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Abstract. In this paper, we study quasiconcavity properties of solu-
tions of Dirichlet problems related to modified nonlinear Schrödinger
equations of the type

−div
(
a(u)∇u

)
+

a′(u)

2
|∇u|2 = f(u) in Ω,

where Ω is a convex bounded domain of RN . In particular, we search
for a function φ : R → R, modeled on f ∈ C1 and a ∈ C1, which makes
φ(u) concave. Moreover, we discuss the optimality of the conditions
assumed on the source.

1. Introduction

A natural question in studying differential equations is whether the so-
lutions of a PDE, set in a certain domain, inherit or not the geometrical
properties of the domain itself. Starting from [18] a huge amount of work
has been developed in achieving symmetry of solutions from the symmetry
(and convexity) of the domain, especially exploiting the Alexandroff-Serrin
moving plane method. If the domain is a ball, for example, the solution
reveals to be radially symmetric and decreasing: in this case all the level
sets of the solution are balls and, thus, convex sets.

When the symmetry of the domain is dropped, one may wonder if the
solutions still inherit convexity (or star-shapedness) of the domain: this
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question has been addressed starting from the pioneering papers [52, 50,
6, 43], and further developed in the subsequent years. We highlight that,
contrary to star-shapedness, weaker properties of the domain (like simple
connection) are generally not inherited by the level sets of the solutions (see
e.g. [60]).

Convexity properties of solutions are actually a good information which
arise, for example, in the study of the free boundaries and the coincidence
sets in obstacle problems [33, 11], in minimal surfaces and prescribed Gauss
curvature problems [22], as well as in optimal control (ensuring, for exam-
ple, that the trajectories are contained in the domain); they further give
information on the gap between eigenvalues [59], and on the critical points
and the uniqueness of solutions. These properties additionally appear in
several applications, such as plasma confinement [1], capillary surfaces [34],
capacitory potentials [43], porous solid combustion [30], economy [57], and
elasto-plastic deformation of cylinders [50].

When searching for concavity properties of solutions, one can easily ob-
serve that, generally, concavity itself is a too strong goal: while for the
torsion problem the concavity may be obtained, for example, for suitable
perturbations of ellipsoids [24] (see also [37]), in [35, Remark 2.7] (see also
[45]) it is shown that the first eigenfunction of the Laplacian is never con-
cave, whatever the bounded regular set is (see [26, Remark 3.4] and Remark
4.1 for a more general framework). The same holds true anyway also for
the torsion problem, if for example the boundary has some flat zone [31,
Theorem 18].

Generally, one may search instead for a strictly increasing function φ
such that the composition φ(u) with the solution u is actually concave. This
property is generally stronger than the quasiconcavity, which requires that
all the level sets of u are concave; both the properties have been extensively
investigated in literature.

In the present paper, we study concavity properties of solutions to the
following quasilinear Dirichlet boundary problem

−div
(
a(u)∇u

)
+ a′(u)

2 |∇u|2 = f(u) Ω,

u > 0 Ω,

u = 0 ∂Ω

(1.1)

related to the so called modified nonlinear Schrödinger equation (MNLS). In
particular, we investigate how the weight a ∈ C1((0,+∞)) and the source
f ∈ C1((0,+∞)) influence the concaving function φ : R → R.
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Focusing on the semi-linear case a ≡ 1, in the seminal paper [50] it is
shown that the solutions of the torsion problem (i.e., f ≡ 1) are such that
φ(u) =

√
u is concave; moreover, the authors in [6] show that the eigenfunc-

tions of the first eigenvalue of Laplacian (i.e., f(t) = λ1t) make the concave
function φ(u) = log(u). More generally, it has been shown [32] that solutions

of −∆u = uq, q ∈ (0, 1), lead to the concavity of the function φ(u) = u
1−q
2 .

In all three cases, we see that (up to multiplicative and additive constants)

φ(t) ≡
∫ t

1

1√
F (s)

ds,

where F (s) :=
∫ s
0 f(τ)dτ is the antiderivative of the source f .

Several papers have then further investigated concavity properties of func-
tions, both on convex domains and convex annuli, both for semi-linear
and quasilinear equations [46, 11, 35, 27, 32, 56, 44, 20] (see also [29] for
some results on complements of bounded sets). The proofs involve differ-
ent techniques, such as maximum principles for suitable concavity functions,
parabolic and probabilistic methods, convex rearrangements. We refer to
[31, 26, 28, 36] for some surveys on the topic up to the ‘80s.

We further observe that these results have been generalized to parabolic
frameworks (in the sense that the quasiconcavity of the initial datum is con-
served in time, see [16] and references therein) singularly perturbed equations
[21], Hessian equations (see [63] and references therein), manifolds [58], and
many other frameworks. See also [1, 62, 41, 42] for results about existence
of a single (quasi) concave solution (mainly by variational methods through
constraints which naturally include quasiconcavity), and [9] for results about
concavity up to an error.

Most of the cited papers, anyway, study quasiconcavity of solutions, or
give assumptions on the source f in order to have a suitable power uγ ,
γ ∈ (0, 1], of the solution u, to be concave (or log-concave, formally γ = 0).
Recently, Borrelli, Mosconi, and Squassina [5, Theorem 1.2] proved instead
the following result, which shows concavity for a suitable φ directly connected
to the source f and to the operator −∆p involved (see also [10, 27]). We
refer to [5, Remark 1.6] for some technical comments.

