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Abstract. In the study of concavity properties of positive solutions to nonlinear elliptic partial differential equations the dif-
fusion and the nonlinearity are typically independent of the space variable. In this paper we obtain new results aiming to get
almost concavity results for a relevant class of anisotropic semilinear elliptic problems with spatially dependent source and
diffusion.
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1. Introduction

A rather natural question in the field of nonlinear partial differential equations is whether a positive
solution with homogeneous Dirichlet boundary conditions is concave on a given convex domain. Start-
ing from [5] extensive research has been developed in order to deduce symmetry of solutions from the
symmetry of the domain, via the so called Alexandroff–Serrin moving plane method. When the sym-
metry of the domain is dropped, one may wonder if the solutions still inherit some concavity properties
from the domain. This was investigated in a series of pioneering papers [3,14,18,19].

When studying concavity properties of solutions, it becomes evident that aiming for concavity is often
overly demanding: while it can be achieved for the torsion problem, for example, for suitable perturba-
tion of ellipsoids [8,12,13,16], the first eigenfunctions of the Laplacian are never concave, regardless of
the considered bounded domain [10, Remark 3.4]. One may instead search for a strictly increasing func-
tion ϕ that, when composed with the solution u, yields a concave function ϕ(u). In the seminal paper
[18] it is shown that the solutions of the torsion problem −�u = 1 are such that

√
u is concave. In [3] the

authors show that the positive eigenfunctions of −�u = λu satisfy that log u is concave. The concavity
of solutions to nonlinear equations has been explored in several subsequent papers [7,11–13,15,17,20]
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involving techniques mainly relying on maximum principles applied to suitably defined convexity func-
tions. For instance if β ∈ (0, 1), � is convex and u is a positive solution to −�u = uβ with Dirichlet
boundary data, then u(1−β)/2 is concave [12].

Most of the cited papers, however, give assumptions on the nonlinearity in the equation in order to
have a suitable power uγ of the solution u to be concave. Recently, for the problem −�u = f (u) (and
more generally for quasi-linear problems involving the p-Laplace operator), under suitable assumptions
on f the authors of [2] showed concavity of

∫ u

1 1/
√

F(σ) dσ , where F ′ = f , thus providing a precise
connection on how the concavity of the solution is affected by the nonlinear term f . In [1], these results
were then extended to the quasi-linear problem − div(α(u)∇u) + 1

2α
′(u)|∇u|2 = f (u) related to the

so called modified nonlinear Schrödinger equation, under suitable joint hypothesis on α and f . More
precisely

∫ u

μ

√
α(σ)/F (σ) dσ turns out to be concave for some positive constant μ.

In cases where the assumptions on the function f which guarantee the concavity of a suitable trans-
formation are not met, some quantitative perturbation results were recently obtained in [4]. These results
establish, in essence, a bound on the loss of concavity of u, controlled in the supremum norm in terms
of the loss of concavity of f .

In general all the results in the current literature only deal with autonomous problems, corresponding
to isotropic physical models, namely both the diffusion term in the operator and the nonlinearity do not
explicitly depend upon the space variable and it is expected that concavity (even up to a transformation)
is in general broken due to the x-dependence.

The primary objective of the paper is to establish quantitative perturbation results, which assert that
if both the diffusion term in the operator and the nonlinearity exhibit a small variation with respect to
the spatial variable, then a suitable transformation ϕ(u) is close to a concave function in the supremum
norm, with an error estimate depending precisely on the spatial variation.

Precisely, taking � ⊂ R
n a bounded open strictly convex set with smooth boundary, consider the

semi-linear problem, for β ∈ [0, 1),

⎧⎪⎨
⎪⎩

−∑n
i,j=1 αij (x)D2

iju = a(x)uβ in �

u > 0 in �

u = 0 on ∂�,

(1.1)

with the matrix of coefficients A = {αij }ni,j=1 being symmetric and uniformly elliptic. In the isotropic
cases αij = δij and a = 1 this reduces to the already mentioned classical sublinear problem −�u = uβ

for which a result in [12] establishes concavity of u(1−β)/2.
As a by product of a general maximum convexity principle (see Theorem 2.3) we prove in Proposi-

tion 3.2 that if

‖∇a‖L∞(�) + max
i,j∈{1,...,n}

∥∥∇αij
∥∥

L∞(�)
< ε, ε > 0, (1.2)

then there exists a positive constant C and a concave function w : � → R such that

