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1. Introduction

Let p ∈ (1, ∞), s ∈ (0, 1) and γ > 0. Let Ω ⊂ R
N be a smooth bounded domain with 

N > sp. We shall consider the following nonlocal quasilinear singular problem
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⎧⎪⎨
⎪⎩

(−Δ)sp u = f(x)
uγ in Ω,

u > 0 in Ω,

u = 0 in R
N \ Ω,

(1.1)

where (−Δ)sp is the fractional p-Laplacian operator, formally defined by

(−Δ)sp u(x) := 2 lim
ε↘0

∫
RN\Bε(x)

|u(x) − u(y)|p−2 (u(x) − u(y))
|x− y|N+s p

dy, x ∈ R
N .

The aim of the paper is to prove the existence and the uniqueness of the solution to (1.1).
Let us first discuss the semilinear local case, s = 1, p = 2. In this setting the study of 

singular elliptic equations goes back to the pioneering work [12]. Avoiding to disclose the 
discussion, we only mention here the contributions in [3,7–9,17,19,21–23,28], that settled 
up the issue in the semi-linear local case. The reader could be interested in observing 
that, in this case, by a simple change of variables it follows that the problem is also 
related to problems involving a first order term of the type |∇u|2

u . We refer the readers to 
[1,4,18] for related results in this setting. To deal with singular problems, we have to face 
the fact that solutions are not in general in classical Sobolev spaces, because of the lack 
of regularity near the boundary. If already we consider the semi-linear local case it has 
been shown in [23] that the solution cannot belong to H1

0 (Ω) if γ ≥ 3. Let us now state 
our result. Note that, due to the lack of regularity of the solutions near the boundary, 
the notion of solution has to be understood in the weak distributional meaning, for test 
functions compactly supported in the domain. Furthermore, the nonlocal nature of the 
operator has to be taken into account. Having this remarks in mind, the basic definition 
of solution can be formulated in the following:

Definition 1.1. A positive function u ∈ W s,p
loc (Ω) ∩Lp−1(Ω) is a weak solution to problem 

(1.1) if

umax{ γ+p−1
p ,1} ∈ W s,p

0 (Ω), f(x)
uγ

∈ L1
loc(Ω),

and we have∫
R2N

|u(x) − u(y)|p−2 (u(x) − u(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy =
∫
Ω

f(x)
uγ

ϕdx, (1.2)

for every ϕ ∈ C∞
c (Ω).

According to such definition we have:

Theorem 1.2 (Existence). Let 0 < γ ≤ 1 and assume that

f ∈ Lm(Ω), m := Np

N(p− 1) + sp + γ(N − sp) .

Then (1.1) has a weak solution u ∈ W s,p
0 (Ω) with essinfK u > 0 for any compact K � Ω.
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If γ > 1 and f ∈ L1(Ω), then (1.1) has a weak solution u ∈ W s,p
loc (Ω) ∩ Lp−1(Ω) such 

that u(γ+p−1)/p ∈ W s,p
0 (Ω) and essinfK u > 0 for any compact K � Ω.

Actually the proof of Theorem 1.2 will be carried out considering first the simplest 
case 0 < γ ≤ 1 (see Theorem 3.2) and then the case γ > 1 (see Theorem 3.6). The proof 
relies on the well established technique introduced in [3]. Actually, via Shauder fixed 
point theorem, we find a solution to a regularized problem and then we perform a-priori 
uniform estimates to pass to the limit. Such a procedure has been investigated in the 
nonlocal case for p = 2 in [2], where a slightly different very weak notion of solution is 
considered that is allowed by the fact that the operator is linear and admits a double 
integration by parts. Since this is not the case for p �= 2, we need a different approach 
which is rather technical and will be clear to the reader while reading the paper.

Let us now turn to the uniqueness of the solution. Since the way of understanding the 
boundary condition is not unambiguous, we start with the following:

Definition 1.3. Let u be such that u = 0 in RN \Ω. We say that u ≤ 0 on ∂Ω if, for every 
ε > 0, it follows that

(u− ε)+ ∈ W s,p
0 (Ω) .

We will say that u = 0 on ∂Ω if u is non-negative and u ≤ 0 on ∂Ω.

Adopting such definition, we will prove the following uniqueness result:

Theorem 1.4 (Uniqueness). Let γ > 0 and let f ∈ L1(Ω) be non-negative. Then, under 
zero Dirichlet boundary conditions in the sense of Definition 1.3, the solution to (1.1) is 
unique.

It is worth emphasizing that the proof of Theorem 1.4 will follow via a more general 
comparison principle.

Having in mind Theorem 1.2, one may say that u has zero Dirichlet boundary datum 
if

umax{ γ+p−1
p ,1} ∈ W s,p

0 (Ω). (1.3)

Our result applies in this case too since we have the following

Proposition 1.5. Let γ > 0 and let u be non-negative with umax{ γ+p−1
p ,1} ∈ W s,p

0 (Ω). 
Then u fulfills zero Dirichlet boundary conditions in the sense of Definition 1.3.

Proof. We only need to prove the result in the case γ > 1. For ε > 0 let us set

Sε := supp (u− ε)+ Qε := R
2N \

(
Sc
ε × Sc

ε

)
.
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By Lemma 3.5 with q = γ+p−1
p , we have that

∣∣u γ+p−1
p (x) − u

γ+p−1
p (y)

∣∣p ≥ εγ−1|u(x) − u(y)|p in Qε,

since either u(x) ≥ ε in Qε or u(y) ≥ ε in Qε. From this we easily infer that

∫
R2N

|(u− ε)+(x) − (u− ε)+(y)|p
|x− y|N+s p

dx dy ≤
∫
Qε

|u(x) − u(y)|p
|x− y|N+s p

dx dy

≤ ε1−γ

∫
R2N

|u
γ+p−1

p (x) − u
γ+p−1

p (y)|p
|x− y|N+s p

dx dy,

which concludes the proof. �
By Theorem 1.4, thanks to Proposition 1.5, we deduce in fact a more general unique-

ness result:

Theorem 1.6 (Uniqueness). Let γ > 0 and let f ∈ L1(Ω) be non-negative and let u, v be 
weak solutions to (1.1). Assume that u and v have zero Dirichlet boundary datum either 
in the sense of Definition 1.3. Then u ≡ v.

The technique used in the proof of the uniqueness result goes back to [8] where the 
uniqueness of the solution is implicitly proved in the case f = 1, p = 2 and s = 1. Such 
a technique was already improved in [10] in the local semilinear case. In this setting it is 
worth mentioning the recent result in [27] where singular problems with measure data 
are considered. The local quasilinear case p �= 2 was considered with a different technique 
in [11]. For the nonlocal case we mention a related uniqueness result in [13], where the 
case f = 1 and p = 2 is considered among other problems.

We end the introduction pointing out a first simple consequence of the uniqueness 
result:

Theorem 1.7 (Symmetry). Let u be the solution to (1.1) under zero Dirichlet boundary 
condition. Assume that the domain Ω is symmetric with respect to some hyperplane

T ν
λ := {x · ν = λ}, λ ∈ R, ν ∈ SN−1.