Theorem 1.1 ([5]). Let N ≥ 1, Ω ⊂ RN be a bounded, convex domain with
C2-boundary, and let f ∈ Cσ

loc([0,+∞)) for some σ ∈ (0, 1]. Let p > 1 and
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u ∈W 1,p
0 (Ω) be a weak solution of

−∆pu = f(u) Ω,

u > 0 Ω,

u = 0 ∂Ω.

Set
Mf := inf

{
t > 0 | f(t) = 0

}
> 0

and

φ(t) :=

∫ t

1

1

F 1/p(s)
ds, t ∈ (0,Mf ),

where F (t) :=
∫ t
0 f(τ)dτ for t ∈ [0,+∞). Assume f > 0 on (0,Mf ), and in

addition

i) F 1/p concave on (0,Mf ),

ii) F
f convex on (0,Mf ).

Then φ(u) is concave. In particular, u is quasi-concave.

A first goal is the extension of Theorem 1.1 to the quasilinear case (1.1).
Equation in (1.1), which can be rewritten also as

−a(u)∆u− a′(u)

2
|∇u|2 = f(u),

naturally arises by considering the (formal) Euler-Lagrange equation of the
energy functional

u 7→ 1

2

∫
Ω
a(u)|∇u|2 −

∫
Ω
F (u),

where F (t) =
∫ t
0 f(τ)dτ . By writing

a(t) ≡ 1± 2t2(ℓ′(t2))2,

with ℓ ∈ C2(R), the equation takes the form

−∆u∓ u ℓ′(u2)∆(ℓ(u2)) = f(u); (1.2)

apart from the classical semi-linear case ℓ ≡ const or ℓ(t) =
√
t (i.e., a ≡

const), several physical models have been developed through equations of
the type (1.2). For example, when ℓ(t) = t (i.e., a(t) = 1 + 2t2 ≥ 1), the
classical MNLS equation

−∆u− u∆(u2) = f(u) (1.3)

arises in the fluid theory of upper-hybrid solitons formation [54], in the study
of electron-phonon interactions [8], and in the excitation on a hexagonal
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lattice to describe fullerenes and nanotubes [7] (f(s) = s3), as well as in
the dynamics of condensate wave functions in superfluid films ([38], f(s) =
s+ s

(1+s2)3
). See also [47] where collapse of quasi-monochromatic oscillations

and plasma waves is studied.

By choosing instead ℓ(t) =
√
1 + t (i.e., a(t) = 1 − t2

2(1+t2)
≥ 1

2) and

f(t) = t − t√
1+t2

, we get the so called relativistic nonlinear Schrödinger

equation

−∆u−
(
1− 2 + ∆

√
1 + u2√

1 + u2

)
u = 0 (1.4)

which appears related to the self-focusing and channel formation in the non-
paraxial propagation of short intense laser pulse through an under-dense
plasma (governed by charge-displacement due to the ponderomotive force)
[4, 13]. A different model is instead given by ℓ(t) =

√
1− t (i.e., a(t) =

1 + t2

2(1−t2)
≥ 1) and f(t) = t− t√

1−t2
,

−∆u+ u
∆
√
1− u2

2
√
1− u2

= u− u√
1− u2

(1.5)

which arises in the study of excitations in classical planar Heisenberg ferro-
magnets [61].

Mathematically, equation (1.2) has been extensively studied on the entire
space Ω = RN [14, 15]; we refer also to [53, 51, 17, 55] for some results
involving external potentials, and to [40] for some classical results about
dynamical properties. For results on bounded domains (1.1), we refer instead
to [48, 49] (see also [19] for explosive solutions).

As regards to concavity properties for (1.1), by reading the equation as

−∆u =
a′(u)

2a(u)
|∇u|2 + f(u)

a(u)
=: B(u,∇u)

in [3], it has been shown that, if Ω is a convex domain and u is a solution
of (1.1) with ∂νu > 0 on the boundary, then u is γ-concave, for some γ ≤ 1,
provided that the function

t ∈ [0,+∞) 7→ a′(t
1
γ )

2a(t
1
γ )
t
1+ 1

γ β +
f(t

1
γ )

a(t
1
γ )
t
3− 1

γ (1.6)

is concave for every β ≥ 0 (see also [34, 35, 32]); see Remark 4.2 for some
comments.

In the present paper, we obtain a concavity result for solutions of problem
(1.1), where the role of f and a (i.e., of the source and the operator) naturally
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arises not only in the assumptions, but also in the concaving function φ. We
thus prove the following (see also Theorem 3.3 and Remark 4.5 for some
generalization).

Theorem 1.2. Let N ≥ 1, Ω ⊂ RN be a bounded, convex domain with
C2-boundary, a ∈ C1([0,+∞)) satisfying for some ν > 0

a(t) ≥ ν > 0, for any t ∈ R, (1.7)

and f ∈ Cσ
loc([0,+∞)) ∩ C1((0,+∞)) for some σ ∈ (0, 1]. Let u ∈ C(Ω) ∩

C2(Ω) be a classical solution of (1.1). Set

ξ(t) :=
F (t)

f(t)

a′(t)

a(t)
=
a′(t)

F ′(t)

( a(t)
F (t)

)−1
, t ∈ (0,Mf ),

where F (t) :=
∫ t
0 f(τ)dτ and

Mf := inf{t > 0 : f(t) = 0} > 0.

Assume moreover f > 0 on (0,Mf ) and

i)
√
F is concave on (0,Mf );

ii) F
f is convex on (0,Mf );

iii) ξ is non-decreasing on (0,Mf ) with lim
t→0+

ξ(t) ≤ 0.