∥∥u
1−β

2 − w
∥∥

L∞(�)
� Cε,

in light also of a Hyers–Ulam theorem (see Proposition 3.5).
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Furthermore, as a second example, consider the problem⎧⎪⎨
⎪⎩

−∑n
i,j=1 αij (x)D2

iju = a(x)u + εϕ(u) in �

u > 0 in �

u = 0 on ∂�,

(1.3)

with A = {αij }ni,j=1 symmetric and uniformly elliptic. If (1.2) holds and ϕ is non-increasing, then there
exists a positive constant C and a concave function w : � → R such that

‖ log u − w‖L∞(�) � Cε.

We obtain this applying Proposition 3.4. We point out that the case ϕ = 0 in problem (1.3), which
corresponds to β = 1 in problem (1.1), is out of reach since our general convexity maximum principles
fail, precisely since assumption (2.7) is not fulfilled.

In the rest of the paper, we proceed obtaining some maximum principles for concavity functions of
solutions of semi-linear equations, which can be viewed as anisotropic counterparts of the results pre-
sented in [13, Lemma 1.4] and [12, Lemma 3.1]. We then discuss some applications, precisely problems
(1.1) and (1.3). We believe that our techniques could be suitable to investigate other physically rele-
vant anisotropic elliptic problems. To the best of our knowledge this is the first result in the literature
providing almost concavity results for anisotropic problems in convex domains.

2. Anisotropic convexity principles

In the rest of the paper, let � denote a bounded open convex subset of Rn. Denote furthermore for
x1, x3 ∈ �, λ ∈ [0, 1],

x2 := λx3 + (1 − λ)x1 ∈ � (2.1)

and for s1, s3 ∈ R

s2 = λs3 + (1 − λ)s1.

For some u : � → R, we define the concavity function Cu as

Cu(x1, x3, λ) := u(x2) − λu(x3) − (1 − λ)u(x1). (2.2)

For some g : � × R → R, the joint-concavity function J Cg is defined by

J Cg

(
(x1, s1), (x3, s3), λ

) := g(x2, s2) − λg(x3, s3) − (1 − λ)g(x1, s1), (2.3)

and we will also use the notation

J Cg(·,u(·))(x1, x3, λ)

:= g
(
x2, λu(x3) + (1 − λ)u(x1)

) − λg
(
x3, u(x3)

) − (1 − λ)g
(
x1, u(x1)

)
(2.4)
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when si = u(xi) for i ∈ {1, 2, 3}. We define the harmonic concavity function, as in [12], in the following
way:

HCg

(
(y1, s1), (y3, s3), λ

) :=

⎧⎪⎨
⎪⎩

g(y2, s2) − g(y1,s1)g(y3,s3)

λg(y1,s1)+(1−λ)g(y3,s3)
,

if λg(y1, s1) + (1 − λ)g(y3, s3) > 0

g(y2, s2), if g(y1, s1) = g(y3, s3) = 0.

(2.5)

It should be noted that such definition is applicable to positive functions g, or functions that can change
sign and that meet one of the conditions specified in equation (2.5), at the point ((y1, s1), (y3, s3), λ).
Notice also that if g < 0, none of these conditions are satisfied.

We will also use the notation

HCg(·,u(·))(x1, x3, λ) = g
(
x2, λu(x3) + (1 − λ)u(x1)

) − g(x1, u(x1))g(x3, u(x3))

λg(x1, u(x1)) + (1 − λ)g(x3, u(x3))

when si = u(xi). Notice that Cu,J Cg,HCg � 0 are equivalent to the concavity, joint concavity, respec-
tively harmonic concavity of the functions.

To ensure clarity, we also point out the following definition.

Definition 2.1. We say that the triple (x1, x3, λ) is an interior point for Cu if each of x1, x2, x3 is in �

with x2 = λx3 + (1 − λ)x1, while we say that the point is on the boundary if at least one x1, x2, x3

belongs to ∂�.