Then, if f is symmetric with respect to the hyperplane T ν
λ , then u is symmetric with 

respect to the hyperplane T ν
λ too. In particular, if Ω is a ball or an annulus centered at 

the origin and f is radially symmetric, then u is radially symmetric.
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2. Approximations

We denote by Br(x0) the N -dimensional open ball of radius r, centered at a point 
x0 ∈ R

N . The symbol ‖ · ‖Lp(Ω) stands for the standard norm for the Lp(Ω) space. For 
a measurable function u : RN → R, we let

[u]Ds,p(RN ) :=

⎛
⎝ ∫

R2N

|u(x) − u(y)|p
|x− y|N+sp

dxdy

⎞
⎠

1/p

be its Gagliardo seminorm. We consider the space

W s,p(RN ) :=
{
u ∈ Lp(RN ) : [u]Ds,p(RN ) < ∞

}
,

endowed with norm ‖ · ‖Lp(RN )+[ · ]Ds,p(RN ). For Ω ⊂ R
N open and bounded, we consider

W s,p
0 (Ω) :=

{
u ∈ W s,p(RN ) : u = 0 a.e. in R

N \ Ω
}
,

endowed with norm [ · ]Ds,p(RN ). The imbedding W s,p
0 (Ω) ↪→ Lr(Ω) is continuous for 

1 ≤ r ≤ p∗s and compact for 1 ≤ r < p∗s, where p∗s := N p/(N − s p) and N > sp (as we 
are assuming throughout the paper). The space W s,p

0 (Ω) can be equivalently defined as 
the completion of C∞

0 (Ω) in the norm [ · ]Ds,p(RN ), provided ∂Ω is smooth enough, see 
[16]. In this context by C∞

0 (Ω) we mean the space

C∞
0 (Ω) := {f : RN → R : f ∈ C∞(RN ), support f is compact and support f ⊆ Ω}.

We shall denote the localized Gagliardo seminorm by

[u]W s,p(Ω) :=

⎛
⎝ ∫

Ω×Ω

|u(x) − u(y)|p
|x− y|N+s p

dx dy

⎞
⎠

1/p

.

Finally define the space

W s,p
loc (Ω) :=

{
u : Ω → R : u ∈ Lp(K), [u]W s,p(K) < ∞, for all K � Ω

}
.

We first state a lemma dealing with the existence and uniqueness of solutions to 
(−Δ)sp u = f .

Lemma 2.1. Let f ∈ L∞(Ω) and f ≥ 0, f �≡ 0. Then the problem⎧⎪⎪⎨
⎪⎪⎩

(−Δ)sp u = f in Ω,

u > 0 in Ω,

u = 0 in R
N \ Ω,

(2.1)

admits a unique solution u ∈ W s,p
0 (Ω).
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Proof. To prove the existence of a solution to (2.1), we minimize the functional

J (u) = 1
p

∫
R2N

|u(x) − u(y)|p
|x− y|N+ps

dx dy −
∫
Ω

f(x)u dx, u ∈ W s,p
0 (Ω),

and then we look for a solution to (2.1) as a critical point of J (u). In fact, we have that

(i) J (u) is coercive, since by the Sobolev embedding it follows

J (u) ≥ 1
p

∫
R2N

|u(x) − u(y)|p
|x− y|N+ps

dx dy − C‖f‖L∞(Ω)

⎛
⎝ ∫

RN

|u(x) − u(y)|p
|x− y|N+ps

dx dy

⎞
⎠

1
p

.

(ii) J (u) is weakly lower semi-continuous in W s,p
0 (Ω).

Then choosing a non-negative minimizing sequence {un}n∈N (and since f ≥ 0 it is not 
restrictive to assume that un(x) ≥ 0 a.e. in RN , if not take {|un(x)|}n∈N), the existence 
of a minimum of J and thus of a non-negative solution u to (2.1), follows by a standard 
minimization procedure. That u > 0 follows by the strong maximum principle stated 
in [5, Theorem A.1]. We show now that the solution to problem (2.1) is unique. Let us 
suppose that u1, u2 ∈ W s,p

0 (Ω) are weak solutions to (2.1). Therefore, for all ϕ ∈ W s,p
0 (Ω)

we have∫
R2N

|u1(x) − u1(y)|p−2 (u1(x) − u1(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy =
∫
Ω

f(x)ϕdx,

∫
R2N

|u2(x) − u2(y)|p−2 (u2(x) − u2(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy =
∫
Ω

f(x)ϕdx.

Subtracting the two equations yields
∫

R2N

(
|u1(x) − u1(y)|p−2 (u1(x) − u1(y)) − |u2(x) − u2(y)|p−2 (u2(x) − u2(y))

)
(ϕ(x) − ϕ(y))

|x− y|N+s p
= 0.

Inserting ϕ(x) = w(x) := u1(x) − u2(x), using elementary inequalities (cf. [24, Sec-
tion 10]), yields

∫
R2N

(|u1(x) − u1(y)| + |u2(x) − u2(y)|)p−2|w(x) − w(y)|2
|x− y|N+s p

dxdy ≤ 0, if 1 < p < 2,

as well as ∫ |w(x) − w(y)|p
|x− y|N+s p

dxdy ≤ 0, if p ≥ 2.

R2N
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In both cases the inequalities yield w(x) = C for all x ∈ R
N and some constant C ∈ R. 

Since ui = 0 on Ωc, we get w = 0 on Ωc. Therefore C = 0 and the assertion follows. �
Solutions of the problem (−Δ)spu = f(x) enjoy the useful Lq-estimate (cf. [26, 

Lemma 2.3]), that we state in the following

Lemma 2.2 (Summability lemma). Let f ∈ Lq(Ω) for some 1 < q ≤ ∞ and assume that 
u ∈ W s,p

0 (Ω) is a weak solution of the equation (−Δ)sp u = f(x) in Ω. Then

‖u‖r ≤ C‖f‖1/(p−1)
q ,

where

r :=

⎧⎪⎪⎨
⎪⎪⎩

N (p− 1) q
N − spq

, 1 < q <
N

sp
,

∞,
N

sp
< q ≤ ∞,

and C = C(N, Ω, p, s, q) > 0.

We consider, for a given f ∈ L1(Ω), with f ≥ 0 the truncation

fn(x) := min{f(x), n}, x ∈ Ω.

Then, we consider the approximating problems
⎧⎪⎪⎨
⎪⎪⎩

(−Δ)sp un = fn(x)
(un+1/n)γ in Ω,

un > 0 in Ω,

un = 0 in R
N \ Ω.

(Pn)

Proposition 2.3. For any n ≥ 1 there exists a weak solution un ∈ W s,p
0 (Ω) ∩ L∞(Ω)

to (Pn).

Proof. Given n ∈ N and a function u ∈ Lp(Ω), in light of Lemma 2.1 there exists a 
unique solution w ∈ W s,p

0 (Ω) to the problem
⎧⎪⎪⎨
⎪⎪⎩

(−Δ)sp w = fn(x)
(u++1/n)γ in Ω,

w > 0 in Ω,

w = 0 in R
N \ Ω,

(2.2)

where u+ := max{u, 0}. Therefore we may define the map Lp(Ω) 
 u �→ w := S(u) ∈
W s,p

0 (Ω) ⊂ Lp(Ω), where w is the unique solution to (2.2). Using w as test function in 
(2.2) we obtain
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∫
R2N

|w(x) − w(y)|p
|x− y|N+s p

dx dy =
∫
Ω

fn(x)
(u+ + 1/n)γ w dx ≤ nγ+1‖w‖L1(Ω),

and thus by, Sobolev imbedding, we have that
⎛
⎝ ∫

R2N

|w(x) − w(y)|p
|x− y|N+s p

dx dy

⎞
⎠

1
p

≤ Cn
γ+1
p−1 , (2.3)

for some C = C(p, s, N, Ω) (independent of u), so that the ball of radius R := Cn
γ+1
p−1

in W s,p
0 (Ω), is invariant under the action of S. Now, in order to apply the Schauder’s 

fixed point theorem to S and then to obtain a solution to (2.2), we have to prove the 
continuity and the compactness of S as an operator from W s,p

0 (Ω) to W s,p
0 (Ω).

