mathbf{R}$ è un parametro.

Nei casi in cui il sistema è risolubile, se ne determinino le soluzioni

Geometria - Geometria 2

12 dicembre 2006

1) Nel piano affine euclideo reale, in cui è fissato un sistema di coordinate cartesiane ortogonali, sono assegnate la conica Γ : $x^2 - y^2 + 9 = 0$ e la retta r: x - 4 = 0.

Dopo avere riconosciuto la conica Γ , si scriva l'equazione del fascio Φ di coniche tangenti a Γ nei punti in cui essa è intersecata dalla retta r.

- i) Si scrivano le equazioni delle coniche degeneri di Φ e quelle delle eventuali parabole non degeneri.
- ii) Si determini la conica Σ del fascio Φ rispetto alla quale i punti A(1; 1) e B(2; -1) sono coniugati. Si riconosca Σ e se ne determini il centro.
- iii) Si individui l'iperbole Ω di Φ avente un asintoto parallelo alla retta a: $\sqrt{2x y} + 8 = 0$; si determinino le equazioni degli asintoti di tale iperbole.

2) Nello spazio affine euclideo reale \mathbb{R}^3 , in cui è fissato un sistema di coordinate ortogonali, si considerino

```
il punto P(1; 2; -1)
i piani \pi: x + y + z = 1 e \sigma: 2x - y + z = 0.
```

- i) Si scrivano le equazioni della retta r passante per P e parallela ai piani π e σ .
- ii) Si verifichi che i piani π e σ sono incidenti; detta t la retta individuata da π e σ , si determini la distanza di A da t.
- iii) Si scriva l'equazione della sfera Σ avente centro in A e tangente a π . Si stabilisca la posizione di σ rispetto a Σ ; nel caso che σ sia secante Σ , si determinino centro e raggio della circonferenza sezione.
- iv) Detto H il piede della perpendicolare a π condotta da A, si scrivano le equazioni della retta s passante per H e perpendicolare a σ . Si determini la posizione reciproca tra le rette r e s.