Having established our notations, we point out how we obtain our almost-concavity results for trans-
formations of the solutions of (1.1), (1.3). It is obvious that if u ∈ C(�), then Cu achieves a maximum in
�×�×[0, 1]. We give in this section maximum convexity principles, which cover the case in which Cu

achieves a positive maximum at an interior point in �×�×(0, 1). To follow, in Section 3, after noticing
that the concavity functions associated to our problems, due to boundary constraints, cannot achieve the
positive maximum on the boundary, with a direct applications of the maximum convexity principles we
obtain the desired conclusion.

We introduce now the model problem for which we obtain maximum convexity principles.

Problem 1. For all i, j ∈ {1, . . . , n} let the functions

aij : � × R
n → R

be such that aij (·, ξ) ∈ C1(�) and A = [aij (x, ξ)]ni,j=1 is a symmetric positive semidefinite matrix for

all (x, ξ) ∈ � × R
n. Let b : � × R × R

n → R be such that b(x, ·, ξ) is differentiable in R \ {0}, for all
(x, ξ) ∈ � × R

n. Consider the equation

Lu = 0, Lu = aij (x, Du)uij − b(x, u, Du), (2.6)

where we use the notation

aijuij :=
n∑

i,j=1

aijuij .
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The next result, an anisotropic maximum convexity principle, can be viewed as the anisotropic coun-
terpart of [4, Lemma 2.3], both variations of the classical convexity principle in [13, Lemma 1.4].

Theorem 2.2. Let � ⊂ R
n be a bounded open convex set. Let u ∈ C2(�) be a solution of Problem 1.

Assume that Cu achieves a positive interior maximum at (x1, x3, λ) ∈ � × � × (0, 1). If there is some
σ > 0 such that for all x on the segment [x1, x3] and s on the segment [u(x1), u(x3)] it holds that

∂b

∂s

(
x, s, Du(x1)

)
� σ, (2.7)

then

Cu(x1, x3, λ) � −J Cb(·,u(·),ξ)(x1, x3, λ)

σ
+ Cε(D(u(x1))

σ
,

where

ε
(
Du(x1)

) := max
i,j∈{1,...,n}

sup
x∈[x1,x3]

∣∣Dxa
ij
(
x, Du(x1)

)∣∣
(2.8)

and

C := n2 max
i,j∈{1,...,n}

max
k∈{1,3}

∣∣uij (xk)
∣∣diam(�) > 0. (2.9)

Proof. Notice that if x1 = x3, then the inequality trivially holds. We may hence assume that x1, x2, x3

are distinct. Since Cu achieves a maximum at (x1, x3, λ), recalling (2.1) and (2.2), we get that

(Dx1Cu)(x1, x3, λ) = (Dx3Cu)(x1, x3, λ) = 0

hence

(1 − λ)Du(x2) − (1 − λ)Du(x1) = λDu(x2) − λDu(x3) = 0.

Let us set

ξ := Du(x1) = Du(x2) = Du(x3),

and consider the auxiliary function ϕ̄ : Rn → R defined as

ϕ̄(v) := Cu(x1 + v, x3 + v, λ) = u(x2 + v) − λu(x3 + v) − (1 − λ)u(x1 + v).

Since ϕ̄ has a local maximum at v = 0, we get that

∇vϕ̄(0) = 0 and
[
D2

v ϕ̄(0)
]

� 0.
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We recall that if A and B are two n × n real symmetric positive semidefinite matrices, then Tr(AB) � 0
(see [12, Lemma A.1]). Since A = [aij (x2, ξ)]ni,j=1 is positive semidefinite, it follows that

aij (x2, ξ)
(
uij (x2) − λuij (x3) − (1 − λ)uij (x1)

)
� 0.

Denote

e1 = (
aij (x2, ξ) − aij (x1, ξ)

)
uij (x1),

e3 = (
aij (x2, ξ) − aij (x3, ξ)

)
uij (x3),

(2.10)

and using the equation (2.6), we have

b
(
x2, u(x2), ξ

) = aij (x2, ξ)uij (x2) � λaij (x2, ξ)uij (x3) + (1 − λ)aij (x2, ξ)uij (x1)

= λaij (x3, ξ)uij (x3) + λe3 + (1 − λ)aij (x1, ξ)uij (x1) + (1 − λ)e1

= λb
(
x3, u(x3), ξ

) + (1 − λ)b
(
x1, u(x1), ξ

) + (1 − λ)e1 + λe3.

