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1 Introduction

1.1 General overview

Let Ω be a bounded domain in ℝN, N ≥ 2, with Lipschitz boundary àΩ. Recently, much attention has been
paid to the semi-linear problem

{
(−Δ)s u = f(x, u) inΩ,

u = 0 inℝN \ Ω,
(1.1)

from thepoint of viewof existence, nonexistence and regularity,wheref is a Carathéodory function satisfying
suitable growth conditions. Several existence results via variational methods are proved in a series of papers
of Servadei andValdinoci [41–43, 45] (see also Iannizzotto andSquassina [21] for the special case s = 1/2,p = 2
andN = 1, with exponential nonlinearity). The issues of regularity and non-existence of solutions are exam-
ined by Ca�arelli and Silvestre [7], Ros Oton and Serra [38–40]. The corresponding equation inℝN is studied
by Cabré and Sire [4, 5]. Although the fractional Laplacian operator (−Δ)s, and more generally pseudodi�er-
ential operators, have been a classical topic in harmonic analysis and partial di�erential equations for a long
time, the interest in such operators has constantly increased during the last few years. Nonlocal operators
such as (−Δ)s naturally arise in continuum mechanics, phase transition phenomena, population dynamics
and game theory, see e.g. Ca�arelli [6] and the references therein. In the works of Metzler and Klafter [29, 30],
the description of anomalous di�usion via fractional dynamics is investigated and various fractional partial
di�erential equations are derived from Lévy random walk models, extending Brownian walk models in
a natural way. In particular, in the paper of Laskin [23] a fractional Schrödinger equation was obtained,
which extends to a Lévy framework the classical result that path integral over Brownian trajectories leads
to the Schrödinger equation. Fractional operators are also involved in financial mathematics, since Lévy
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102 | A. Iannizzotto et al., Fractional p-Laplacian problems

processes with jumps revealed as more appropriate models of stock pricing, compared to the Brownian ones
used in the celebrated Black and Scholes option pricing model (see Applebaum [1]).

Very recently, a new nonlocal and nonlinear operator was considered, namely for p ∈ (1,∞), s ∈ (0, 1)
and u smooth enough

(−Δ)sp u(x) = 2 lim
ù↘0

∫
ℝN\Bù(x)

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+sp dy, x ∈ ℝN, (1.2)

consistent, up to some normalization constant depending uponN and s, with the linear fractional Laplacian
(−Δ)s in the case p = 2. For the motivations that lead to the study of such operators, we refer the reader again
to the review paper [6]. This operator, known as the fractional p-Laplacian, leads naturally to the study of the
quasi-linear problem

{
{
{

(−Δ)sp u = f(x, u) inΩ,

u = 0 inℝN \ Ω.
(1.3)

One typical feature of the aforementioned operators is the nonlocality, in the sense that the value of (−Δ)spu(x)
at any point x ∈ Ω depends not only on the values of u on the whole Ω, but actually on the whole ℝN, since
u(x) represents the expected value of a random variable tied to a process randomly jumping arbitrarily far
from the point x. While in the classical case, by the continuity properties of the Brownian motion, at the exit
time fromΩ one necessarily is on àΩ, due to the jumping nature of the process, at the exit time one could end
up anywhere outside Ω. In this sense, the natural non-homogeneous Dirichlet boundary condition consists
in assigning the values of u inℝN \ Ω rather thanmerely on àΩ. Then, it is reasonable to search for solution in
the space of functions u ∈ Ws,p(ℝN) vanishing on the outside ofΩ. It should be pointed out that, in a bounded
domain, this is not the only possible way of providing a formulation of the problem.

In the works of Franzina and Palatucci [16] and of Lindgren and Linqvist [25], the eigenvalue problem
associated with (−Δ)spu is studied, and particularly some properties of the first eigenvalue and of the higher
order (variational) eigenvalues are obtained. Then, Iannizzotto and Squassina [22] obtained some Weyl-type
estimates for the asymptotic behavior of variational eigenvalues ëj defined by a suitable cohomological
index. From the point of view of regularity theory, some results can be found in [25] even though that work
is most focused on the case where p is large and the solutions inherit some regularity directly from the func-
tional embeddings themselves. More recently Di Castro, Kuusi and Palatucci [13] and Brasco and Franzina [3]
obtained relevant results about the local boundedness and Hölder continuity for the solutions to the prob-
lem of finding (s, p)-harmonic functions u, that is (−Δ)spu = 0 inΩwith u = g onℝN \ Ω, for some function g,
providing an extension of results by De Giorgi–Nash–Moser to the nonlocal nonlinear framework. Finally,
in the work of Bjorland, Ca�arelli and Figalli [2], some higher regularity is obtained when s gets close
to 1, by showing that the solutions converge to the solutions with the p-Laplace operator div(|∇u|p−2∇u)
whenever s → 1.

1.2 Plan of the paper

In the present paper, we aim at establishing existence and (finite) multiplicity of the weak solutions to (1.3)
by making use of advanced tools of Morse theory. The contents of the paper are as follows:
∙ In Section 2, we introduce some preliminary notions and notations and set the functional framework

of the problem. More precisely, in Section 2.1 we establish the variational setting for problem (1.3), in
Section 2.2 we recall some basic features about the variational eigenvalues of the operator (−Δ)sp and
related topics, and in Section 2.3 we introduce critical groups and some related notions.