Then φ(u) is concave, where

φ(t) :=

∫ t

µ

√
a(s)

F (s)
ds, t ∈ (0,+∞),

µ := ν−
1
2 . In particular, u is quasi-concave.

As proved in [12, Theorem 2.2.5], when the growth of f at infinity is at
most critical, each weak solution of problem (1.1) belongs to L∞(Ω). Then
some nice smoothness results (C2 in our case) when a, f , and Ω are smooth
follow from [39]. This justifies the request on the solution u to be classical
in Theorem 1.2.

Clearly, when a ≡ 1, we recover Theorem 1.1 with p = 2 and f ∈ C1, being
ξ ≡ 0. More generally, we see that, even if conditions i) and ii) of Theorem
1.2 match with conditions i) and ii) of Theorem 1.1, nevertheless the function
a influences both assumptions (by requiring in addition condition iii)) and
the concaving function φ.

We remark that, apart from the naturalness of the function φ, to the
author’s knowledge this function is actually the first tentative of finding a φ
which makes solutions of (1.1) concave: as a matter of fact, it is not known
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if powers of the solutions are concave or not, when a ̸≡ const. See Remark
4.2 for further comments.

We notice that, by the ellipticity condition (1.7), a plays no relevant role
for the asymptotic behavior of φ in the origin t→ 0; namely, by de l’Hôpital
theorem, we have

lim
t→0

∫ t
µ

√
a(s)
F (s)ds∫ t

1
1√
F (s)

ds
= lim

t→0

√
a(t)
F (t)

1√
F (t)

=
√
a(0) ∈ (0,+∞).

On the other hand, the behavior of φ at infinity is of no importance, since
it is applied to bounded solutions u ∈ L∞(R): thus, the role played by a is
related only to the point-wise shape of the function φ, and it is felt more in
the case of large solutions (see Figure 3).

The idea of the proof rely on a suitable change of variable [15, 19] which
allows to bring the problem back to a semi-linear one.

A second goal of this paper is to show that the assumptions i) and ii)
in Theorems 1.1 and 1.2 are not merely technical, by indicating an example
with a ≡ 1 where i-ii) do not hold, and a non-quasi-concave solution indeed
exists; we use some ideas contained in [23]. See also [33, 34, 35, 41, 58] for
other counterexamples related to the convexity framework.

Theorem 1.3. There exists a smooth, concave and symmetric (with respect
to the axes) bounded domain Ω ⊂ R2 with C∞-boundary, and a function
f ∈ C∞(R), f > 0 such that

i)
√
F is not concave on (0,+∞),

ii) F
f is not convex on (0,+∞),

and the problem 
−∆u = f(u) Ω,

u > 0 Ω,

u = 0 ∂Ω,

admits both a quasi-concave solution and a non-quasi-concave solution.

The paper is organized as follows.
In Section 2, we discuss the optimality of the conditions in Theorems

1.1 and 1.2, by exhibiting a counterexample and proving Theorem 1.3. In
Section 3, instead, we extend Theorem 1.1 to the quasilinear case (1.1), by
giving the proof of Theorem 1.2. Finally, in Section 4, we provide some
examples and further comments.
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2. Quasi optimality of the assumptions

In this Section, we show an example of a semi-linear PDE set in a convex,
regular (and symmetric) domain with a smooth strictly positive source f not
satisfying assumptions i) and ii) of Theorem 1.1, and which indeed admits
a non-quasi-concave solution; incidentally, this problem will admit also a
nontrivial quasi-concave solution.

We recall that u is said quasi-concave if u−1((k,+∞)) is convex for every
k ∈ R, or equivalently if

u(λx+ (1− λ)y) ≥ min{u(x), u(y)}

for each x, y ∈ Ω, λ ∈ [0, 1]. Moreover, u > 0 is said γ-concave for γ ̸= 0
(resp. γ = 0) if sgn(γ)uγ is concave (resp. log(u) is concave).

We start with some comments on Theorem 1.1.
In [5], even if not explicitly stated, the authors require f to be only locally

Hölder continuous in Theorem 1.1: indeed, if ∥u∥∞ ≤M , then it is sufficient
f to be Hölder continuous in [0,M ]. More specifically, if Mf < +∞, then
∥u∥∞ ≤ Mf by maximum principles [5, Remark 1.6]; this implies that it is
actually sufficient to define φ only in (0,Mf ). Anyway, if f ≥ 0, its definition
can be extended in (0,+∞).

Moreover, we highlight that conditions i) and ii) of Theorem 1.1 are not
connected: for example,

• f(t) = tp with p ∈ [0, 1] satisfies both i) and ii);
• f(t) = 1 + tp with p ∈ [0, 1] satisfies i) but not ii);
• f(t) = tp with p > 1 satisfies ii) but not i);
• f(t) = 1 + tp with p > 1 does not satisfy either i), neither ii).

Finally, we highlight that, in non-power cases, the concaving function φ
is actually “less concave” than power choices of u: for example, if

f(t) =

{
tp for t ∈ [0, 1],

tq for t ∈ [1,+∞),

with 0 < p < q < 1, then [32, Theorem 4.2] implies that ψ(u) = u
1−p
2 is

concave, where the exponent is the biggest one given by the Theorem. On

the other hand, Theorem 1.1 implies that φ(u) =
∫ u
1 F

− 1
2 (s)ds is concave,

where we have φ(t) ∼ t
1−q
2 as t→ +∞.

The example we show in this section is borrowed by the one developed in
[23] and it is set in dimension N = 2. Here, we recall the main points of the
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Figure 1. “Stadium-shaped” sets Ωα.

construction (referring to [23] and [2] for details), and we make some further
comments and suitable adaptations.