So we get in turn

b
(
x2, u(x2), ξ

) − b
(
x2, λu(x3) + (1 − λ)u(x1), ξ

)
� λb

(
x3, u(x3), ξ

) + (1 − λ)b
(
x1, u(x1), ξ

)
− b

(
x2, λu(x3) + (1 − λ)u(x1), ξ

) + (1 − λ)e1 + λe3.

Using Lagrange’s theorem, we can estimate

max
{|e1|, |e3|

}} � Cε(ξ), (2.11)

so we get that

(1 − λ)e1 + λe3 � (1 − λ)|e1| + λ|e3| � Cε(ξ).

Then we can apply Lagrange’s theorem to obtain that there exists s̄ on the segment [u(x2), λu(x3)+(1−
λ)u(x1)], thus on the segment [u(x1), u(x3)], such that

σCu(x1, x3, λ) � ∂b

∂s
(x2, s, ξ)

(
u(x2) − λu(x3) − (1 − λ)u(x1)

)
� −J Cb(·,u(·),ξ)(x1, x3, λ) + Cε(ξ),

concluding the proof of the Theorem. �

We have now the second anisotropic approximate convexity principle, counterpart of [4, Lemma 2.9],
both variations of the classical Convexity Principle in [12, Lemma 3.1].
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Theorem 2.3. Let � ⊂ R
n be a bounded open convex set. Let u ∈ C2(�) be a solution of Problem 1.

Assume that Cu achieves a positive interior maximum at (x1, x3, λ) ∈ � × � × (0, 1), and additionally
that there is some ν, σ > 0 such that for all x on the segment [x1, x3] and s on the segment [u(x1), u(x3)]
it holds that

b
(
x, s, Du(x1)

)
� ν (2.12)

and

∂b

∂s

(
x, s, Du(x1)

)
� σ. (2.13)

If b is jointly concave (i.e. J Cb � 0), then

Cu(x1, x3, λ) � 1

σ

[
Cε

(
Du(x1)

) + C2ε2(Du(x1))

ν

]
,

otherwise

Cu(x1, x3, λ) � 1

σ

[
−HCb(·,u(·),ξ)(x1, x3, λ) + Cε

(
Du(x1)

)(
1 − J Cb(·,u(·),ξ)(x1, x3, λ)

ν

)

+ C2ε2(Du(x1))

ν

]
,

where notations (2.8) and (2.9) are in place.

Proof. As in Theorem 2.2, we denote by ξ the common value of Du at the points x1, x2, x3. Let us also
define the 2n × 2n matrices

C := [
D2Cu(x1, x3, λ)

] =
[

D2
x1
Cu(x1, x3, λ) D2

x1,x3
Cu(x1, x3, λ)

D2
x1,x3

Cu(x1, x3, λ) D2
x3
Cu(x1, x3, λ)

]

(which is negative semidefinite since (x1, x3, λ) is a maximum for Cu in the interior), and

B :=
[
s2aij (x2, ξ) staij (x2, ξ)

staij (x2, ξ) t2aij (x2, ξ)

]

for s, t ∈ R. The matrix B is positive semidefinite by hypothesis, therefore the trace of BC is non-
negative. That is, denoting

α := Tr
(
aij (x2, ξ)D2

x1
Cu

)
, β := Tr

(
aij (x2, ξ)D2

x1,x3
Cu

)
,

γ := Tr
(
aij (x2, ξ)D2

x3
Cu

)
,

we have that

αs2 + 2βst + γ t2 � 0,
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i.e.

α, γ � 0, β2 � αγ. (2.14)

Then we obtain

α = (1 − λ)2aij (x2, ξ)uij (x2) − (1 − λ)aij (x2, ξ)uij (x1),

γ = λ2aij (x2, ξ)uij (x2) − λaij (x2, ξ)uij (x3),

β = λ(1 − λ)aij (x2, ξ)uij (x2).

Denote for k ∈ {1, 2, 3}
Qk = aij

(
xk, Du(xk)

)
uij (xk)

and use once more the notations in (2.10). Then we have that

α = (1 − λ)2Q2 − (1 − λ)(Q1 + e1),

γ = λ2Q2 − λ(Q3 + e3),

β = λ(1 − λ)Q2.