∙ In Section 3 we establish a priori L∞-bounds for the solutions of problem (1.3) under suitable growth
conditions on the nonlinearity. These regularity results are used also in the existence theorems proved in
the subsequent sections. To our knowledge, L∞-boundswere previously obtained only for the eigenvalue
problem (−Δ)spu = ë|u|p−2u, see [16]. The main result of this section is Theorem 3.1.
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∙ In Section 4, we deal with the p-superlinear case, namelyf(x, t) = ë|t|p−2t + g(x, t), with g(x, ⋅ ) vanishing
at zero, proving via Morse-theoretical methods the existence of non-zero solutions for all values of the
real parameter ë. The main result of this section is Theorem 4.1.

∙ In Section 5, we deal with the coercive case, including the case when f(x, ⋅ ) is p-sublinear at infinity,
proving via truncations the existence of a positive solution u+ and of a negative solution u− and the com-
putation of critical groups at zero yields the existence of a third non-zero solution. Themain result of this
section is Theorem 5.3.

∙ In Section 6, we deal with the asymptotically p-linear case, namely f(x, t) = ë|t|p−2t + g(x, t) with g(x, ⋅ )
vanishing at infinity, proving some existence results via the computation of critical groups at infinity and
a multiplicity result, for ë large enough, via the Mountain Pass Theorem. The main results of this section
are Theorems 6.1, 6.2 and 6.4.

∙ In Section 7, we discuss Pohožaev identity and consequent nonexistence results in star-shaped domains
(see Conjecture 7.2).

For a short introduction to fractional Sobolev spaces, we shall refer to the Hitchhiker’s guide of Di Nezza,
Palatucci and Valdinoci [14]. Concerning the Morse-theoretic apparatus, topological tools as well as exis-
tence and multiplicity results for the local case s = 1, we shall refer the reader to the monograph of Perera,
Agarwal and O’Regan [35], to the classical books by Chang [8], Mawhin and Willem [28], Milnor [32] and to
the references therein.

2 Preliminaries
In this preliminary section, for the reader’s convenience, we collect some basic results that will be used in the
forthcoming sections. In the following, for any functionalΦ and any Banach space (X, ‖ ⋅ ‖) we will denote

Φc = {u ∈ X : Φ(u) ≤ c} (c ∈ ℝ),

Bñ(u0) = {u ∈ X : ‖u − u0‖ ≤ ñ} (u0 ∈ X, ñ > 0).

Moreover, in the proofs of our results, C will denote a positive constant (whose value may change case
by case).

2.1 Variational formulation of the problem

LetΩ ⊂ ℝN be a bounded domain with smooth boundary àΩ, and for all 1 ≤ í ≤ ∞ denote by ‖ ⋅ ‖í the norm
of Lí(Ω). Moreover, let 0 < s < 1 < p < ∞ be real numbers, and the fractional critical exponent be defined as

p∗
s =

{
{
{

Np
N−sp if sp < N,

∞ if sp ≥ N.

Firstwe introduceavariational setting for problem (1.3). TheGagliardo seminorm isdefined for allmeasurable
function u : ℝN → ℝ by

[u]s,p = ( ∫
ℝ2N

|u(x) − u(y)|p

|x − y|N+sp dx dy)
1/p

.

We define the fractional Sobolev space

Ws,p(ℝN) = {u ∈ Lp(ℝN) : umeasurable, [u]s,p < ∞},

endowed with the norm
‖u‖s,p = (‖u‖pp + [u]ps,p)

1p .
For a detailed account on the properties of Ws,p(ℝN) we refer the reader to [14]. We shall work in the closed
linear subspace

X(Ω) = {u ∈ Ws,p(ℝN) : u(x) = 0 a.e. inℝN \ Ω},
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which can be equivalently renormed by setting ‖ ⋅ ‖ = [ ⋅ ]s,p (see [14, Theorem 7.1]). It is readily seen that
(X(Ω), ‖ ⋅ ‖) is a uniformly convex Banach space and that the embedding X(Ω) í→ Lí(Ω) is continuous for
all 1 ≤ í ≤ p∗

s , and compact for all 1 ≤ í < p∗
s (see [14, Theorems 6.5, 7.1]). The dual space of (X(Ω), ‖ ⋅ ‖) is

denoted by (X(Ω)∗, ‖ ⋅ ‖∗).
We rephrase variationally the fractional p-Laplacian as the nonlinear operator A : X(Ω) → X(Ω)∗ de-

fined for all u, v ∈ X(Ω) by

⟨A(u), v⟩ = ∫
ℝ2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+sp dx dy.

It can be seen that, if u is smooth enough, this definition coincides with that of (1.2). A (weak) solution of
problem (1.3) is a function u ∈ X(Ω) such that

⟨A(u), v⟩ = ∫
Ω

f(x, u)v dx (2.1)

for all v ∈ X(Ω).
Clearly, A is odd, (p − 1)-homogeneous, and satisfies for all u ∈ X(Ω)

⟨A(u), u⟩ = ‖u‖p, ‖A(u)‖∗ ≤ ‖u‖p−1.

