Geometria 2

5 aprile 2011

Es. 1. Nel piano proiettivo $\mathbb{P}_2(\mathbb{R})$ si consideri la conica \mathscr{C} di equazione

$$\mathscr{C} : x^2 - y^2 - 2x - 2y + 4 = 0.$$

Dopo averne determinato la classificazione affine e proiettiva, si determinino le coordinate del centro, le equazioni degli asintoti e degli assi.

[Iperbole generale, centro: (1;-1), asintoti: y=x-2, y=-x, assi: y=-1, x=1]

Siano dati inoltre i punti A = (-2; 0) e $T(-\frac{3}{2}; -\frac{3}{2})$ e la retta t : x + y + 3 = 0. Si determinino:

- (a) un'equazione del fascio \mathscr{F} di coniche passanti per il punto A, tangenti nel punto T alla retta t e aventi come asse la retta di equazione y=x; $[(k+3)(x^2+y^2)+2(k+5)xy+(5k+24)(x+y)+6k+36=0]$
- (b) un'equazione dell'iperbole equlatera del fascio \mathscr{F} , le coordinate del suo centro e le equazioni degli asintoti;

 $[4xy + 9x + 9y + 18 = 0, \text{ centro: } (-\frac{9}{4}; -\frac{9}{4}); \text{ asintoti: } x = -\frac{9}{4}, y = -\frac{9}{4}]$

- (c) un'equazione dell'ellisse di \mathscr{F} il cui ulteriore asse ha equazione $x+y+\frac{3}{2}=0$ e le coordinate dei suoi vertici. $[3x^2+3y^2+2xy+6x+6y=0,$ vertici: $T,O=(0;0),V_1=\left(\frac{-3+3\sqrt{2}}{4};\frac{-3-3\sqrt{2}}{4}\right),V_2=\left(\frac{-3-3\sqrt{2}}{4};\frac{-3+3\sqrt{2}}{4}\right)]$
- Es. 2. Nello spazio euclideo $\mathbb{E}_3(\mathbb{R})$ in cui è fissato un sistema di riferimento cartesiano, sia \vec{u} il vettore di componenti $\vec{u}=(1;1;2)$. Si determinino una base e la dimensione del sottospazio ortogonale ad \vec{u} . Si verifichi che si tratta di un piano e se ne scriva un'equazione cartesiana. [dim $\vec{u}^{\perp}=2$, base: ((1;-1;0),(0;-2;1)), x+y+2z=0]

Date le rette r ed s di equazioni

$$r : \begin{cases} x - z = 0 \\ y = 0 \end{cases}, \quad s : \begin{cases} x = 3 - t \\ y = 2 - t \\ z = t - 1 \end{cases}$$

si determinino:

- (a) le equazioni cartesiane della retta perpendicolare e incidente s e passante per A=(1;2;3); [x=1=z-y]
- (b) detto α il piano precedentemente determinato, le posizioni reciproche tra r ed s, tra α ed r, tra α ed s; [r ed s ortogonali e incidenti in (1;0;1); r ed α incidenti nell'origine; s ed α paralleli]
- (c) un'equazione cartesiana per il piano comune ai due fasci di sostegno r ed s; [x-2y-z=0]
- (d) le coordinate di una coppia (R, S) di punti tali che $R \in r$, $S \in s$ e che abbiano distanza pari a $\sqrt{2}$. [(1; 0; 1), (0; 0; 0)]