• (Continuity of S). Denoting wk := S(uk) and w := S(u), then

lim
k→∞

‖wk − w‖W s,p
0 (Ω) = 0, if lim

k→∞
‖uk − u‖W s,p

0 (Ω) = 0.

By the strong convergence of {uk}k∈N in W s,p
0 (Ω), up to a subsequence, we have uk → u

in Lp∗
s (Ω) and uk → u a.e. in Ω as k → ∞. Considering the corresponding sequence of 

solutions {wk}k∈N, arguing as in the proof of Lemma 2.1, setting w̄k(x) := wk(x) −w(x)
we obtain ∫

R2N

(|wk(x) − wk(y)| + |w(x) − w(y)|)p−2|w̄k(x) − w̄k(y)|2
|x− y|N+s p

dxdy (2.4)

≤
∫
Ω

(
fn(x)

(u+
k + 1/n)γ

− fn(x)
(u+ + 1/n)γ

)
(wk − w) dx, if 1 < p < 2,

as well as ∫
R2N

|w̄k(x) − w̄k(y)|p
|x− y|N+s p

dxdy (2.5)

≤
∫
Ω

(
fn(x)

(u+
k + 1/n)γ

− fn(x)
(u+ + 1/n)γ

)
(wk − w) dx, if p ≥ 2.

Let us consider the right-hand side of (2.5). Using Hölder and Sobolev inequalities we 
infer that ∣∣∣∣∣∣

∫
Ω

(
fn(x)

(u+
k + 1/n)γ

− fn(x)
(u+ + 1/n)γ

)
(wk − w) dx

∣∣∣∣∣∣
≤

⎛
⎝∫ ∣∣∣∣ fn(x)

(u+
k + 1/n)γ

− fn(x)
(u+ + 1/n)γ

∣∣∣∣
(p∗

s)′

dx

⎞
⎠

1
(p∗s )′

‖w̄k‖Lp∗s (Ω)

Ω
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≤ C

⎛
⎝∫

Ω

∣∣∣∣ fn(x)
(u+

k + 1/n)γ
− fn(x)

(u+ + 1/n)γ

∣∣∣∣
(p∗

s)′

dx

⎞
⎠

1
(p∗s )′

‖w̄k‖W s,p
0 (Ω),

where (p∗s)′ = Np/(N(p − 1) + sp) and C = C(p, s, N) is a positive constant. From (2.5)
we get

‖wk − w‖W s,p
0 (Ω) (2.6)

≤ C

⎛
⎝∫

Ω

∣∣∣∣ fn(x)
(u+

k + 1/n)γ
− fn(x)

(u+ + 1/n)γ

∣∣∣∣
(p∗

s)′

dx

⎞
⎠

1
(p−1)·(p∗s )′

if p ≥ 2.

Observing that
∣∣∣∣ fn(x)
(u+

k + 1/n)γ
− fn(x)

(u+ + 1/n)γ

∣∣∣∣ ≤ 2nγ+1, (2.7)

by the dominated convergence theorem and by the fact that uk(x) → u(x) a.e., from 
(2.6) we conclude that

lim
k→+∞

‖wk − w‖W s,p
0 (Ω) = 0,

showing, in the case p ≥ 2, that the operator S is continuous from W s,p
0 (Ω) to W s,p

0 (Ω). 
From (2.4), a similar argument, shows the continuity of S from W s,p

0 (Ω) to W s,p
0 (Ω) for 

1 < p < 2.

• (Compactness of S). Let {uk}k∈N ⊂ W s,p
0 (Ω) a bounded sequence. Denoting wk :=

S(uk), we show that, up to a subsequence and for some w ∈ W s,p
0 (Ω), it holds

lim
k→∞

‖wk − w‖W s,p
0 (Ω) = 0.

Let {uk}k∈N ⊂ W s,p
0 (Ω) with ‖uk‖W s,p

0 (Ω) ≤ C for all k ≥ 1. Then, up to a subsequence, 
we have uk ⇀ u in W s,p

0 (Ω), as well as uk → u in Lr(Ω), for 1 ≤ r < p∗s. In view of (2.3), 
we have ‖S(uk)‖W s,p

0 (Ω) ≤ C for some constant C independent of k, and therefore

S(uk) ⇀ w, in W s,p
0 (Ω), S(uk) → w, in Lr(Ω), for 1 ≤ r < p∗s,

for some w ∈ W s,p
0 (Ω). Then for all ϕ ∈ W s,p

0 (Ω)

∫
R2N

|wk(x) − wk(y)|p−2 (wk(x) − wk(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy =
∫
Ω

fn(x)
(u+

k + 1/n)γ
ϕdx.

(2.8)
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We show now that, letting k to infinity, (2.8) converges to

∫
R2N

|w(x) − w(y)|p−2 (w(x) − w(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy =
∫
Ω

fn(x)
(u+ + 1/n)γ ϕdx. (2.9)

By the dominated convergence theorem, it is readily seen that

lim
k→∞

∫
Ω

fn(x)
(u+

k + 1/n)γ
ϕdx =

∫
Ω

fn(x)
(u+ + 1/n)γ ϕdx.

Furthermore, since the sequence

{
|wk(x) − wk(y)|p−2 (wk(x) − wk(y))

|x− y|
N+s p

p′

}
k∈N

is bounded in Lp′
(R2N ),

and by the pointwise convergence of wk(x) to w(x)

|wk(x) − wk(y)|p−2 (wk(x) − wk(y))
|x− y|

N+s p
p′

→ |w(x) − w(y)|p−2 (w(x) − w(y))
|x− y|

N+s p
p′

a.e. in R
2N ,

it follows by standard results that, up to a subsequence,

|wk(x) − wk(y)|p−2 (wk(x) − wk(y))
|x− y|

N+s p
p′

⇀
|w(x) − w(y)|p−2 (w(x) − w(y))

|x− y|
N+s p

p′
weakly in Lp′

(R2N ).

Then, since

ϕ(x) − ϕ(y)
|x− y|

N+s p
p

∈ Lp(R2N ),

we conclude that the l.h.s. of (2.8) converges to the l.h.s. of (2.9). Whence, (2.9) holds, 
that is, in particular, w = S(u). Arguing as for (2.4) and (2.5) setting wk(x) = S(uk)
and w̄k(x) := wk(x) − w(x), we infer that

∫
R2N

(|wk(x) − wk(y)| + |w(x) − w(y)|)p−2|w̄k(x) − w̄k(y)|2
|x− y|N+s p

dxdy

≤ ‖wk − w‖Lp(Ω)

⎛
⎝∫ ∣∣∣∣ fn(x)

(u+
k + 1/n)γ

− fn(x)
(u+ + 1/n)γ

∣∣∣∣
p′

dx

⎞
⎠

1
p′

, if 1 < p < 2,

Ω
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as well as∫
R2N

|w̄k(x) − w̄k(y)|p
|x− y|N+s p

dxdy

≤ ‖wk − w‖Lp(Ω)

⎛
⎝∫

Ω

∣∣∣∣ fn(x)
(u+

k + 1/n)γ
− fn(x)

(u+ + 1/n)γ

∣∣∣∣
p′

dx

⎞
⎠

1
p′

, if p ≥ 2,

where p′ = p/(p − 1). Using (2.7), the last two equations imply that

lim
k→+∞

‖S(uk) − S(u)‖W s,p
0 (Ω) = 0,

that is the compactness of S from W s,p
0 (Ω) to W s,p

0 (Ω). Schauder’s fixed point theorem 
provides that existence of un ∈ W s,p

0 (Ω) such that un = S(un), that is a weak solution 
to ⎧⎪⎪⎨

⎪⎪⎩
(−Δ)sp un = fn(x)

(un+1/n)γ in Ω,

un > 0 in Ω,

un = 0 in R
N \ Ω.