SinceX(Ω) is uniformly convex, by [35, Proposition 1.3], A satisfies the following compactness condition:

Condition (S). If (un) is a sequence in X(Ω) such that un ⇀ u in X(Ω) and ⟨A(un), un − u⟩ → 0, then un → u
inX(Ω).

Moreover,A is a potential operator, preciselyA is theGâteauxderivative of the functional u Ü→ ‖u‖p/p inX(Ω).
Thus, A satisfies all the structural assumptions of [35].

Now we introduce the minimal hypotheses on the reaction term of (1.3):

HypothesisH2. The mapping f : Ω × ℝ → ℝ is a Carathéodory mapping,

F(x, t) =
t

∫
0

f(x, ó) dó for all (x, t) ∈ Ω × ℝ,

and
|f(x, t)| ≤ a(1 + |t|r−1)

a.e. inΩ and for all t ∈ ℝ (a > 0, 1 < r < p∗
s ).

We set for all u ∈ X(Ω)

Φ(u) =
‖u‖p

p
− ∫

Ω

F(x, u) dx. (2.2)

By Hypothesis H2, we have Φ ∈ C1(X(Ω)). We denote by K(Φ) the set of all critical points of Φ. If u ∈ K(Φ),
then (2.1) holds for all v ∈ X(Ω), i.e., u is a weak solution of (1.3). We recall now the Palais–Smale (PS) and
the Cerami (C) compactness conditions in a set U ⊆ X:

Condition (PS). Every sequence (un) in U such that (Φ(un)) is bounded inℝ andΦ�(un) → 0 inX(Ω)∗ admits
a convergent subsequence.

Condition (C). Every sequence (un) inU such that (Φ(un)) is bounded inℝ and (1 + ‖un‖)Φ
�(un) → 0 inX(Ω)∗

admits a convergent subsequence.

Such conditions hold for ourΦ, provided that the boundedness of the sequence is assumed:

Proposition 2.1. If Hypothesis H2 holds, and every sequence (un) in X(Ω) such that Φ�(un) → 0 (respectively,
(1 + ‖un‖)Φ

�(un) → 0) inX(Ω)∗ is bounded, thenΦ satisfies Condition (PS) (respectively, Condition (C)) inX(Ω).
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Proof. We deal with (PS). Passing to a relabeled subsequence, we have un ⇀ u inX(Ω), and un → u in Lr(Ω).
So we have for all n ∈ ℕ

|⟨A(un), un − u⟩| =
!!!!!!!!!
⟨Φ�(un), un − u⟩ + ∫

Ω

f(x, un)(un − u) dx
!!!!!!!!!

≤ ‖Φ�(un)‖∗‖un − u‖ + ∫
Ω

(1 + |un|
r−1)|un − u| dx

≤ ‖Φ�(un)‖∗‖un − u‖ + C(1 + ‖un‖
r−1
r )‖un − u‖r,

and the latter tends to 0 as n → ∞. So, by the (S)-property of A, we have un → u inX(Ω).

The following strong maximum principle (see [3, Theorem A.1], a consequence of [13, Lemma 1.3]) will be
useful in the proof of some of our results:

Proposition 2.2. If u ∈ X(Ω) \ {0} is such that u(x) ≥ 0 a.e. inΩ and

⟨A(u), v⟩ ≥ 0

for all v ∈ X(Ω), v(x) ≥ 0 a.e. inΩ, then u(x) > 0 a.e. inΩ.

2.2 An eigenvalue problem

We consider the nonlinear eigenvalue problem

{
{
{

(−Δ)sp u = ë|u|p−2u inΩ,

u = 0 onℝN \ Ω,
(2.3)

depending on the parameter ë ∈ ℝ. If (2.3) admits a weak solution u ∈ X(Ω) \ {0}, then ë is an eigenvalue and
u is a ë-eigenfunction. The set of all eigenvalues is referred to as the spectrum of (−Δ)sp in X(Ω) and denoted
by ò(s, p). As in the classical case of the p-Laplacian, the structure of ò(s, p) is not completely known yet, but
many properties have been detected by several authors, see for instance [16, 22, 25]. Here we recall only the
results that we will use in the forthcoming sections.

We already know from continuous embedding that the Rayleigh quotient

ë1 = infu∈X(Ω)\{0}

‖u‖p

‖u‖pp
(2.4)

lies in (0,∞). The number ë1 plays an important role in the study of problem (2.3).We list below some spectral
properties of (−Δ)sp:

Proposition 2.3. The eigenvalues and eigenfunctions of (2.3) have the following properties:
(i) ë1 = min ò(s, p) is an isolated point of ò(s, p),
(ii) all ë1-eigenfunctions are proportional, and if u is a ë1-eigenfunction, then either u(x) > 0 a.e. in Ω or

u(x) < 0 a.e. inΩ,
(iii) if ë ∈ ò(s, p) \ {ë1} and u is a ë-eigenfunction, then u changes sign inΩ,
(iv) all eigenfunctions are in L∞(Ω),
(v) ò(s, p) is a closed set.

We define a non-decreasing sequence (ëk) of variational eigenvalues of (−Δ)sp by means of the cohomologi-
cal index. This type of construction was introduced for the p-Laplacian by Perera [34] (see also Perera and
Szulkin [37]), and it is slightly di�erent from the traditional one, based on the Krasnoselskii genus (which
does not give the additional Morse-theoretical information that we need here).

