Algebra lineare - Geometria 1

18 giugno 2007

1) Nello spazio vettoriale Mat₂(R) si considerino

la funzione
$$f: \mathbf{Mat_2(R)} \to \mathbf{Mat_2(R)}$$
 tale che $\forall A \in \mathbf{Mat_2(R)}$ $f(A) = A - A^t$ e il sottospazio $W = < \begin{pmatrix} 0 & h \\ h & 1 \end{pmatrix}, \begin{pmatrix} h & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1-h & 0 \end{pmatrix} >$

ove $h \in \mathbf{R}$ è un parametro.

- i) Si verifichi che la funzione f è un endomorfismo e si costruiscano i sottospazi Imf e Kerf.
- ii) Si costruiscano gli autospazi dell'endomorfismo f e si dica se f è diagonalizzabile. In caso di risposta positiva, si diagonalizzi l'endomforfismo.
- iii) Al variare del parametro si un complemento diretto del sottospazio W.
- iv) Si individuino gli eventuali autovettori appartenenti a W.

2) Si discuta la risolubilità del sistema reale

$$\begin{cases} (1+h)x + (1-h)y - t &= 1-h\\ 2hx - ht &= -h\\ (1+h)x + y + (1+h)z &= 1-h \end{cases}$$

ove $h \in \mathbf{R}$ è un parametro.

Nei casi in cui il sistema è risolubile, se ne determinino le soluzioni.

Geometria - Geometria 2

18 giugno 2007

1) Nel piano affine euclideo reale, in cui è fissato un sistema di coordinate cartesiane ortogonali, si consideri il fascio di coniche

$$\Phi$$
: $2x^2 + (k-1)xy + (1+k)y^2 + 2ky + 2x = 0$.

- i) Si riconoscano le coniche generatrici del fascio Φ , si stabilisca la natura del fascio, se ne determinino i punti base e le coniche degeneri.
- ii) Si stabilisca, giustificando la riposta, se nel fascio Φ vi sono circonferenze o parabole non degeneri
- iii) Si individui l'iperbole equilatera Σ del fascio; si determinino le equazioni degli asintoti di Σ .
- iv) Si determini l'equazione della conica Γ di Φ che ha centro in C(-1/7; -5/7). Si riconosca Γ e si scriva l'equazione della retta tangente a Γ nel punto Q(0; -3/2).
- v) Si individui l'equazione dell'iperbole K del fascio che ha un asintoto parallelo alla retta t: 2x + y = 0; si determinino le equazioni degli asintoti di K. Si individui, poi, il polo rispetto a Γ della retta s: 3x y + 2 = 0.
- vi) Si individuino le coniche non degeneri del fascio Φ che ammettono la retta d: x + y = 0 come diametro.
- 2) Nello spazio affine euclideo reale \mathbb{R}^3 , in cui è fissato un sistema di coordinate ortogonali, si considerino le rette

a:
$$x = x + y = -1$$

b: $z = y + z = -1$
c: $x = y = z$
e il punto P(1; 1; -1).

- i) Dopo avere verificato che le rette b e c sono tra loro sghembe, si individui la retta n perpendicolare ed incidente ad entrambe le rette e si determini la minima distanza tra esse.
- ii) Si calcoli la distanza del punto P dalla retta c.
- iii) Dopo avere constatato che le rette a e b sono complanari, si scriva l'equazione del piano π individuato da tali rette.
- iv) Si scriva l'equazione della sfera Σ di centro P e tangente al piano π .
- v) Si scriva l'equazione cartesiana del luogo descritto dalle rette incidenti alle rette a, b e c.