(2.10)

Since the r.h.s. of (2.10) belongs to L∞(Ω), by virtue of Lemma 2.2 we have un ∈
L∞(Ω). �
Lemma 2.4 (Monotonicity). The sequence {un}n∈N found in the previous lemma satisfies

un(x) ≤ un+1(x), for a.e. x ∈ Ω,

and

un(x) ≥ σ > 0, for a.e. x ∈ ω � Ω,

for some positive constant σ = σ(ω).

Proof. We have, for any n ∈ N, that for all ϕ ∈ W s,p
0 (Ω)

∫
R2N

|un(x) − un(y)|p−2 (un(x) − un(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy =
∫
Ω

fn(x)
(un + 1/n)γ ϕdx,

as well as for all ϕ ∈ W s,p
0 (Ω)

∫ |un+1(x) − un+1(y)|p−2 (un+1(x) − un+1(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy
R2N
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=
∫
Ω

fn+1(x)
(un+1 + 1/(n + 1))γ ϕdx.

By taking ϕ = w = (un − un+1)+ ∈ W s,p
0 (Ω) as test function in the formula above and 

subtracting the second from the first, concerning the r.h.s. (and recalling that fn ≤ fn+1

a.e.) we get

∫
Ω

fn(x)
(un + 1/n)γ (un − un+1)+ dx−

∫
Ω

fn+1(x)
(un+1 + 1/(n + 1))γ (un − un+1)+ dx

≤
∫
Ω

fn+1(un − un+1)+
(un+1 + 1/(n + 1))γ − (un + 1/n)γ

(un + 1/n)γ(un+1 + 1/(n + 1))γ dx ≤ 0.

Then, if Ip(s) := |s|p−2s, we conclude that

∫
R2N

(
Ip(un(x) − un(y)) − Ip(un+1(x) − un+1(y))

)
(w(x) − w(y))

|x− y|N+s p
≤ 0. (2.11)

Now, arguing exactly as in the proof of [25, Lemma 9], we get

(
Ip(un(x) − un(y)) − Ip(un+1(x) − un+1(y))

)
(w(x) − w(y)) ≥ 0, for a.e. (x, y) ∈ R

2N ,

with the strict inequality, unless it holds

(un(x) − un+1(x))+ = (un(y) − un+1(y))+, for a.e. (x, y) ∈ R
2N . (2.12)

On the other hand, by (2.11), we have

(
Ip(un(x) − un(y)) − Ip(un+1(x) − un+1(y))

)
(w(x) − w(y)) = 0, for a.e. (x, y) ∈ R

2N .

Therefore, (2.12) holds true, namely

(un(x) − un+1(x))+ = C, for a.e. x ∈ R
N ,

for some constant C. Since un = un+1 = 0 on RN \ Ω it follows that C = 0, which 
implies in turn that un(x) ≤ un+1(x), for a.e. x ∈ Ω. This concludes the proof of the first 
assertion. Concerning the second assertion, we observe that we know that u1 ∈ L∞(Ω), 
yielding

(−Δ)sp u1 = f1(x)
γ
∈ L∞(Ω).
(u1 + 1)
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Then, by [20, Theorem 1.1] we deduce that u1 ∈ C0,α(Ω̄) for some α ∈ (0, 1). In particular 
by the strong maximum principle,

u1(x) ≥ σ > 0, for a.e. x ∈ ω ⊂⊂ Ω

and σ = σ(ω). The second assertion then follows by monotonicity. �
3. Existence of solutions

To prove the existence of a solution to (1.1) we use the sequence of solutions {un}n∈N

of problem (Pn) (see Proposition 2.3) and then, using some a-priori estimates, we pass 
to the limit.

3.1. Existence in the case 0 < γ ≤ 1

First of all, we prove the following

Lemma 3.1. Let {un}n∈N ⊂ W s,p
0 (Ω) ∩ L∞(Ω) be the sequence of solution to problem 

(Pn) provided by Proposition 2.3. Assume that

0 < γ ≤ 1, f ≥ 0, f ∈ Lm(Ω), m := Np

N(p− 1) + sp + γ(N − sp) . (3.1)

Then {un}n∈N is bounded in W s,p
0 (Ω).

Proof. In the case 0 < γ < 1, taking un as test function in (Pn), as fn ≤ f we get
∫

R2N

|un(x) − un(y)|p
|x− y|N+ps

dx dy ≤
∫
Ω

fn(x)
(un + 1/n)γ un dx ≤

∫
Ω

fn(x)u1−γ
n dx (3.2)

≤ ‖f‖Lm(Ω)

⎛
⎝∫

Ω

u(1−γ)m′

n dx

⎞
⎠

1
m′

,

where m′ = m/(m − 1). Since (1 − γ)m′ = p∗s, by the Sobolev embedding, we obtain

⎛
⎝∫

Ω

u(1−γ)m′

n dx

⎞
⎠

1
m′

≤ C

⎛
⎝ ∫

R2N

|un(x) − un(y)|p
|x− y|N+ps

dx dy

⎞
⎠

p∗s
pm′

,

for some constant C = C(p, s, N) > 0. Finally, since p∗s/(pm′) < 1, from (3.2) we get

sup ‖un‖W s,p
0 (Ω) ≤ C(f, p, s, γ,N).
n∈N
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If instead γ = 1, then arguing as for (3.2), we get
∫

R2N

|un(x) − un(y)|p
|x− y|N+ps

dx dy ≤
∫
Ω

fn(x)
un + 1/n un dx ≤

∫
Ω

f(x)dx,

which yields again the desired boundedness. �
Theorem 3.2 (Existence, 0 < γ ≤ 1). Assume that (3.1) holds. Then problem (1.1) admits 
a weak solution u ∈ W s,p

0 (Ω).

Proof. By virtue of Lemma 3.1, the sequence of solutions {un}n∈N ⊂ W s,p
0 (Ω) ∩ L∞(Ω)

of problem (Pn) provided by Proposition 2.3 is bounded in W s,p
0 (Ω). Then, up to a 

subsequence, we have un ⇀ u in W s,p
0 (Ω), un → u in Lr(Ω) for 1 ≤ r < p∗s and un → u

a.e. in Ω and, furthermore, by Lemma 2.4, we have

for all K � Ω there exists σK > 0 such that u(x) ≥ σK > 0, for a.e. x ∈ K.

We have∫
R2N

|un(x) − un(y)|p−2 (un(x) − un(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy =
∫
Ω

fn(x)
(un + 1/n)γ ϕdx,

(3.3)

for all ϕ ∈ C∞
c (Ω). Since the sequence

{
|un(x) − un(y)|p−2 (un(x) − un(y))

|x− y|
N+s p

p′

}
n∈N

is bounded in Lp′
(R2N ),

and by the point-wise convergence of un to u

|un(x) − un(y)|p−2 (un(x) − un(y))
|x− y|

N+s p
p′

→ |u(x) − u(y)|p−2 (u(x) − u(y))
|x− y|

N+s p
p′

a.e. in R
2N ,

it follows by standard results that

|wk(x) − wk(y)|p−2 (wk(x) − wk(y))
|x− y|

N+s p
p′

⇀
|w(x) − w(y)|p−2 (w(x) − w(y))

|x− y|
N+s p

p′
weakly in Lp′

(R2N ).