Using (2.14), we obtain

Q2 � 1

1 − λ
(Q1 + e1), Q2 � 1

λ
(Q3 + e3), (2.15)

and

Q2
(
(1 − λ)Q3 + λQ1

)
� Q1Q3 + e3

(−(1 − λ)Q2 + Q1 + e1
) + e1(−λQ2 + Q3 + e3) − e1e3.

Recalling that b > 0, hence (1 − λ)Q3 + λQ1 > 0, then

Q2 � Q1Q3

(1 − λ)Q3 + λQ1
+ e3(−(1 − λ)Q2 + Q1 + e1) + e1(−λQ2 + Q3 + e3) − e1e3

(1 − λ)Q3 + λQ1
.

Denoting

ζ(x1, x3, λ) := e3(−(1 − λ)Q2 + Q1 + e1) + e1(−λQ2 + Q3 + e3) − e1e3

(1 − λ)Q3 + λQ1
,

we use the equation (2.6) and get that

b
(
x2, u(x2), ξ

) − b
(
x2, (1 − λ)u(x1) + λu(x3), ξ

)
� b(x1, u(x1), ξ)b(x3, u(x3), ξ)

(1 − λ)b(x3, u(x3), ξ) + λb(x1, u(x1), ξ)
− b

(
x2, (1 − λ)u(x1) + λu(x3), ξ

) + ζ(x1, x3, λ).
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According to (2.2), (2.5) and using the Lagrange theorem, we have that

∂sb(x2, s̄, ξ)Cu(x1, x3, λ) � −HCb(·,u(·),ξ)(x1, x3, λ) + ζ(x1, x3, λ), (2.16)

for some s̄ on the segment [u(x2), λu(x3)+(1−λ)u(x1)]. To estimate ζ(x1, x3, λ), we use (2.11) together
with (2.15), which give that

ζ(x1, x3, λ) � |e3|(−(1 − λ)Q2 + Q1 + e1) + |e1|(−λQ2 + Q3 + e3) − e1e3

(1 − λ)Q3 + λQ1

= C
ε(ξ)(λQ1 + (1 − λ)Q3 + (1 − λ)Q1 + λQ3 − Q2) + (|e3|e1 + |e1|e3 − e1e3)

(1 − λ)Q3 + λQ1

� Cε(ξ)

(
1 + (1 − λ)Q1 + λQ3 − Q2

(1 − λ)Q3 + λQ1

)
+ C2ε2(ξ)

ν
, (2.17)

using also (2.12) and that

|e3|e1 + |e1|e3| − e1e3 � |e1e3| � C2ε2(ξ).

Now, using again the equation satisfied by u, notice that

(1 − λ)Q1 + λQ3 − Q2

= (1 − λ)b
(
x1, u(x1), ξ

) + λb
(
x3, u(x3), ξ

) − b
(
x2, (1 − λ)u(x1) + λu(x3), ξ

)
+ b

(
x2, (1 − λ)u(x1) + λu(x3), ξ

) − b
(
x2, u(x2), ξ

)
= −J Cb(·,u(·),ξ)(x1, x3, λ) − ∂sb(x2, s, ξ)Cu(x1, x3, λ),

according to (2.4) and to Lagrange’s theorem. Since Cu(x1, x3, λ) � 0, thanks to (2.13) the second term
is non-positive, so

(1 − λ)Q1 + λQ3 − Q2 � −J Cb(·,u(·),ξ)(x1, x3, λ).

Therefore, plugging this into (2.17) and (2.16), we have reached

∂sb(x2, s̄, ξ)Cu(x1, x3, λ)

� −HCb(·,u(·),ξ)(x1, x3, λ) + Cε(ξ)

(
1 − J Cb(·,u(·),ξ)(x1, x3, λ)

(1 − λ)Q3 + λQ1

)
+ C2ε2(ξ)

ν
.

We point out that HCb � J Cb, hence if J Cb � 0, i.e. b is jointly concave, then b is also harmonic
concave and in that case,

∂sb(x2, s, ξ)Cu(x1, x3, λ) � ε(ξ) + ε2(ξ)

ν
.
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Otherwise, if J Cb � 0, using also (2.12), we get that

Cu(x1, x3, λ) � 1

σ

[
−HCb(·,u(·),ξ)(x1, x3, λ) + Cε(ξ)

(
1 − J Cb(·,u(·),ξ)(x1, x3, λ)

ν

)
+ C2ε2(ξ)

ν

]
.