We briefly recall the definition ofℤ2-cohomological index by Fadell and Rabinowitz [15]. For any closed,
symmetric subset M of a Banach space X, let M = M/ℤ2 be the quotient space (in which u and −u are
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identified), and let õ : M → ℝP∞ be the classifying map of the space M, which induces a homomorphism
õ∗ : H∗(ℝP∞) → H∗(M) of the Alexander–Spanier cohomology rings with coe�cients in ℤ2. We may iden-
tifyH∗(ℝP∞) with the polynomial ringℤ2[ø]. The cohomological index ofM is then

i(M) =
{
{
{

sup{k ∈ ℕ : õ∗(øk) ̸= 0} ifM ̸= 0,

0 ifM = 0.

Now let us come back to our case. We set for all u ∈ X(Ω)

J(u) =
‖u‖pp
p

, I(u) =
‖u‖p

p
, Ψ(u) =

1
J(u)

(u ̸= 0)

and define a C1-Finsler manifold by setting

M = {u ∈ X(Ω) : I(u) = 1}. (2.5)

For all k ∈ ℕ, we denote by Fk the family of all closed, symmetric subsetsM ofM such that i(M) ≥ k, and set

ëk = inf
M∈Fk supu∈M

Ψ(u) (2.6)

(note that, for k = 1, (2.4) and (2.6) agree). For all k ∈ ℕ, ëk turns out to be a critical value of the restricted
functionalΨ|M (which is even and satisfies (PS) by [35, Lemma 4.5]), hence, by the Lagrange multiplier rule,
an eigenvalue of (−Δ)sp. These eigenvalues have the following remarkable properties (see [35, Theorem 4.6]):

Proposition 2.4. The sequence (ëk) defined by (2.6) is non-decreasing and ëk → ∞ as k → ∞. Moreover, for
all k ∈ ℕ we have

i({u ∈ M : Ψ(u) ≤ ëk}) = i({u ∈ M : Ψ(u) < ëk+1}) = k.

Remark 2.5. In [22] a di�erent construction of the variational eigenvalues is performed. Such a construction
is equivalent to that described above, up to a point: precisely, one can easily see that, following the method
of [22], we obtain exactly the same sequence (ëk), while it is not certain whether the topological property in
Proposition 2.4 holds, or not.

2.3 Critical groups

Werecall thedefinitionand somebasic properties of critical groups, referring the reader to themonograph [35]
for a detailed account on the subject. LetX be a Banach space,Φ ∈ C1(X) be a functional satisfying (C), and
denote by K(Φ) the set of all critical points of Φ. Let u ∈ X be an isolated critical point of Φ, i.e., there exists
a neighborhoodU of u such thatK(Φ) ∩ U = {u}, andΦ(u) = c. For all k ∈ ℕ0, the k-th (cohomological) critical
group ofΦ at u is defined as

Ck(Φ, u) = Hk(Φc ∩ U,Φc ∩ U \ {u}),

where H∗(M,N) denotes again the Alexander-Spanier cohomology with coe�cients in ℤ2 for a topological
pair (M,N).

The definition above is well posed, since cohomology groups are invariant under excision, so Ck(Φ, u)
does not depend on U. Moreover, critical groups are invariant under homotopies preserving isolatedness of
critical points (see Chang and Ghoussoub [9], Corvellec and Hantoute [11]).

Proposition 2.6. Let X be a Banach space, let u ∈ X, and for all ó ∈ [0, 1] let Φó ∈ C1(X) be a functional such
that u ∈ K(Φó). If there exists a closed neighborhood U ⊂ X of u such that
(i) Φó satisfies (PS) in U for all ó ∈ [0, 1],
(ii) K(Φó) ∩ U = {u} for all ó ∈ [0, 1],
(iii) the mapping ó Ü→ Φó is continuous between [0, 1] and C1(U),
then for all k ∈ ℕ0 we have Ck(Φ1, u) = Ck(Φ0, u).

We recall some special cases in which the computation of critical groups is immediate (äk, ℎ is the Kronecker
symbol).
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Proposition 2.7. Let X be a Banach space with dim(X) = ∞, let Φ ∈ C1(X) be a functional satisfying (C), and
let u ∈ K(Φ) be an isolated critical point ofΦ. The following hold:
(i) if u is a local minimizer ofΦ, then Ck(Φ, u) = äk, 0 ℤ2 for all k ∈ ℕ0,
(ii) if u is a local maximizer ofΦ, then Ck(Φ, u) = 0 for all k ∈ ℕ0.

If the set of critical values ofΦ is bounded below, we define for all k ∈ ℕ0 the k-th critical group at infinity ofΦ
as

Ck(Φ,∞) = Hk(X, Φç),

where ç < infu∈K(Φ) Φ(u). We recall theMorse identity:

Proposition 2.8. Let X be a Banach space and let Φ ∈ C1(X) be a functional satisfying (C) such that K(Φ)
is a finite set. Then, there exists a formal power series Q(t) = ∑∞

k=0 qkt
k (qk ∈ ℕ0 for all k ∈ ℕ0) such that for

all t ∈ ℝ
∞

∑
k=0

∑
u∈K(Φ)
rank Ck(Φ, u)tk =

∞

∑
k=0
rank Ck(Φ,∞)tk + (1 + t)Q(t).