Then, since for ϕ ∈ C∞
c (Ω) we have

ϕ(x) − ϕ(y)
N+s p

p

∈ Lp(R2N ),

|x− y|
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we conclude that

lim
n→+∞

∫
R2N

|un(x) − un(y)|p−2 (un(x) − un(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy =

∫
R2N

|u(x) − u(y)|p−2 (u(x) − u(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy,

for all ϕ ∈ C∞
c (Ω). Concerning the right-hand side of formula (3.3), recalling Lemma 2.4, 

for any ϕ ∈ C∞
c (Ω) with supp(ϕ) = K, there exists σK > 0 independent of n such that∣∣∣∣ fn(x)ϕ

(un + 1/n)γ

∣∣∣∣ ≤ σγ
K |f(x)ϕ(x)| ∈ L1(Ω).

By the dominated convergence theorem we conclude that

lim
n→∞

∫
Ω

fn(x)ϕ
(un + 1/n)γ ϕdx =

∫
Ω

f(x)
uγ

ϕdx.

Finally, passing to the limit in (3.3), we conclude that
∫

R2N

|u(x) − u(y)|p−2 (u(x) − u(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy =
∫
Ω

f(x)
uγ

ϕdx,

for all ϕ ∈ C∞
c (Ω), namely u is a solution to (1.1). �

3.2. Existence in the case γ > 1

First, we recall the following result from [6, Lemma 3.3].

Proposition 3.3. Let F ∈ Lq(Ω) with q > N/(sp) and let u ∈ W s,p
0 (Ω) ∩ L∞(Ω) be such 

that ∫
R2N

|u(x) − u(y)|p−2 (u(x) − u(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy =
∫
Ω

Fϕdx,

for all ϕ ∈ W s,p
0 (Ω). Then, for every convex C1 function Φ : R → R, we have

∫
R2N

|Φ(u)(x) − Φ(u)(y)|p−2 (Φ(u)(x) − Φ(u)(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy

≤
∫
Ω

F |Φ′(u)|p−2Φ′(u)ϕdx,

for every non-negative function ϕ ∈ W s,p
0 (Ω).
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Lemma 3.4. Let {un}n∈N ⊂ W s,p
0 (Ω) ∩L∞(Ω) be the sequence of solution to (Pn) provided 

by Proposition 2.3. Let γ > 1 and f ∈ L1(Ω). Then {u(γ+p−1)/p
n }n∈N is bounded in 

W s,p
0 (Ω).

Proof. We can apply Proposition 3.3 to each un ≥ 0 by choosing

F (x) := fn(x)
(un + 1/n)γ ∈ L∞(Ω), Φ(s) := s(γ+p−1)/p, s ≥ 0,

by noticing that Φ is C1 and convex on R+ since γ > 1. Then
∫

R2N

|Φ(un)(x) − Φ(un)(y)|p−2 (Φ(un)(x) − Φ(un)(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy

≤
∫
Ω

fn(x)
(un + 1/n)γ |Φ

′(un)|p−2Φ′(un)ϕdx,

for every n and all non-negative function ϕ ∈ W s,p
0 (Ω). By choosing ϕ := Φ(un) as test 

function (which belongs to W s,p
0 (Ω), since Φ is Lipschitz on bounded intervals), we infer

∫
R2N

|Φ(un)(x) − Φ(un)(y)|p
|x− y|N+s p

dx dy ≤
∫
Ω

fn(x)
(un + 1/n)γ |Φ

′(un)|p−1Φ(un) dx. (3.4)

Note that

|Φ′(un)|p−1Φ(un) ≤ Cuγ
n, for any n ∈ N and some C = C(γ, p) > 0.

In turn,

∫
Ω

fn(x)
(un + 1/n)γ |Φ

′(un)|p−1Φ(un) dx ≤ C

∫
Ω

|fn| dx ≤ C

∫
Ω

|f | dx,

since fn ≤ f . From inequality (3.4) it follows that {Φ(un)}n∈N is bounded in 
W s,p

0 (Ω). �
Lemma 3.5. Let q > 1 and ε > 0. In the plane R2 with the notation p = (x, y), let us set

Sx
ε := {x ≥ ε} ∩ {y ≥ 0} Sy

ε := {y ≥ ε} ∩ {x ≥ 0} .

Then, we have that

|xq − yq| ≥ εq−1|x− y| in Sx
ε ∪ Sy

ε . (3.5)
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Proof. With no loss of generality, we may assume that x ≥ y. Let us first note that

xq − yq = qλq−1(x− y), for some λ ∈ (y, x) .

Whence (3.5) holds true, since q > 1, if (x, y) ∈ Sx
ε ∩ Sy

ε , namely if y ≥ ε in the case 
that we are considering. Then, let us deal with the case 0 ≤ y < ε ≤ x. Since t �→ tq is 
(strictly) convex for q > 1, then we have

xq − yq

x− y
≥ xq

x
= xq−1 ≥ εq−1 .

Thus, inequality (3.5) is proved. �
Next we turn to the existence result for γ > 1.

Theorem 3.6 (Existence for γ > 1). Let f ≥ 0, f ∈ L1(Ω) and γ > 1. Then problem 
(1.1) admits a weak solution u ∈ W s,p

loc (Ω) with u(γ+p−1)/p ∈ W s,p
0 (Ω).

Proof. In light of Lemma 3.4, the sequence {un}n∈N of solution to (Pn) of Proposition 2.3
satisfies

sup
n∈N

[
u(γ+p−1)/p
n

]
W s,p(RN )

≤ C. (3.6)

Since {un}n∈N is increasing it admits pointwise limit u as n → ∞. In particular, by 
Fatou’s lemma [

u(γ+p−1)/p
]
W s,p(RN )

≤ lim inf
n

[
u(γ+p−1)/p
n

]
W s,p(RN )

≤ C. (3.7)

Then u(γ+p−1)/p ∈ W s,p
0 (Ω) and therefore u ∈ Lp(Ω) since γ > 1. Notice also that, by 

virtue of Lemma 2.4, for all K � Ω there exists σK > 0 such that u(x) ≥ σK > 0 for 
a.e. x ∈ K. Therefore, in light of Lemma 3.5, we have

|u(x) − u(y)|p
|x− y|N+s p

≤ σ1−γ
K

|u
γ+p−1

p (x) − u
γ+p−1

p (y)|p
|x− y|N+s p

, x, y ∈ K, K � R
N .

This yields

u ∈ W s,p
loc (Ω).