This concludes the proof. �

3. Application to semi-linear equations

We investigate two applications of our general maximum convexity principles. We point out that the
characteristics of these applications, particularly the boundary conditions, drive the convexity function
Cu of the solution to attain a positive maximum within the interior of the domain. Then we readily apply
Theorems 2.2, 2.3 to obtain the estimates on the loss of concavity of a transformed of the solution u.

It is worth mentioning that, in the classical case, the concavity of the solution depends on the (har-
monic)-concavity of the nonlinearity. In both our subsequent applications, Problem 2 and 3, already a
direct use of the maximum convexity principles in Theorems 2.2, 2.3 provides this connection. We give
a bound on the convexity of the nonlinearity in terms of the spatial variation, to emphasize the role of
the introduced anisotropy, see also subsequent Remark 3.3.

In this section, let � ⊂ R
n be a bounded open strongly convex set with C1 boundary.

Problem 2. Let

a : � → (0, +∞)

and for all i, j ∈ {1, . . . , n} let the functions

αij : � → (0, +∞)

be such that there exists ζ > 0 such that

n∑
i,j=1

αij (x)pipj � ζ |p|2, for all p ∈ R
n,

and a, αij (·) ∈ C1(�). Consider the equation⎧⎪⎨
⎪⎩

−∑n
i,j=1 αij (x)D2

iju = a(x)uβ, β ∈ [0, 1) in �

u > 0 in �

u = 0 on ∂�.

We recall the following property of convex sets [13].

Proposition 3.1. Let � ⊂ R
n be bounded strongly convex set with C1 boundary. Then there exist r0 > 0

such, that for every ρ ∈ (0, ro], the set

�ρ := {
x ∈ � : d(x, ∂�) > ρ

}
.

is convex with C1 boundary.
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We recall once more that, when the coefficients αij do not depend on x and when a(x) = 1, the
power function uα, for some α := α(β), is concave. We want to understand the impact of introducing a
dependency on x in the equation. We are able to obtain a precise quantitative result about the extent to
which the transformed solution deviates from concavity.

Proposition 3.2. Let u ∈ C2(�) ∩ C1(�) be a solution of Problem 2, assuming additionally that

‖∇a‖L∞(�) + max
i,j∈{1,...,n}

∥∥∇αij
∥∥

L∞(�)
< ε

for some ε > 0. Then

max
�×�×[0,1]

C−u
1−β

2
(x, y, t) � Cε,

for some C > 0.

Proof. Let

v := −u
1−β

2 .

We point out that v < 0, v ∈ C2(�) and we focus on deriving the equation satisfied by v. We have that

u = (−v)
2

1−β , and

Diu = − 2

1 − β
(−v)

1+β
1−β Div

where Di = ∂
∂xi

, and

D2
iju = 2(1 + β)

(1 − β)2
(−v)

2β
1−β DivDjv − 2

1 − β
(−v)

1+β
1−β D2

ij v

where D2
ij = ∂2

∂xi∂xj
. This gives that

n∑
i,j=1

αij (x)D2
ij u = 2(1 + β)

(1 − β)2
(−v)

2β
1−β

n∑
i,j=1

αij (x)DivDjv − 2

1 − β
(−v)

1+β
1−β

n∑
i,j=1

αij (x)D2
ij v.

Thus we obtain

−2(1 + β)

(1 − β)2
(−v)

2β
1−β

n∑
i,j=1

αij (x)DivDjv + 2

1 − β
(−v)

1+β
1−β

n∑
i,j=1

αij (x)D2
ij v = a(x)(−v)

2β
1−β .

Dividing by 2
1−β

(−v)
1+β
1−β yields

n∑
i,j=1

αij (x)D2
ij v = (−v)−1

(
a(x)(1 − β)

2
+ 1 + β

1 − β

n∑
i,j=1

αij (x)DivDjv

)
, (3.1)
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that is

n∑
i,j=1

αij (x)D2
ij v − b(x, v, Dv) = 0,

where

b(x, s, ξ) := (−s)−1fξ (x), (3.2)

and for any ξ ∈ R
n, fξ : � → R is

fξ (x) := a(x)(1 − β)

2
+ 1 + β

1 − β

n∑
i,j=1

αij (x)ξiξj .