In the absence of a direct sum decomposition, one of the main technical tools that we use to compute the
critical groups ofΦ at zero is the notion of a cohomological local splitting introduced in [35], which is a variant
of the homological local linking of Perera [33]. The following slightly di�erent form of this notion was given
in Degiovanni, Lancelotti and Perera [12].

Definition 2.9. A functionalΦ ∈ C1(X) has a cohomological local splitting near 0 in dimension k ∈ ℕ if there
exist symmetric conesX± ⊂ X withX+ ∩ X− = {0} and ñ > 0 such that
(i) i(X− \ {0}) = i(X \ X+) = k,
(ii) Φ(u) ≤ Φ(0) for all u ∈ Bñ(0) ∩ X−, andΦ(u) ≥ Φ(0) for all u ∈ Bñ(0) ∩ X+.

In this case, we have the following result (see [12, Proposition 2.1]):

Proposition 2.10. If X is a Banach space and Φ ∈ C1(X) has a cohomological local splitting near 0 in dimen-
sion k ∈ ℕ, and 0 is an isolated critical point ofΦ, then Ck(Φ, 0) ̸= 0.

3 L∞-bounds on the weak solutions
In this section we will prove some a priori L∞-bounds on the weak solutions of problem (1.3). Similar bounds
were obtained before in some special cases, namely for linear, inhomogeneous fractional Laplacian equation
(see [44, Proposition 7]), and for the eigenvalue problem (2.3) (see [16, Theorem 3.2]). A fractional version
of De Giorgi’s iteration method was developed by Mingione [31]. Our hypothesis on the reaction term is the
following:

HypothesisH3. The mapping f : Ω × ℝ → ℝ is a Carathéodory mapping satisfying a.e. inΩ and for all t ∈ ℝ

|f(x, t)| ≤ a(|t|q−1 + |t|r−1),

for some a > 0, 1 ≤ q ≤ r < p∗
s .

The main result of the section is the following:

Theorem 3.1. If HypothesisH3 holds with q ≤ p ≤ r satisfying

1 +
q
p

>
r
p
+

r
p∗
s
,

then there exist K > 0 and á > 1, only depending on s, p, Ω, a, q, and r, such that, for every weak solution
u ∈ X(Ω) of (1.3), we have u ∈ L∞(Ω) and

‖u‖∞ ≤ K(1 + ‖u‖ár ).
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Proof. Fix a weak solution u ∈ X(Ω) of (1.3) with u+ ̸= 0. We choose ñ ≥ max{1, ‖u‖−1r }, set v = (ñ‖u‖r)
−1u, so

v ∈ X(Ω), ‖v‖r = ñ−1, and v is a weak solution of the auxiliary problem

{
{
{

(−Δ)sp v = (ñ‖u‖r)
1−pf(x, ñ‖u‖rv) inΩ,

v = 0 onℝN \ Ω.
(3.1)

For all n ∈ ℕwe set vn = (v − 1 + 2−n)+, so vn ∈ X(Ω), v0 = v+, and for all n ∈ ℕwehave 0 ≤ vn+1(x) ≤ vn(x) and
vn(x) → (v(x) − 1)+ a.e. inΩ as n → ∞. Moreover, the following inclusion holds (up to a Lebesgue null set):

{vn+1 > 0} ⊆ {0 < v < (2n+1 − 1)vn} ∩ {vn > 2−n−1}. (3.2)

For all n ∈ ℕ we set Rn = ‖vn‖
r
r, so R0 = ‖v+‖rr ≤ ñ−r, and (Rn) is a nonincreasing sequence in [0, 1]. We shall

prove thatRn → 0 as n → ∞. By Hölder’s inequality, the fractional Sobolev inequality (see [14, Theorem 6.5]),
(3.2), and Chebyshev’s inequality we have for all n ∈ ℕ

Rn+1 ≤ |{vn+1 > 0}|1−
rp∗s ‖vn+1‖rp∗s ≤ C|{vrn > 2−r(n+1)}|1−

rp∗s ‖vn+1‖r ≤ C 2(r−
r2p∗s )(n+1)R1− rp∗s

n ‖vn+1‖
r.

So, what we need now is an estimate of ‖vn+1‖. Using the elementary inequality

|î+ − ç+|p ≤ |î − ç|p−2(î − ç)(î+ − ç+) (î, ç ∈ ℝ),

testing (3.1) with vn+1, and applying also (3.2), we obtain

‖vn+1‖
p ≤ ⟨A(v), vn+1⟩

= ∫
Ω

(ñ‖u‖r)
1−pf(x, ñ‖u‖rv)vn+1 dx

≤ C ∫
{vn+1>0}

((ñ‖u‖r)
q−p|v|q−1 + (ñ‖u‖r)

r−p|v|r−1)vn+1 dx

≤ C(ñ‖u‖r)
r−p ∫

{vn+1>0}
((2n+1 − 1)q−1vqn + (2n+1 − 1)r−1vrn) dx

≤ C 2(r−1)(n+1)(ñ‖u‖r)
r−pR

qr
n .