We have, for any n ∈ N

∫
R2N

|un(x) − un(y)|p−2 (un(x) − un(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy =
∫
Ω

fn(x)
(un + 1/n)γ ϕdx,

(3.8)
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for all ϕ ∈ C∞
c (Ω). In order to pass to the limit in (3.8), we observe the following. By 

the elementary inequality (see e.g. [14,15]) ||ξ|p−2ξ − |ξ′|p−2ξ′| ≤ C(|ξ| + |ξ′|)p−2|ξ − ξ′|
for ξ, ξ′ ∈ R with |ξ| + |ξ′| > 0, we get

∣∣∣∣∣
∫

R2N

|un(x) − un(y)|p−2 (un(x) − un(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy − (3.9)

∫
R2N

|u(x) − u(y)|p−2 (u(x) − u(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy

∣∣∣∣∣
≤

∫
R2N

(|un(x) − un(y)| + |u(x) − u(y)|)p−2|ūn(x) − ūn(y)||ϕ(x) − ϕ(y)|
|x− y|N+s p

dx dy,

where ūn(x) := un(x) − u(x). Let us fix ε > 0.
We claim that there exist a compact K ⊂ R

2N such that

∫
R2N\K

(|un(x) − un(y)| + |u(x) − u(y)|)p−2|ūn(x) − ūn(y)||ϕ(x) − ϕ(y)|
|x− y|N+s p

dx dy ≤ ε

2 ,

(3.10)

for all n ∈ N. Let us set

Sϕ := suppϕ Qϕ := R
2N \

(
Sc
ϕ × Sc

ϕ

)
.

By triangular and Hölder inequalities we get

∫
R2N\K

(|un(x) − un(y)| + |u(x) − u(y)|)p−2|ūn(x) − ūn(y)||ϕ(x) − ϕ(y)|
|x− y|N+s p

dx dy

=
∫

Qϕ\K

(|un(x) − un(y)| + |u(x) − u(y)|)p−1|ϕ(x) − ϕ(y)|
|x− y|N+s p

dx dy

≤

⎛
⎜⎝ ∫
Qϕ\K

(|un(x) − un(y)| + |u(x) − u(y)|)p
|x− y|N+s p

dx dy

⎞
⎟⎠

p−1
p
⎛
⎜⎝ ∫
Qϕ\K

|ϕ(x) − ϕ(y)|p
|x− y|N+s p

dx dy

⎞
⎟⎠

1
p

=

⎛
⎜⎝ ∫
Qϕ\K

(|un(x)−un(y)|+ |u(x)−u(y)|)p
|x− y|N+s p

dx dy

⎞
⎟⎠

p−1
p
⎛
⎜⎝ ∫

R2N\K

|ϕ(x)−ϕ(y)|p
|x− y|N+s p

dx dy

⎞
⎟⎠

1
p

.

(3.11)
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By Lemma 2.4, there exists σSϕ
> 0 independent of n such that u(x) ≥ σSϕ

for a.e. 
x ∈ Sϕ. Moreover, by using Lemma 3.5 with q = (γ + p− 1)/p, we have

(|un(x) − un(y)| + |u(x) − u(y)|)p
|x− y|N+s p

≤ C(p) |un(x) − un(y)|p + |u(x) − u(y)|p
|x− y|N+s p

(3.12)

≤ C(p)σ1−γ
Sϕ

|u
γ+p−1

p
n (x) − u

γ+p−1
p

n (y)|p + |u
γ+p−1

p (x) − u
γ+p−1

p (y)|p
|x− y|N+s p

, a.e. (x, y) ∈ Qϕ.

Then from (3.11) and (3.12) we infer that

∫
R2N\K

(|un(x) − un(y)| + |u(x) − u(y)|)p−2|ūn(x) − ūn(y)||ϕ(x) − ϕ(y)|
|x− y|N+s p

dx dy

≤ C

⎛
⎝ ∫

R2N

|u
γ+p−1

p
n (x) − u

γ+p−1
p

n (y)|p
|x− y|N+s p

dx dy

⎞
⎠

p−1
p

⎛
⎜⎝ ∫

R2N\K

(|ϕ(x) − ϕ(y)|)p
|x− y|N+s p

dx dy

⎞
⎟⎠

1
p

+ C

⎛
⎝ ∫

R2N

|u
γ+p−1

p (x) − u
γ+p−1

p (y)|p
|x− y|N+s p

dx dy

⎞
⎠

p−1
p

⎛
⎜⎝ ∫

R2N\K

(|ϕ(x) − ϕ(y)|)p
|x− y|N+s p

dx dy

⎞
⎟⎠

1
p

≤ C

⎛
⎜⎝ ∫

R2N\K

|ϕ(x) − ϕ(y)|p
|x− y|N+s p

dx dy

⎞
⎟⎠

1
p

,

with C = C(p, γ, σSϕ
) and where we used (3.6) and (3.7). Then, since ϕ ∈ C∞

c (Ω), there 
exists K = K(ε) such that (3.10) holds, proving the claim.

On the other hand, consider now an arbitrary measurable subset E ⊂ K. Arguing as 
in (3.11) and (3.12), we reach the inequality

∫
E

(|un(x) − un(y)| + |u(x) − u(y)|)p−2|ūn(x) − ūn(y)||ϕ(x) − ϕ(y)|
|x− y|N+s p

dx dy

≤ C

⎛
⎝∫

E

|ϕ(x) − ϕ(y)|p
|x− y|N+s p

dx dy

⎞
⎠

1
p

,

that is∫ (|un(x) − un(y)| + |u(x) − u(y)|)p−2|ūn(x) − ūn(y)||ϕ(x) − ϕ(y)|
|x− y|N+s p

dx dy → 0,

E
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uniformly on n, if the Lebesgue measure of E goes to zero. Moreover

(|un(x) − un(y)| + |u(x) − u(y)|)p−2|ūn(x) − ūn(y)||ϕ(x) − ϕ(y)|
|x− y|N+s p

→ 0 a.e. in R
2N .

Vitali’s Theorem now implies that, given ε > 0, there exists n̄ > 0 such that, if n ≥ n̄, 
it follows∫
K

(|un(x) − un(y)| + |u(x) − u(y)|)p−2|ūn(x) − ūn(y)||ϕ(x) − ϕ(y)|
|x− y|N+s p

dx dy ≤ ε

2 . (3.13)

From (3.9), using (3.10) and (3.13), we are able to pass to the limit in the left-hand side 
of (Pn), that is

lim
n→+∞

∫
R2N

|un(x) − un(y)|p−2 (un(x) − un(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy =

∫
R2N

|u(x) − u(y)|p−2 (u(x) − u(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy,

for all ϕ ∈ C∞
c (Ω). Finally, arguing for the right-hand side as in the proof of Theorem 3.2, 

we pass to the limit in (3.3), concluding that
∫

R2N

|u(x) − u(y)|p−2 (u(x) − u(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy =
∫
Ω

f(x)
uγ

ϕdx,

for all ϕ ∈ C∞
c (Ω), namely u is a solution to (1.1). �

Remark 3.7. In the previous results, if furthermore

f ∈ L
Np

N(p−1)+sp (Ω),

then (1.2) is satisfied for all ϕ ∈ W s,p
0 (Ω) such that supp(ϕ) � Ω.

Remark 3.8. With reference to the proof of Theorem 3.6, we observe that

the sequence {un}n∈N is bounded in W
sp

γ+p−1 ,γ+p−1
0 (Ω).

In fact, since (γ + p − 1)/p > 1, by the Hölderianity of the map t �→ tp/(γ+p−1), we get

|un(x) − un(y)|γ+p−1

|x− y|N+sp
≤ |u(γ+p−1)/p

n (x) − u
(γ+p−1)/p
n (y)|p

|x− y|N+sp
, x, y ∈ R

N .

Therefore, the weak solution u of Theorem 3.6 also belongs to u ∈ W
sp

γ+p−1 ,γ+p−1
0 (Ω).
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4. Proof of the uniqueness results

Let us start defining the real valued function gk by

gk(s) :=
{

min{s−γ , k} if s > 0,
k if s ≤ 0.