Step 1. First, we build a proper family of smooth convex planar domains
Ωα, depending on a parameter α > 2 (which will be definitely taken large
enough). The domain Ωα are “stadium-like” shaped (see Figure 1) and
symmetric with respect to both axes. In particular they can be formally
defined by

Ωα :=
{
(x, y) ∈ R2 | |x| < α+ ϕ(y), |y| < 1

}
,

where the function ϕ ∈ C([−1, 1])∩C2((−1, 1)) satisfies ϕ(±1) = 0, ϕ′(t) →
∓∞ as t→ ±1, and it can be chosen for example equal to

ϕ(t) := λ
√
1− t2, t ∈ [−1, 1],

for some λ > 0; in this case ϕ ∈ C∞((−1, 1)).

Step 2. We consider the function ψ ∈ C2([−1, 1])

ψ(y) :=
1− y2

2

which satisfies −ψ′′ = 1 and ψ(±1) = 0. It results that ψ is the unique
minimizer of the functional in N = 1

J : H1
0 ((−1, 1)) → R, J(v) :=

∫ 1

−1

( |v′|2
2

− v
)
.
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Trivially extending ψ to R2 by ψ(x, y) := ψ(y), we also observe that ψ solves
the torsion problem {

−∆v = 1 Ωα,

v = 0 ∂Ωα.
(2.1)

Moreover, 0 ≤ ψ ≤ 1
2 .

Step 3. We consider the unique minimizers vα ∈ H1
0 (Ωα) of the functional

in N = 2

Jα : H1
0 (Ωα) → R, Jα(v) :=

∫
Ωα

( |∇v|2
2

− v
)

associated to the torsion problem (2.1). It results that vα are classical solu-
tions of the equation, 1

2 -concave, and satisfy

0 < vα < ψ ≤ 1

2
. (2.2)

Step 4. We introduce a smooth function g : R → R such that

g ≡ 0 on (−∞, 1], g ≡ 1 on [2,+∞), (2.3)

g non-decreasing and
∥g′∥∞ ≤ 4. (2.4)

This function can be for example chosen in the following way: set h(t) :=

e−
1
t χ(0,+∞), we define

g(t) :=
h(t− 1)

h(t− 1) + h(2− t)
, t ∈ R.

In this case one can straightforwardly check that g ∈ C∞(R) and ∥g′∥∞ ≤ 2.

Step 5. We consider now the constraint set

Vα :=
{
v ∈ H1

0 (Ωα) :

∫
Ωα

g(v) = 1
}

and study the functional Jα restricted to Vα: one can prove that Jα admits a
minimizer uα, with Lagrange multiplier µα > 0, which in particular satisfies
classically the Dirichlet problem

−∆v = 1 + µαg
′(v) Ωα,

v > 0 Ωα,

v = 0 ∂Ωα,

(2.5)

and

0 < vα ≤ uα <
5

2
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with
∥uα∥∞ > 1. (2.6)

In addition, we have

µα >
1

∥g′∥∞
≥ 1

4
. (2.7)

We give some details on (2.7).

Proof of (2.7). Let uα be fixed and consider wα the classical solution of
the linear problem {

−∆v = 1 + g′(uα)
∥g′∥∞ Ωα,

v = 0 ∂Ωα.
(2.8)

Observed that

−∆wα = 1 +
g′(uα)

∥g′∥∞
≤ 2 = −∆(2vα),

we obtain, by the Comparison Principle, that wα ≤ 2vα. If by contradiction
µα ≤ 1

∥g′∥∞ , then

−∆wα = 1 +
g′(uα)

∥g′∥∞
≥ 1 + µαg

′(uα) = −∆uα

and again by the Comparison Principle wα ≥ uα. Thus,

uα ≤ wα ≤ 2vα.

On the other hand, exploiting (2.6) and (2.2), we obtain, for some point
P ∈ Ωα,

1 < uα(P ) ≤ wα(P ) ≤ 2vα(P ) < 1,

getting a contradiction. □

Step 6. Consider the level set

ωα := u−1
α ((1,+∞)).

One can show that ωα is symmetric with respect to both axes and fulfills
the rectangle property, i.e.,

∀(x̄, ȳ) ∈ ωα : (−x̄, x̄)× (−ȳ, ȳ) ⊂ ωα;

in particular, ωα is star-shaped with respect to the origin. Moreover, ωα ⊂
Ωα are not too elongated nor too thin, that is there exist two α-independent
constants C1, C2 > 0 such that

0 < sup
(x,y)∈ωα

|x| < C1, and 0 < C2 < sup
(x,y)∈ωα

|y|,
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for each α > 2.

Step 7. We show that, up to choosing α > 2 sufficiently large, one can
make uα arbitrary similar to the function ψ: namely, for every small ε > 0,
there exists an α0 = α0(ε) ≫ 0 such that, for any α > α0, we have

|uα(x, y)− ψ(y)| < ε for every (x, y) ∈ Sα := (k0, α− k0)× (−1, 1) ⊂ Ωα,

where k0 ∈ (0, α0
4 ) is suitably chosen.

Step 8. We first observe that vα > 0 are trivial solutions (for any α)
of problem (2.5), since ∥vα∥ ≤ 1

2 < 1 by (2.2) and g′|(−∞,1) ≡ 0 by (2.3).

