Algebra lineare – Geometria 1

18 marzo 2008

Esercizio 1. Si considerino il sottoinsieme $A = \{(1,0,1),(2,1,0)\}$ di \mathbb{R}^3 e i sottoinsiemi

$$U = \{(x, y, z, t) \in \mathbb{R}^4 \mid x = 0 \land y - z - t = 0\},$$

$$W = \{(\alpha + \beta, 2\alpha + \beta, 0, \alpha) \in \mathbb{R}^4 \mid \alpha, \beta \in \mathbb{R}\}$$

di \mathbb{R}^4 .

- 1. Verificare che U e W sono sottospazi vettoriali di \mathbb{R}^4 e determinarne la dimensione e una base;
- 2. determinare la dimensione e una base per U+W e $U\cap W$ e stabilire se la somma è diretta;
- 3. posto $V = \langle A \rangle$ determinare, se esiste, un omomorfismo $f : \mathbb{R}^4 \to \mathbb{R}^3$ tale che $W = \ker f$ e $V = \operatorname{Im} f$;
- 4. determinare la matrice della rappresentazione scalare di f rispetto alle basi canoniche di \mathbb{R}^4 e \mathbb{R}^3 .
- 5. Dimostrare che se $V = V_n(\mathbb{K})$ e $V' = V'_m(\mathbb{K})$ sono due spazi vettoriali di dimensione finita e $W \leq V$, $m \geq n \dim W$, $U \leq V'$, $\dim U \leq n$, esistono sempre un omomorfismo $f: V \to V'$ tale che ker f = W e un omomorfismo $g: V \to V'$ tale che Im g = U.

Esercizio 2. Si consideri il sistema lineare reale

$$\begin{cases}
-y + 3kz + t = k + 1 \\
x + (k+2)y - z + t = 2 \\
kx - (k+3)y + (7k-3)z = 6
\end{cases}$$

dove k è un parametro reale.

1. Discutere al variare di $k \in \mathbb{R}$ la compatibilità del sistema e, per i valori di k per cui il sistema è risolubile, determinare il numero delle soluzioni.

Posto ora k = 0 determinare:

- 2. l'insieme S delle soluzioni del sistema e stabilire se S è un sottospazio vettoriale di \mathbb{R}^4 ;
- 3. una base e la dimensione di $V = \langle S \rangle$;
- 4. un complemento diretto per V in \mathbb{R}^4 .