(4.1)

Then we consider the real valued function Φk defined to be the primitive of gk that is 
equal to zero for s = 1. Let us consequently consider the functional Jk : W s,p

0 (Ω) →
[−∞ , +∞] defined by

Jk(ϕ) := 1
p

∫
R2N

|ϕ(x) − ϕ(y)|p
|x− y|N+ps

dx dy −
∫
RN

f(x)Φk(ϕ) dx ϕ ∈ W s,p
0 (Ω) .

Let us now recall that, given z ∈ W s,p
loc (Ω) ∩Lp−1(Ω) with z ≥ 0, we say that z is a weak 

supersolution (subsolution) to (1.1), if
∫

R2N

|z(x) − z(y)|p−2 (z(x) − z(y)) (ϕ(x) − ϕ(y))
|x− y|N+s p

dx dy

≥
(≤)

∫
Ω

f(x)
zγ

ϕdx ∀ϕ ∈ C∞
c (Ω) , ϕ ≥ 0 .

For a fixed supersolution v, we consider w defined as the minimum of Jk on the convex 
set

K := {ϕ ∈ W s,p
0 (Ω) : 0 ≤ ϕ ≤ v a.e. in Ω} .

By direct computation, we deduce that

∫
R2N

|w(x) − w(y)|p−2 (w(x) − w(y)) (ψ(x) − w(x) − (ψ(y) − w(y)))
|x− y|N+s p

dx dy

≥
∫
Ω

f(x)Φ′
k(w)(ψ − w) for ψ ∈ w + (W s,p

0 (Ω) ∩ L∞
c (Ω)) and 0 ≤ ψ ≤ v ,

(4.2)

where by L∞
c (Ω) we denote the space of L∞-functions, with compact support in Ω. With 

such notation, we have the following

Lemma 4.1. For all ψ ∈ C∞
c (Ω) with ψ ≥ 0 we have

∫
R2N

|w(x) − w(y)|p−2 (w(x) − w(y)) (ψ(x) − ψ(y))
|x− y|N+s p

dx dy ≥
∫
Ω

f(x)Φ′
k(w)ψdx. (4.3)
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Proof. Let us consider a real valued function g ∈ C∞
c (R) with 0 ≤ g(t) ≤ 1, g(t) = 1

for t ∈ [−1, 1] and g(t) = 0 for t ∈ (−∞, −2] ∪ [2, ∞). Then, for any non-negative 
ϕ ∈ C∞

c (Ω), we set ϕh := g(wh ) ϕ and ϕh,t := min{w + tϕh , v} with h ≥ 1 and t > 0. 
We have that ϕh,t ∈ w + (W s,p

0 (Ω) ∩ L∞
c (Ω)) and 0 ≤ ϕh,t ≤ v, so that, by (4.2), we 

deduce that

∫
R2N

|w(x) − w(y)|p−2 (w(x) − w(y)) (ϕh,t(x) − w(x) − (ϕh,t(y) − w(y)))
|x− y|N+s p

dx dy

≥
∫
Ω

f(x)Φ′
k(w)(ϕh,t − w) dx.

By standard manipulations, by the inequality (see e.g. [14,15])

(|ξ|p−2ξ − |ξ′|p−2ξ′)(ξ − ξ′) ≥ C(|ξ| + |ξ′|)p−2|ξ − ξ′|2, (4.4)

for ξ, ξ′ ∈ R with |ξ| + |ξ′| > 0, and by (4.2), we deduce that

I1 := c

∫
R2N

(|ϕh,t(x) − ϕh,t(y)| + |w(x) − w(y)|)p−2 (ϕh,t(x) − w(x) − (ϕh,t(y) − w(y)))2

|x− y|N+s p
dx dy

≤
∫

R2N

|ϕh,t(x)−ϕh,t(y)|p−2 (ϕh,t(x)−ϕh,t(y)) (ϕh,t(x) − w(x)− (ϕh,t(y)−w(y)))
|x− y|N+s p

dx dy

−
∫

R2N

|w(x) − w(y)|p−2 (w(x) − w(y)) (ϕh,t(x) − w(x) − (ϕh,t(y) − w(y)))
|x− y|N+s p

dx dy

≤
∫

R2N

|ϕh,t(x)−ϕh,t(y)|p−2 (ϕh,t(x)−ϕh,t(y)) (ϕh,t(x) − w(x)− (ϕh,t(y)−w(y)))
|x− y|N+s p

dx dy

−
∫
Ω

f(x)Φ′
k(w)(ϕh,t − w)

We rewrite this as

I1 −
∫
Ω

f(x)(Φ′
k(ϕh,t) − Φ′

k(w))(ϕh,t − w) dx

≤
∫

R2N

|ϕh,t(x) − ϕh,t(y)|p−2(ϕh,t(x) − ϕh,t(y))(ϕh,t(x) − w(x) − (ϕh,t(y) − w(y)))
|x− y|N+s p

dx dy

−
∫

f(x) · Φ′
k(ϕh,t)(ϕh,t − w)
Ω
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=
∫

R2N

G(x, y) dxdy −
∫
Ω

f(x) · Φ′
k(ϕh,t)(ϕh,t − w − tϕh) (4.5)

+ t

∫
R2N

|ϕh,t(x) − ϕh,t(y)|p−2 (ϕh,t(x) − ϕh,t(y)) (ϕh(x) − ϕh(y))
|x− y|N+s p

dx dy

− t

∫
Ω

f(x)Φ′
k(ϕh,t)ϕh

where, if Ip(t) := |t|p−2t, we have set

G(x, y) := Ip(ϕh,t(x) − ϕh,t(y)) (ϕh,t(x) − w(x) − tϕh(x) − (ϕh,t(y) − w(y) − tϕh(y)))
|x− y|N+s p

.

For future use, let us also set

Gv(x, y) := Ip(v(x) − v(y)) (ϕh,t(x) − w(x) − tϕh(x) − (ϕh,t(y) − w(y) − tϕh(y)))
|x− y|N+s p

.

Now we set Sv := {ϕh,t = v} and note that, actually, Sv = {v ≤ w + tϕh}. We use the 
decomposition

R
2N = (Sv ∪ Sc

v) × (Sv ∪ Sc
v) .

Taking into account that

G(·, ·) = 0 in Sc
v × Sc

v,

we deduce that∫
R2N

G(x, y) dx dy

=
∫
Sv

∫
Sv

G(x, y) dx dy +
∫
Sc
v

∫
Sv

G(x, y) dx dy +
∫
Sv

∫
Sc
v

G(x, y) dx dy

≤
∫
Sv

∫
Sv

Gv(x, y) dx dy +
∫
Sc
v

∫
Sv

Gv(x, y) dx dy +
∫
Sv

∫
Sc
v

Gv(x, y) dx dy

=
∫

R2N

Gv(x, y) dx dy,

where the inequality follows since G ≤ Gv. In particular, to see this, write down explicitly 
the expression of G and exploit the monotonicity of the real valued function |t −t0|p−2(t −
t0) together with the definition of ϕh,t. Thence we go back to (4.5) and get that
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I1 −
∫
Ω

f(x) · (Φ′
k(ϕh,t) − Φ′

k(w))(ϕh,t − w) dx

≤
∫

R2N

Gv(x, y) dx dy −
∫
Ω

f(x) · Φ′
k(ϕh,t)(ϕh,t − w − tϕh)

+ t

∫
R2N

|ϕh,t(x) − ϕh,t(y)|p−2 (ϕh,t(x) − ϕh,t(y)) (ϕh(x) − ϕh(y))
|x− y|N+s p

dx dy

− t

∫
Ω

f(x) · Φ′
k(ϕh,t)ϕh .