Concatenating the inequalities above we have

Rn+1 ≤ C 2(r+
r2p − rp− r2p∗s )(n+1)(ñ‖u‖r) r2p −rR

1+ qp− rp∗s
n ,

which rephrases as the recursive inequality

Rn+1 ≤ Hn(ñ‖u‖r)
r2p −rR1+â

n , (3.3)

whereH > 1 and 0 < â < 1 only depend on the data of (1.3). Now we set ã = râ + r − r2/p > 0, and fix

ñ = max{1, ‖u‖−1r , ç−
1ã ‖u‖( r2p −r) 1ã

r }.

We prove that, provided ñ is big enough, for all n ∈ ℕ

Rn ≤
çn

ñr
, (3.4)

for ç = H−1/â ∈ (0, 1). We argue by induction. We already know that R0 ≤ ñ−r. Assuming that (3.4) holds for
some n ∈ ℕ, by (3.3) we have

Rn+1 ≤ Hn(ñ‖u‖r)
r2p −r(

çn

ñr
)
1+â

≤
‖u‖

r2p −r
r çn

ñã+r
≤

çn+1

ñr
.

By (3.4) we have Rn → 0. This, in turn, implies that vn(x) → 0 a.e. in Ω, so v(x) ≤ 1 a.e. in Ω. An analogous
argument applies to −v, so we have v ∈ L∞(Ω) and ‖v‖∞ ≤ 1, hence u ∈ L∞(Ω) and

‖u‖∞ ≤ ñ‖u‖r = max{‖u‖r, 1, ç
− 1ã ‖u‖1+( r2p −r) 1ã

r } ≤ K(1 + ‖u‖ár ),

for someK > 0 and á > 1 only depending on the data of (1.3). This concludes the proof.
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If, in Hypothesis H3, we assume q = p, then we can improve Theorem 3.1 in a twofold way: we may take
any r below the critical exponent, and the inequality relating the L∞-norms of solutions to the Lr-norms is of
linear type.

Corollary 3.2. If Hypothesis H3 holds with q = p ≤ r < p∗
s , then for all 0 < ù < 1 there exists a constant K > 0,

only depending on s, p, Ω, a, and r, such that, for every weak solution u ∈ X(Ω) of (1.3) with ‖u‖r < K, we have
u ∈ L∞(Ω) and

‖u‖∞ ≤ K−1‖u‖r.

Proof. Fix 0 < ù < 1. Let u ∈ X(Ω) be a weak solution of (1.3) with u+ ̸= 0 and ‖u‖r ≤ ù. We set v = ù−1u. Then,
v ∈ X(Ω) and ‖v‖r ≤ 1. For all n ∈ ℕ we set vn = (v − 1 + 2−k)+ and Rn = ‖vn‖

r
r. Reasoning as in the proof of

Theorem 3.1, we derive the following recursive inequality:

Rn+1 ≤ HNR1+â
n , (3.5)

for someH > 1, 0 < â < 1 depending only on the data of (1.3). We set ç = H−1/â ∈ (0, 1) and ä = ç1/(âr)ù ∈ (0, ù).
If ‖u‖r = ä, then for all n ∈ ℕ we have

Rn ≤
är

ùr
çn. (3.6)

Indeed, clearly R0 ≤ är/ùr. Moreover, if (3.6) holds for some n ∈ ℕ, then by (3.5) we have

Rn+1 ≤ Hn(
är

ùr
çn)

1+â
=

är

ùr
çn+1.

By (3.6) we have Rn → 0 as n → ∞, so v(x) ≤ 1 a.e. in Ω. Reasoning in a similar way on −v, we get ‖v‖∞ ≤ 1,
hence

‖u‖∞ ≤ ù = ç−
1âr ‖u‖r.

We set K = ç1/âr. Letting ù span the interval (0, 1), we see that for every weak solution u ∈ X(Ω) of (1.3)
with ‖u‖r < K we have u ∈ L∞(Ω) and ‖u‖∞ ≤ K−1‖u‖r.

4 p-superlinear case
In this section we study problem (1.3), rephrased as

{
{
{

(−Δ)sp u = ë|u|p−2u + g(x, u) inΩ,

u = 0 onℝN \ Ω,
(4.1)

where ë ∈ ℝ is a parameter and the hypotheses on the reaction term are the following:

HypothesisH4. The mapping g : Ω × ℝ → ℝ is a Carathéodory mapping,

G(x, t) =
t

∫
0

g(x, ó) dó,

and
(i) |g(x, t)| ≤ a(1 + |t|r−1) a.e. inΩ and for all t ∈ ℝ (a > 0, p < r < p∗

s ),
(ii) 0 < ìG(x, t) ≤ g(x, t)t a.e. inΩ and for all |t| ≥ R (ì > p, R > 0),
(iii) limt→0

g(x,t)
|t|p−1 = 0 uniformly a.e. inΩ.

Since g(x, ⋅ ) does not necessarily vanish at infinity, Hypothesis H4 classifies problem (4.1) as p-superlinear.
Besides, by HypothesisH4 (iii) we have g(x, 0) = 0 a.e. inΩ, so (4.1) admits the zero solution for all ë ∈ ℝ. By
means of Morse theory and the spectral properties of (−Δ)sp, wewill prove the existence of a non-zero solution
for all ë ∈ ℝ, requiring when necessary additional sign conditions on G(x, ⋅ ) near zero. Results of this type
were first proved for the p-Laplacian in [12] (see also Perera and Sim [36]).