If C−u(1−β)/2 � 0 in �×�×[0, 1], then there is nothing to prove. Otherwise, from [4, Corollary 3.2], we
have that C−u(1−β)/2 , cannot achieve any positive maximum on the boundary, i.e. the positive maximum
of Cv is attained at some point (x1, x3, λ) ∈ � × � × (0, 1). Recalling Proposition 3.1, let

ρ := min
{
r0, d(x1, �), d(x3, �)

}
,

then (x1, x3, λ) ∈ �ρ × �ρ × (0, 1) and define

mρ := ‖v‖C(�ρ), Mρ := ‖Dv‖C(�ρ).

Notice that

fξ (x) � 1 + β

1 − β
ζ |ξ |2 + 1 − β

2
min
�ρ

a(x) � 1 − β

2
min
�ρ

a(x) > 0.

We have that for all x ∈ �ρ, s ∈ [−mρ, 0), ξ ∈ BMρ

b(x, s, ξ) � 1 − β

2mρ

min
�ρ

a(x) := ν > 0, ∂sb(x, s, ξ) � 1 − β

2m2
ρ

min
�ρ

a(x) := σ > 0.

For clarity, we point out that we have [x1, x3] ⊂ �ρ , [v(x1), v(x3)] ⊂ [−mρ, 0) and Dv(x1) ∈ BMρ
,

thus the hypothesis (2.12), (2.13) in Theorem 2.3 are fulfilled. Denote for all ξ ∈ BMρ
,

m := min
�ρ

fξ (x), M = max
�ρ

fξ (x)

and remark that, for some x̄, x̃ ∈ �ρ and z̄ on the segment [x̄, x̃] lying in �ρ ,

M − m = fξ (x̄) − fξ (x̃) �
∣∣∇fξ (z̄)

∣∣diam(�ρ)

� ε

(
1 − β

2
+ 1 + β

1 − β
n2M2

ρ

)
:= εC.
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Let υρ := min�ρ
(−v) > 0, there holds1

HCb(·,v(·),ξ)(x1, x3, λ)

� 1

λ(−v)(x3) + (1 − λ)(−v)(x1)

×
(

fξ

(
(1 − λ)x1 + λx3

) − fξ (x1)fξ (x3)
λ(−v)(x3) + (1 − λ)(−v)(x1)

λfξ (x1)(−v)(x3) + (1 − λ)fξ (x3)(−v)(x1)

)

� 1

λ(−v)(x3) + (1 − λ)(−v)(x1)

(
m − fξ (x1)fξ (x3)

m

)

� 1

λ(−v)(x3) + (1 − λ)(−v)(x1)

(
m − M2

m

)

� 1

υρ

m2 − M2

m
= −ε

C

υρ

M + m

m
.

Also we have that

J Cb(·,(−v)(·),ξ)(x1, x3, λ) � m

mρ

− M

υρ

:= −α.

According to Theorem 2.3, we have that for all (x, y, t) ∈ � × � × [0, 1],

max
�×�×[0,1]

C−u
1−β

2
(x, y, t) = C−u

1−β
2

(x1, x3, λ)

= Cv(x1, x3, λ) � 1

σ

[
C

υρ

M + m

m
ε + Cε

(
1 − α

ν

)
+ C2ε

ν

]
:= Cρε,

when ε is small enough. �

Remark 3.3. We point out the difference with what is obtained for the autonomous model case −�u =
uβ . There, the transformation u(1−β)/2 is concave, since the right hand side of (3.1), the transformed
equation, is harmonic concave. In our case, we control the “loss of concavity” by the variation of the
introduced anisotropy, and this is the best one can hope for: the function b defined in (3.2) is never
harmonic concave, jointly in the two variables (x, s). Indeed, it is known that a positive function b

is harmonic concave if and only if B = 1/b is convex. However, even in the plane, the hessian of the
function B(x, s) = sg(x) is negatively defined, hence B is nor convex, nor concave, unless g is constant.

Problem 3. Let

a : � → (0, +∞)

1We thank Marco Gallo for pointing out a preliminary version of this estimate.
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and for all i, j ∈ {1, . . . , n} let the functions

αij : � → (0, +∞)

be such that there exists ζ > 0 such that

n∑
i,j=1

αij (x)pipj � ζ |p|2, for all p ∈ R
n,

and a, αij (·) ∈ C1(�). Let ϕ : (0, +∞) → (0, +∞) be such that ϕ ∈ C1(0, +∞) and ϕ′(t) � 0.
Consider, for ε > 0, the problem⎧⎪⎨

⎪⎩
−∑n

i,j=1 αij (x)D2
iju = a(x)u + εϕ(u) in �

u > 0 in �

u = 0 on ∂�.