By the definition of Φk, it follows that v is a supersolution to the equation (−Δ)spz =
Φ′

k(z) too. Therefore, recalling that ϕh,t − w − tϕh ≤ 0, we deduce that

I1 −
∫
Ω

f(x) · (Φ′
k(ϕh,t) − Φ′

k(w))(ϕh,t − w) dx

≤ t

∫
R2N

|ϕh,t(x) − ϕh,t(y)|p−2 (ϕh,t(x) − ϕh,t(y)) (ϕh(x) − ϕh(y))
|x− y|N+s p

dx dy

− t

∫
Ω

f(x) · Φ′
k(ϕh,t)ϕh .

Exploiting the fact I1 ≥ 0 and again that ϕh,t − w ≤ tϕh, we deduce that

∫
R2N

|ϕh,t(x) − ϕh,t(y)|p−2 (ϕh,t(x) − ϕh,t(y)) (ϕh(x) − ϕh(y))
|x− y|N+s p

dx dy

−
∫
Ω

f(x) · Φ′
k(ϕh,t)ϕh

≥ −
∫
Ω

f(x) · |Φ′
k(ϕh,t) − Φ′

k(w)||ϕh| dx .

Recalling the definition of ϕh,t and that w ∈ W s,p
0 (Ω), we can now pass to the limit for 

t → 0 exploiting the Lebesgue Theorem obtaining

∫
R2N

|w(x) − w(y)|p−2 (w(x) − w(y)) (ϕh(x) − ϕh(y))
|x− y|N+s p

dx dy −
∫
Ω

f(x) · Φ′
k(w)ϕh ≥ 0.

The claim, namely the proof of (4.3), follows letting h → ∞. �
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Now we are in position to prove our weak comparison principle, namely we have the 
following:

Theorem 4.2. Let γ > 0 and let f ∈ L1(Ω) be non-negative. Let u be a subsolution to 
(1.1) such that u ≤ 0 on ∂Ω and let v be a supersolution to (1.1). Then, u ≤ v a.e. in Ω.

Proof. For ε > 0 and w as in Lemma 4.1, it follows that

(u− w − ε)+ ∈ W s,p
0 (Ω) .

This can be easily deduced by the fact that w ∈ W s,p
0 (Ω) and w ≥ 0 a.e. in Ω, so that 

the support of (u −w − ε)+ is contained in the support of (u − ε)+. Therefore, by (4.3)
and by standard density arguments, it follows

∫
R2N

|w(x)−w(y)|p−2 (w(x)−w(y)) (Tτ ((u−w− ε)+) (x)−Tτ ((u−w− ε)+) (y))
|x− y|N+s p

dx dy

≥
∫
Ω

f(x) · Φ′
k(w)Tτ

(
(u− w − ε)+

)
(4.6)

for Tτ (s) := min{s, τ} for s ≥ 0 and Tτ (−s) := −Tτ (s) for s < 0. Let now ϕn ∈ C∞
c (Ω)

such that ϕn → (u − w − ε)+ in W s,p
0 (Ω) and set

ϕ̃τ,n := Tτ (min{(u− w − ε)+, ϕ+
n }) .

It follows that ϕ̃τ,n ∈ W s,p
0 (Ω) ∩ L∞

c (Ω) so that, by a density argument

∫
R2N

|u(x) − u(y)|p−2 (u(x) − u(y)) (ϕ̃τ,n(x) − ϕ̃τ,n(y))
|x− y|N+s p

dx dy ≤
∫
Ω

f(x)
uγ

ϕ̃τ,n dx .

Passing to the limit as n tends to infinity, it is easy to deduce that

∫
R2N

|u(x) − u(y)|p−2 (u(x) − u(y)) (Tτ ((u− w − ε)+(x)) − Tτ ((u− w − ε)+(y)))
|x− y|N+s p

dx dy

≤
∫
Ω

f(x)
uγ

Tτ

(
(u− w − ε)+

)
dx . (4.7)

It is convenient now to set

g(t) := Tτ ((t− ε)+) = min{τ , max{t− ε , 0}} .
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With such a notation we have

|u(x) − u(y)|p−2 (u(x) − u(y)) (Tτ

(
(u− w − ε)+(x)

)
− Tτ

(
(u− w − ε)+(y)

)
) =

= |u(x) − u(y)|p−2 (u(x) − u(y))(u(x) − w(x) − (u(y) − w(y))H(x, y)

with

H(x, y) := g(u(x) − w(x)) − g(u(y) − w(y))
(u(x) − w(x) − (u(y) − w(y)) ,

where (u(x) − w(x) − (u(y) − w(y)) �= 0. In the same way we deduce that

|w(x) − w(y)|p−2 (w(x) − w(y)) (Tτ

(
(u− w − ε)+(x)

)
− Tτ

(
(u− w − ε)+(y)

)
) =

= |w(x) − w(y)|p−2 (w(x) − w(y))(u(x) − w(x) − (u(y) − w(y))H(x, y) .

Then, we subtract (4.6) to (4.7) using (4.4) and the fact that H(x, y) is non-negative by 
the definition of g (see (4.1)) that is nondecreasing. Therefore, choosing ε > 0 such that 
ε−γ < k, we deduce that

c

∫
R2N

(|u(x) − u(y)| + |w(x) − w(y)|)p−2 (u(x) − w(x) − (u(y) − w(y)))2

|x− y|N+s p
H(x, y) dx dy

≤
∫
Ω

f(x) ·
(

1
uγ

− Φ′
k(w)

)
Tτ

(
(u− w − ε)+

)
dx

=
∫
Ω

f(x) · (Φ′
k(u) − Φ′

k(w))Tτ

(
(u− w − ε)+

)
dx ≤ 0 ,

where the equality in the last line follows using the definition (4.1) and the fact that we 
are working in a region where Tτ (·) �= 0. Thus
∫

R2N

(|u(x) − u(y)| + |w(x) − w(y)|)p−2 (Tτ

(
(u− w − ε)+(x)

)
− Tτ

(
(u− w − ε)+(y)

)
)2

|x− y|N+s p
dx dy ≤ 0

and letting τ → +∞, by Fatou’s Lemma

∫
R2N

(|u(x)−u(y)| + |w(x)−w(y)|)p−2 ((u− w − ε)+(x) − (u− w − ε)+(y))2

|x− y|N+s p
dx dy ≤ 0.

Being the integrand non-negative, it is standard to obtain

u ≤ w + ε ≤ v + ε a.e. in Ω

and the thesis follows letting ε → 0. �
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In light of Theorem 4.2 we are now in position to conclude the proof of our main 
results.

Proof of Theorem 1.4. If u and v are two solutions to (1.1) with zero Dirichlet boundary 
condition, then we have that u ≤ v by Theorem 4.2. In the same way it follows that 
v ≤ u. �

We now deduce a symmetry result from the uniqueness of the solution. We have the 
following:

Proof of Theorem 1.7. By rotation and translation invariance, we may and we will 
assume that Ω is symmetric in the x1-direction and f(x1, x′) = f(−x1, x′) (with 
x′ ∈ R

N−1). Setting v(x1, x′) := u(−x1, x′) it follows that v is a solution to (1.1)
with zero Dirichlet boundary condition. By uniqueness, namely applying Theorem 1.4, 
it follows that u = v, that is u(x1, x′) = u(−x1, x′) a.e., ending the proof. �
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