The main result of this section is the following theorem.
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Theorem 4.1. If HypothesisH4 and one of the following hold:
(i) ë ∉ (ëk),
(ii) ë ∈ (ëk) and G(x, t) ≥ 0 a.e. inΩ and for all |t| ≤ ä (for some ä > 0),
(iii) ë ∈ (ëk) and G(x, t) ≤ 0 a.e. inΩ and for all |t| ≤ ä (for some ä > 0),
then problem (4.1) admits a non-zero solution.

In the present case, the energy functional takes for all u ∈ X(Ω) the form

Φ(u) =
‖u‖p

p
−
ë‖u‖pp
p

− ∫
Ω

G(x, u) dx.

Lemma 4.2. The functionalΦ ∈ C1(X(Ω)) satisfies Condition (PS). Moreover, there exists an ç < 0 such thatΦç

is contractible.

Proof. By HypothesisH4 (ii) we have a.e. inΩ and for all t ∈ ℝ

G(x, t) ≥ C0|t|
ì − C1 (C0, C1 > 0). (4.2)

Let (un) be a sequence in X(Ω) such that (Φ(un)) is bounded in ℝ and Φ�(un) → 0 in X(Ω)∗. By (4.2) we have
for all n ∈ ℕ

(
ì
p
− 1)

‖un‖
p

2
=

ì + p
2

Φ(un) − ⟨Φ�(un), un⟩ +
ë
2
(
ì
p
− 1)‖un‖

p
p + ∫

Ω

(
ì + p
2

G(x, un) − g(x, un)un) dx

≤ ‖Φ�(un)‖∗‖un‖ +
ë
2
(
ì
p
− 1)‖un‖

p
p −

ì − p
2

‖un‖
ì
ì + C

≤ ‖Φ�(un)‖∗‖un‖ + C(1 + ‖un‖
p
ì − ‖un‖

ì
ì),

hence (un) is bounded inX(Ω). By Proposition 2.1,Φ satisfies Condition (PS).
Now, fix u ∈ X(Ω) \ {0}. By (4.2) we have for all ó > 0

Φ(óu) ≤
óp‖u‖p

p
−
ëóp‖u‖pp

p
− C(óì‖u‖ìì − 1),

and the latter tends to −∞ as ó → ∞. In particular, Φ is unbounded below in X(Ω). Moreover, by Hypo-
thesisH4 (ii) we have

⟨Φ�(u), u⟩ = pΦ(u) + ∫
Ω

(pG(x, u) − g(x, u)u) dx ≤ pΦ(u),

so there exists an ç < 0 such that for all u ∈ Φç we have

⟨Φ�(u), u⟩ < 0. (4.3)

By the considerations above, we see that, for all u ∈ X(Ω) \ {0}, there exists a unique ó(u) ≥ 1 such that, for
all ó ∈ [1,∞),

Φ(óu)
{{{
{{{
{

> ç if 1 ≤ ó < ó(u),

= ç if ó = ó(u),

< ç if ó > ó(u).

Moreover, by the Implicit Function Theorem and (4.3), themapping ó : X(Ω) \ {0} → [1,∞) is continuous.We
define a continuous deformation ℎ : [0, 1]× (X(Ω)\ {0}) → X(Ω)\ {0} by setting for all (t, u) ∈ [0, 1]×X(Ω)\ {0}

ℎ(t, u) = (1 − t)u + tó(u).

It is immediately seen that Φç is a strong deformation retract of X(Ω) \ {0}. Similarly, by radial retraction we
see that àB1(0) is a deformation retract of X(Ω) \ {0}, and àB1(0) is contractible (as dim(X(Ω)) = ∞), so Φç

is contractible.
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Weneed to compute the critical groups ofΦ at 0. With this aim inmind, we define for all ó ∈ [0, 1] a functional
Φó ∈ C1(X(Ω)) by setting for all u ∈ X(Ω)

Φó(u) =
‖u‖p

p
−
ë‖u‖pp
p

− ∫
Ω

G(x, (1 − ó)u + óè(u)) dx,

where è ∈ C1(ℝ, [−ä, ä]) (ä > 0) is a non-decreasing mapping such that

è(t) =
{
{
{

t if |t| ≤ ä
2 ,

±ä if ±t ≥ ä.

Clearly,Φ0 = Φ. Critical groups ofΦ andΦ1 at 0 coincide:

Lemma 4.3. The point 0 is an isolated critical point ofΦó, uniformly with respect to ó ∈ [0, 1], and

Ck(Φ, 0) = Ck(Φ1, 0)

for all k ∈ ℕ0.