Moreover, vα is 1
2 -concave and thus, in particular, problem (2.5) admits a

quasi-concave solution.
We show instead that the built solutions uα are not quasi-concave: indeed,

chosen ε small and

η ∈
(1
2
− C2

2

8
+ ε,

1

2
− ε

)
⊂ (0, 1)

we pick three points P , Qα and Mα (see Figure 2) such that

P := (0, C2) ∈ ωα, Qα :=
(α
2
, 0
)
∈ Sα, Mα :=

P +Qα

2
∈ Sα

which imply (roughly), for α≫ 0,

uα(Qα) ≈ ψ(Qα) =
1

2
> η >

1

2
− C2

2

8
= ψ(Mα) ≈ uα(Mα).

So one has shown that

P,Qα ∈ u−1
α ((η,+∞)), but Mα /∈ u−1

α ((η,+∞)).

Being u−1
α ((η,+∞)) not convex, we have that uα is a solution of (2.5) which

is not quasi-concave.

We are now ready to conclude Theorem 1.3.

Proof of Theorem 1.3. What remains to show is that the function (α is
now fixed, we write µ := µα)

f(t) := 1 + µg′(t), t ∈ R

does not satisfy i) and ii) of Theorem 1.1. Notice first that f ∈ C∞(R) ⊂
Liploc(R) and set F (t) :=

∫ t
0 f(τ)dτ = t+ µg(t).

•
√
F is not concave. Observe that√
F (t) ≡

√
t for t ∈ (−∞, 1],

√
F (t) ≡

√
t+ µ for t ∈ [2,+∞),
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Figure 2. Visual proof of the non-convexity of u−1((η,+∞)):

indeed, uα(P ) > 1 > η and u(Qα) ≈ 1
2 > η, while uα(

P+Qα

2 ) ≈
1
2 − C2

2

8 < η.

and that the tangent line to
√
F in t = 1 is given by y(t) = t+1

2 . If by

contradiction
√
F were concave, then we would have√

F (t) ≤ t+ 1

2
for each t ∈ R

and in particular for t = 2, which means√
2 + µ ≤ 3

2
,

i.e., µ ≤ 1
4 , in contradiction with (2.7).

• F
f is not convex. Since

F (t)

f(t)
≡ t for t ∈ (−∞, 1],

F (t)

f(t)
≡ t+ µ for t ∈ [2,+∞),

and since the tangent line to F
f in t = 1 is y(t) = t + µ, if we assume by

contradiction F
f convex, then

F (t)

f(t)
≥ t+ µ for each t ∈ R;

in particular, for t = 1,

1 ≥ 1 + µ,

impossible, since µ > 0. We can see the contradiction also exploiting [5,
Remark 1.5] (see Lemma 3.2 below): in order to have F

f convex, we would
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need

γ =
Ff ′

f2
=

(t+ µg)(µg′′)

(1 + µg′)2

non-increasing; but this is clearly not possible, since γ(t) ≡ 0 for t ∈
(−∞, 1] ∪ [2,+∞), and not identically zero in between (actually, it changes
sign). □

We end this Section with some comments.

Remark 2.1. We showed the counterexample in dimension N = 2, for
p = 2 and a ≡ 1. While the generalization to p > 1 and a ̸≡ 1 seems
to create no particular difficulty, it would be instead interesting to show a
counterexample also in dimension N ≥ 3. We indeed highlight that, when
N = 1, then all the convex sets are balls, thus by [18] the solutions are
automatically decreasing (and positive), thus quasi-concave.

A second goal is to show two counterexamples which deny assumptions
i) (but not ii)) and ii) (but not i)) respectively, in Theorem 1.1. To this
regard, we observe that, in order to deny ii), (2.3) was sufficient, while to
deny i), we needed the extra assumption on g, (2.4).

We further notice that the built
√
F (resp. F

f ) is definitely concave (resp.

convex) at the origin and at infinity, and this shows that such properties
cannot be relaxed in this sense.

3. Modified quasilinear Schrödinger equations

We move now to the study of the quasilinear equation (1.1), namely,
−div

(
a(u)∇u

)
+ a′(u)

2 |∇u|2 = f(u) Ω,

u > 0 Ω,

u = 0 ∂Ω.

(3.1)

We deal first with some properties of the change of variables which allows
to transform (3.1) into a semi-linear problem; they can be borrowed by the
ones in [19], with some additional standard arguments (see [2] for details).

Proposition 3.1. Let a ∈ C1([0,+∞)) and assume the strict ellipticity of
the problem, i.e., there exists ν > 0 such that

a(t) ≥ ν > 0, for any t ∈ R. (3.2)
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Consider the ODE Cauchy problem{
g′ = 1√

a(g)
(0,+∞),

g(0) = 0,
(3.3)

then the uniquely determined g is a reparametrization of the identity, i.e.,
g ∈ C2([0,+∞)) ∩ Lip([0,+∞)), it is strictly increasing, invertible, with
g([0,+∞)) = [0,+∞) (and the inverse g−1 shares the same properties).

Let in addition f ∈ C([0,+∞)). Then u ∈ C(Ω) ∩ C2(Ω) is a classical
solution of the quasilinear equation (3.1) if and only if v := g−1(u), v ∈
C(Ω) ∩ C2(Ω), is a solution of the semi-linear equation

−∆v =
( f√

a

)
(g(v)) =: h(v) Ω,

v > 0 Ω,

v = 0 ∂Ω.

(3.4)

Set now

Mh := inf
{
t > 0 | h(t) ≤ 0

}
it is easy to show that

Mh = g(Mf )

with the convention g(+∞) = +∞.
In order to exploit concavity results related to (3.4), we first rewrite The-

orem 1.1 in the semi-linear case with f ∈ C1 (see [5, Remark 1.5]).