This can be considered as a perturbation of the nonautonomous version of the eigenvalue problem for
second order elliptic operators. We remark that the condition on ϕ can be loosened to accommodate other
perturbations, in particular one can require ϕ ∈ C1(R+,R+) be such that, esϕ(e−s) − ϕ′(e−s) � γ > 0,
for all s � −R, for some R > 0, e.g. ϕ(t) = tβ, β ∈ [0, 1) can also be considered.

We have the following result.

Proposition 3.4. Let u ∈ C2(�) ∩ C(�) be a solution of Problem 3. Assume that

‖∇a‖L∞(�) + max
i,j∈{1,...,n}

∥∥∇αij
∥∥

L∞(�)
< ε.

Then

max
�×�×[0,1]

C− log u(x, y, t) � Cε,

for some C > 0.

Proof. Letting u = e−v we have v = − log u. We notice that v ∈ C2(�) and that by a direct calculation
we obtain

n∑
i,j=1

αij (x)D2
ij v = b(x, v, Dv),

where

b(x, s, ξ) :=
n∑

i,j=1

αij (x)ξiξj + a(x) + εesϕ
(
e−s

)
.
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If Cv � 0 in �×�×[0, 1], then there is nothing to prove. Otherwise, using [10, Lemma 3.11], we have
that Cv, cannot achieve any positive maximum on the boundary, i.e. the maximum of Cv is attained at
some point (x1, x3, λ) ∈ � × � × (0, 1). Recalling Proposition 3.1, let

ρ := min
{
r0, d(x1, �), d(x3, �)

}
,

then (x1, x3, λ) ∈ �ρ × �ρ × (0, 1) and define

mρ := ‖v‖C(�ρ), Mρ := ‖Dv‖C(�ρ).

Notice that for all x ∈ �ρ, s ∈ [−mρ, mρ], ξ ∈ BMρ
, using the hypothesis on ϕ,

∂sb(x, s, ξ) � ε
(
esϕ

(
e−s

) − ϕ′(e−s
))

� εe−mρϕ
(
emρ

) := σ.

For clarity, we observe that we have [x1, x3] ⊂ �ρ , [v(x1), v(x3)] ⊂ [−mρ, mρ] and Dv(x1) ∈ BMρ
,

thus the hypothesis (2.7) in Theorem 2.2 are fulfilled. We have that

∣∣J Cb(·,v(·),ξ)(x1, x3, λ)
∣∣ �C

(∥∥∇αij
∥∥

L∞(�ρ)
+ ‖∇a‖L∞(�ρ) + ε

)
� Cε.

Applying Theorem 2.2 yields the conclusion. �

Finally, we recall the following [9, Theorem 2]

Proposition 3.5 (Hyers–Ulam). Let X be a space of finite dimension and D ⊂ X convex. Assume that
f : D → R is δ-convex, i.e. for all (x, y, t) ∈ D × D × [0, 1]

Cf (x, y, t) � δ.

Then there exists a convex function g : D → R such that ‖f − g‖L∞(D) � δkn, where kn > 0 depends
only on n = dim(X).

By using this result, based upon the estimates of Propositions 3.2 and 3.4 we obtain the approximate
concavity results stated in the introduction for the transformations u(1−β)/2 in the case β ∈ (0, 1) and
log u for the case β = 1.

Remark 3.6. The constant C appearing in the conclusions of Proposition 3.2 and 3.4 is related to the C

introduced in formula (2.9) which depends on n, diam(�ρ) and on the supremum norms of the second
order derivatives of the transformation v on �ρ and hence (since u is bounded away from 0 on �ρ)
on the supremum norms of D2

iju on �ρ . By the classical Schauder estimates for second order linear
elliptic operators (see [6, Theorem 6.2]), in turn C depends on n, diam(�ρ), the ellipticity constant ζ ,
‖αij‖C0,α(�ρ), ‖a‖C0,α(�ρ) and ‖u‖C0,α(�ρ) for some α ∈ (0, 1).
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