Lemma 3.2. Let N ≥ 1, Ω ⊂ RN be a bounded, convex domain with C2-
boundary, and let h ∈ Cσ

loc([0,+∞)) ∩ C1((0,+∞)) for some σ ∈ (0, 1]. Let

v ∈ C(Ω) ∩ C2(Ω) be a classical solution of
−∆v = h(v) Ω,

v > 0 Ω,

v = 0 ∂Ω.

Assume moreover that

• Hh′

h2 is non-increasing in (0,Mh) with lim
t→0+

Hh′

h2
≤ 1

2

where Mh := inf{t > 0 | h(t) ≤ 0} > 0, H(t) :=
∫ t
0 h(τ)dτ and h > 0 on

(0,Mh). Then ψ(v) is concave, where

ψ(t) :=

∫ t

1

1√
H(s)

ds, t ∈ (0,+∞).
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Theorem 3.3. Let N ≥ 1, Ω ⊂ RN be a bounded, convex domain with
C2-boundary, a ∈ C1([0,+∞)) satisfying (3.2), and let f ∈ Cσ

loc([0,+∞)) ∩
C1((0,+∞)) for some σ ∈ (0, 1]. Let u ∈ C(Ω)∩C2(Ω) be a classical solution
of (3.1). Set

γ(t) :=
F (t)f ′(t)

f2(t)
− 1

2

F (t)a′(t)

f(t)a(t)
, t ∈ (0,Mf ), (3.5)

where Mf := inf{t > 0 | f(t) ≤ 0} > 0 and F (t) :=
∫ t
0 f(τ)dτ. Assume

moreover f > 0 on (0,Mf ) and

• γ is non-increasing in (0,Mf ) with lim
t→0+

γ(t) ≤ 1

2
.

Then φ(u) is concave, where

φ(t) :=

∫ t

µ

√
a(s)

F (s)
ds, t ∈ (0,+∞), (3.6)

µ := ν−
1
2 . In particular, u is quasi-concave.

Proof. Let us consider the modified problem (3.4). First of all, we observe
that h is locally Hölder continuous: indeed, for any K ⊂⊂ [0,+∞) and any
t, s ∈ K, set for simplicity x := g(t), y := g(s) and θ := min{σ, 12}, we have

|h(t)− h(s)| ≤
|f(x)

√
a(y)− f(y)

√
a(x)|

|
√
a(x)a(y)|

≤ 1

ν

(√
a(y)|f(x)− f(y)|+ |f(y)||

√
a(x)−

√
a(y)|

)
≲

(
∥√a ◦ g∥L∞(K) + ∥f ◦ g∥L∞(K)

)
|g(t)− g(s)|θ

≤ C(a, f, g,K)|t− s|θ,

where we have used that a ∈ C1([0,+∞)) (and thus
√
a is 1

2 -Hölderian) and
g is Lipschitz. Hence, h is locally θ-Hölder continuous; notice that, far from
t = 0, we have h ∈ C1, thus here h is locally Lipschitz continuous.

Then, we define the antiderivative of h

H(t) :=

∫ t

0
h(τ)dτ =

∫ t

0

( f√
a

)
(g(τ))dτ.

By a change of variable, and exploiting the ODE (3.3), we obtain

H = F ◦ g.
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Thus, by looking at Lemma 3.2, we evaluate Hh′

h2 , which again by (3.3) gives

Hh′

h2
= γ ◦ g.

In particular, since g increasing and continuous with g(0) = 0, we obtain

Hh′

h2
is non-increasing ⇐⇒ γ is non-increasing,

lim
t→0+

(Hh′
h2

)
(t) ≡ lim

t→0+
γ(t).

Applying Lemma 3.2, we gain that ψ(v) is concave, where v = g−1(u) and

ψ(t) =

∫ t

1

1√
H(s)

ds =

∫ t

1

1√
F (g(s))

ds

=

∫ g(t)

g(1)

√
a(s)

F (s)
ds = φ(g(t)) +

∫ µ

g(1)

√
a(s)

F (s)
ds,

where we used again a change of variable and (3.3). We observe g(1) ≤ µ
since

g(1) =

∫ 1

0
g′(τ)dτ =

∫ 1

0

1√
a(g(τ))

dτ ≤ ν−
1
2 = µ.

Set C :=
∫ µ
g(1)

√
a(s)
F (s)ds, we get that the function

φ(u) = φ(g(v))− C = ψ(v)− C

is concave, which is the claim. □

We rephrase Theorem 3.3 in a less general framework, but with assump-
tions on f and a more strictly related to the original ones of Theorem 1.1;
namely, we prove Theorem 1.2.

Proof of Theorem 1.2. Observed that, by (3.5),

γ(t) =
F (t)f ′(t)

f2(t)
− 1

2
ξ(t),

and that i) and ii) imply that Ff ′

f2 is non-increasing in (0,Mf ) with

lim
t→0+

Ff ′

f2
≤ 1

2
,

we achieve the claim by the assumption iii) and Theorem 3.3. □
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Remark 3.4. We observe that the conditions stated in Theorem 3.3 and
Theorem 1.2 are scaling invariant, that is, they do not change by substituting
f and a with λf and µa, where λ, µ ∈ (0,+∞). Moreover, the function φ
does not depend on the particular domain Ω; it could be interesting to
investigate the existence of a natural function φ modeled also on the shape
(in particular, the curvature) of the domain.

4. Examples and remarks

We start by observing that, under mild assumptions on f and Ω, solutions
of PDEs are never concave.

Remark 4.1. Let f : [0,+∞) → [0,+∞) with f(0) = 0, and consider the
problem 

−∆u = f(u) Ω,

u > 0 Ω,

u = 0 ∂Ω,

and a classical solution u ∈ C2(Ω) (e.g. one may assume ∂Ω ∈ C2,σ and f ∈
Cσ(R) for some σ ∈ (0, 1]). Let P ∈ ∂Ω and assume ∂Ω parametrized, near
P (say, in a neighborhood U), by a C2-curve xN = ϕ(x̃), x̃ = (x1, . . . xN−1),
with

∇ϕ(P̃ ) = 0, ∆ϕ(P̃ ) > 0; (4.1)

in particular the last condition means that the mean curvature of ∂Ω in P
is strictly positive.1

Here, we have fixed the axis coherent with the local parametrization,
observing that the equation is translation and rotation invariant. Set

Φ(x̃) := u(x̃, ϕ(x̃)) ≡ 0

for every (x̃, ϕ(x̃)) ∈ ∂Ω ∩ U . Thus, we have

0 ≡ Φii(x̃) = ui(x̃, ϕ(x̃)) + 2uiN (x̃, ϕ(x̃))ϕi(x̃)

1Indeed,

κ(P ) =
1

2
div

( ∇ϕ√
1 + |∇ϕ|2

)
(P̃ ) =

1

2
∆ϕ(P̃ ),

when ∇ϕ(P̃ ) = 0. Notice that, if Ω ⊂ RN is smooth, convex and bounded, the existence
of such a point is always ensured, for example by the Minkowski inequality∫

∂Ω

κdσ ≳ |∂Ω|
N−2
N−1

(when N ≥ 3), or by a comparison argument with an external shrinking ball.
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+ uNN (x̃, ϕ(x̃))ϕ2i (x̃) + uN (x̃, ϕ(x̃))ϕii(x̃)

for i = 1, . . . , N − 1. In particular, by (4.1)

0 = ui(P ) + uN (P )ϕii(P̃ ), i = 1, . . . , N − 1

and hence, observed that ∆u(P ) = −f(u(P )) = −f(0) = 0,

0 = −uNN (P ) + uN (P )∆ϕ(P̃ ).

Since f ≥ 0, by the Hopf’s Lemma, we have uN (P ) > 0, thus, by (4.1),

uNN (P ) = uN (P )∆ϕ(P̃ ) > 0.

This automatically rules out the concavity of u, since if u were concave, then
the second derivative in every direction would be nonpositive.

This remark in particular applies to the eigenvalue problem [35]. The
condition f(0) = 0 cannot be removed, as shown by the torsion problem
where concave solutions may exist [24, 37]: for example, if u is a solution
of the torsion problem in Ω with a strict maximum u(x̄) =: c, then v :=
u − (c − ε) is a concave solution in the set Ωc := u−1((c − ε, c]) with ε
sufficiently small.

When Ω has only points with flat curvature (whenever defined), we can
still show that solutions of the first eigenvalue problem are not concave. For
example, when N = 2 and Ω = (0, π)×(0, π), a straightforward computation
shows that the solution u(x, y) = sin(x) sin(y) has nonpositive eigenvalues
only in the 1-norm ball Bπ

2
(π2 ,

π
2 ), i.e., far from the corners; when N ≥ 3 and

Ω is a cube, by separation of variables, we can apply the previous argument
on cross sections. This non-concavity extends to (planar) first eigenfunctions
of arbitrary convex polygons since, near a corner with amplitude π

b , we have
by [25, Remark 1.6], in radial coordinates centered in the corner,

u(ρ, ϕ) = Cbρ
b sin(bϕ) + o(ρb)

for some Cb > 0, thus (being b > 1) u cannot be concave.

We show now the applicability of Theorem 1.2 to some particular cases.

Example 4.2. Consider (see (1.3))

a(t) = 1 + 2t2, f(t) = tq;

in this case F (t) = tq+1

q+1 , Mf = +∞ and conditions i)-ii) are fulfilled when-

ever t
q+1
2 is concave, i.e., q ∈ [0, 1]. As regards iii) instead, we have (up to
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Figure 3. Numerical computations of φ, comparing the cases
a(t) ≡ 1 and a(t) = 1 + 2t2, for different values of f(t) = tq:
q = 0, 0.3, 0.6, 0.9. It is evident that the behavior at the origin is
dictated only by the source f .

multiplicative constants)

ξ(t) =
t2

1 + 2t2

which is positive and increasing on (0,+∞), whatever q is. Thus, set (notice
ν = 1)

φ(t) :=

∫ t

1

√
1 + 2s2

sq+1
ds

we have φ(u) concave, for every classical solution of
−∆u− u∆(u2) = uq Ω,

u > 0 Ω,

u = 0 ∂Ω.

Notice that

φ(t) ∼
∫ t

1
s−

q+1
2 ds ∼ t

1−q
2 − 1 as t→ 0

(additive and multiplicative constants play no role in concavity arguments).
We may wonder if, when q < 1, we can apply results in [3] (see also [34, 35,
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32]) to get the concavity of u
1−q
2 : to achieve this, we should have (see (1.6)

with a, f as above and γ = 1−q
2 )

t ∈ [0,+∞) 7→ t(βt
1

1−q + 1)

1 + 2t
1

1−q

concave for every β ≥ 0. A straightforward computation shows that, set
θ := 1

1−q > 1, the second derivative is given by

t ∈ [0,+∞) 7→ (2− β)
2θ(θ − 1)tθ−1

(2tθ + 1)3

(
tθ − θ + 1

2(θ − 1)

)
which actually does not fulfill the request. This argument shows that, maybe,
power functions are not the right choice to deal with quasilinear equations of
the type (1.1), while a suitable φ as the above one gives a natural example of
function which makes a solution concave. This seems to highlight a difference
between the quasilinear MNLS case and the quasilinear p-Laplacian case,
where suitable powers of solutions are allowed to be concave [56].

Example 4.3. We choose

a(t) = 1 + 2t2, f(t) = 1− t.

In this case Mf = 1 and F (t) = t− t2

2 . Straightforward computations show
the applicability of Theorem 1.2.

Example 4.4. Let λ ∈ [0, 1) and (see (1.4))

a(t) = 1± t2

2(1 + t2)
, f(t) = −λt+ t√

1 + t2
.

Here, Mf =
√
1−λ2

λ ∈ (0,+∞] and F (t) = −λ t2

2 +
√
1 + t2 − 1. Numerical

computation suggest that γ defined in (3.5) equals 1
2 in t = 0 and then

decreases. In particular, solutions to
−∆u+

(
λ+

1∓ 1
2
∆
√
1+u2

√
1+u2

)
u = 0 Ω,

u > 0 Ω,

u = 0 ∂Ω,

are such that φ(u) is concave, where φ is given by (3.6) (and µ =
√
2).

Remark 4.5. We highlight that one can relax the assumptions of Theorem
1.2 to a ∈ Cω

loc([0,+∞)) ∩ C1((0,+∞)) for some ω ∈ (0, 1]; in this case h,

defined in (3.4), verifies h ∈ Cθ
loc([0,+∞)) with θ := min{σ, ω2 }.
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Moreover, we observe that Theorem 1.2 can be proved also in the case

a ∈ C1([0, β)), lim
t→β−

a(t) = +∞,

and f ∈ Cσ
loc([0, β)) ∩ C1((0, β)) for some σ ∈ (0, 1] and β ∈ (0,+∞). Some

slight changes in the proofs occur.

• The transformation g : [0,+∞) → R given by (3.3), still regular
and strictly increasing, verifies g(t) → β as t → +∞. In particular,
g−1 : [0, β) → [0,+∞). Here, we exploit that a explodes in β.

• The classical solutions of the Dirichlet boundary problem (3.1) satisfy
0 < u(x) < β, x ∈ Ω. This can be seen for example by writing

−∆u =
a′(u)

2a(u)
|∇u|2 + f(u)

a(u)
;

noticed that u = 0 on the boundary, if there exists an x ∈ Ω such

that u(x) = β, then – observed that2
∣∣a′(t)
a(t)

∣∣ cannot be bounded near

t = β, we get a contradiction with the definition of classical solution.
In particular, being continuous on Ω, we have that each solution u is
far from β, i.e., ∥u∥∞ < β, and we can work with f ∈ C1((0, ∥u∥∞]).

Notice instead that solutions to (3.4) are not subject to any re-
striction, since a◦ g is defined on the whole R, and so it is the source
h = f√

a
◦ g.

The remaining part of the proof follows the same lines as of the original one.

Example 4.6. Thanks to Remark 4.5 (setting β = 1) we can consider for
λ ∈ [0, 1) (see (1.5)),

a(t) = 1 +
t2

2(1− t2)
, f(t) = t− λ

t√
1− t2

;

here, Mf =
√
1− λ2 ∈ [0, 1), F (t) = t2

2 + λ(
√
1− t2 − 1). Again, numerical

computation shows that γ(0) = 1
2 and γ decreasing in (0,Mf ), where γ is

defined in (3.5). Thus, again, φ(u) is concave, where φ is given by (3.6)
(µ = 1) and u satisfies

−∆u+ 1
2u

∆
√
1−u2√
1−u2

= u− λ u√
1−u2

Ω,

u > 0 Ω,

u = 0 ∂Ω.

2Otherwise, log(a(t)) would be controlled by some Ct, and thus bounded on compact
sets.
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The case λ = 0 can be easily (and explicitly) generalized also to powers
f(t) = tq, with q ∈ [0, 1].

Remark 4.7. We remark that, without assuming f ∈ C1, it is not straight-
forward to exploit the “size of the convexity” of the involved functions and
reach the desired claim of Theorem 1.2. Indeed, consider the notations of
Theorem 3.3: to conclude that

√
H =

√
F ◦ g is concave, one can assume√

F concave and a non-decreasing (i.e., the physical case, which implies g

concave), being
√
H composition of a concave non-decreasing function and a

concave function. On the other hand, to deduce H
h = (Ff

√
a) ◦ g convex, we

need F
f

√
a (convex and) non-increasing: but this last condition is generally

not satisfied. The roughness of this result is due to the fact that in this
discussion we are not exploiting the quantitative information which relates
the transformation g′ to a.
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quasilineari, Master Thesis at Università Cattolica del Sacro Cuore di Brescia (2023).

[3] M. Bianchini and P. Salani, Power concavity for solutions of nonlinear elliptic prob-
lems in convex domains, in “Geometric properties for parabolic and elliptic PDE’s”,
eds. R. Magnanini, S. Sakaguchi, A. Alvino, Springer INdAM Series, 2 (2013), 35–48.

[4] A. V. Borovskii and A. L. Galkin, Dynamic modulation of an ultrashort high-intensity
laser pulse in matter, J. Exp. Theor. Phys., 77 (1993), 562–573.

[5] W. Borrelli, S. Mosconi, and M. Squassina, Concavity properties for solutions to p-
Laplace equations with concave nonlinearities, Adv. Calc. Var. (2022),
doi.org/10.1515/acv-2021-0100.

[6] H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-
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