Proof. For ù > 0 small enough, we have K(Φ) ∩ Bù(0) = {0}. We prove now that, taking ù > 0 even smaller if
necessary, we have

K(Φó) ∩ Bù(0) = {0} for all ó ∈ [0, 1]. (4.4)

We argue by contradiction: assume that there exist sequences (ón) in [0, 1] and (un) in X(Ω) \ {0} such that
Φ�

ón (un) = 0 for all n ∈ ℕ, and un → 0 inX(Ω). For all n ∈ ℕ, we set for all (x, t) ∈ Ω × ℝ

gn(x, t) = (1 − ón + ónè
�(t))g(x, (1 − ón)t + ónè(t)),

where è ∈ C1(ℝ, [−ä, ä]) is defined as above. By Hypothesis H4 (i) and (iii), for all n ∈ ℕ, gn : Ω × ℝ → ℝ is
a Carathéodory mapping and satisfies a.e. inΩ and for all t ∈ ℝ

|ë|t|p−2t + gn(x, t)| ≤ a�(|t|p−1 + |t|r−1),

for some a� > 0 independent of n ∈ ℕ. Besides, for all n ∈ ℕ, un is a weak solution of the auxiliary problem

{
{
{

(−Δ)sp u = ë|u|p−2u + gn(x, u) inΩ,

u = 0 inℝN \ Ω.
(4.5)

ByCorollary 3.2, there exists a constantK > 0 (independent of n ∈ ℕ) such that, for allweak solutionu ∈ X(Ω)
of (4.5) with ‖u‖r < Kwe have u ∈ L∞(Ω)with ‖u‖∞ ≤ K−1‖u‖r. By the continuous embeddingX(Ω) í→ Lr(Ω),
we have un → 0 in Lr(Ω), hence the same convergence takes place in L∞(Ω) as well. In particular, for n ∈ ℕ
big enough we have un ∈ Bù(0) and ‖un‖∞ ≤ ä/2, hence by definition ofΦón it is easily seen that

Φ�(un) = Φ�
ón (un) = 0,

i.e., un ∈ K(Φ) ∩ Bù(0) \ {0}, a contradiction. So (4.4) is achieved.
For all 0 ≤ ó ≤ 1 the functional Φó ∈ C1(X(Ω)) satisfies hypotheses analogous to Hypothesis H4, hence

by Lemma 4.2 Φó satisfies (PS) in Bù(0). Besides, clearly the mapping ó Ü→ Φó is continuous in [0, 1]. So, by
Proposition 2.6 we have Ck(Φ, 0) = Ck(Φ1, 0) for all k ∈ ℕ0.

We prove now that Φ has a non-trivial critical group at zero for all ë ∈ ℝ, under appropriate conditions.
We begin with ‘small’ ë:

Lemma 4.4. If one of the following holds:
(i) ë < ë1,
(ii) ë = ë1, and G(x, t) ≤ 0 a.e. inΩ and for all |t| ≤ ä (for some ä > 0),
then Ck(Φ, 0) = äk, 0 ℤ2 for all k ∈ ℕ0.
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Proof. By HypothesisH4 (iii), for all ù > 0 there exists some ñ > 0 such that a.e. inΩ and for all |t| ≤ ñ

|g(x, t)| ≤ ù|t|p−1.

So, for all u ∈ X(Ω) we have by HypothesisH4 (i)
!!!!!!!!!
∫
Ω

G(x, u) dx
!!!!!!!!!
≤ ∫

{|u|≤ñ}

ù|u|p

p
dx + ∫

{|u|>ñ}

a(|u| +
|u|r

r
) dx ≤

ù‖u‖pp
p

+ C‖u‖rr,

which, together with the continuous embeddingsX(Ω) í→ Lp(Ω), Lr(Ω) and by arbitrarity of ù > 0, yields

∫
Ω

G(x, u) dx = o(‖u‖p) as ‖u‖ → 0. (4.6)

Now we consider separately the two cases:
(i) By (4.6), we have for all u ∈ X(Ω)

Φ(u) ≥ (1 −
ë
ë1

)
‖u‖p

p
+ o(‖u‖p),

and the latter is positive for ‖u‖ > 0 small enough, hence 0 is a strict local minimizer of Φ. Thus, by
Lemma 2.7, for all k ∈ ℕ0 we have Ck(Φ, 0) = äk, 0ℤ2.

(ii) By Lemma 4.3, we may pass toΦ1 ∈ C1(X(Ω)). For all u ∈ X(Ω) we have |è(u(x))| ≤ ä a.e. inΩ, so

Φ1(u) ≥ (1 −
ë
ë1

)
‖u‖p

p
− ∫

Ω

G(x, è(u)) dx ≥ 0,

hence 0 is a local minimizer ofΦ1. Thus, by Lemmas 2.7 and 4.3, for all k ∈ ℕ0 we have

Ck(Φ, 0) = Ck(Φ1, 0) = äk, 0ℤ2.

This concludes the proof.

Now we consider ‘big’ ë:

Lemma 4.5. If one of the following holds for some k ∈ ℕ:
(i) ëk < ë < ëk+1,
(ii) ëk = ë < ëk+1, and G(x, t) ≥ 0 a.e. inΩ and for all |t| ≤ ä (for some ä > 0),
(iii) ëk < ë = ëk+1, and G(x, t) ≤ 0 a.e. inΩ and for all |t| ≤ ä (for some ä > 0),
then Ck(Φ, 0) ̸= 0.

Proof. First we assume (i). Again, (4.6) holds. We prove that Φ has a cohomological local splitting near 0 in
dimension k ∈ ℕ (see Definition 2.9). Set

X+ = {u ∈ X(Ω) : ‖u‖p ≥ ëk+1‖u‖
p
p}, X− = {u ∈ X(Ω) : ‖u‖p ≤ ëk‖u‖

p
p}.

Clearly,X± are symmetric closed cones withX+ ∩ X− = {0} (as ëk < ëk+1). Defining themanifoldM as in (2.5),
by Proposition 2.4 we have

i(M ∩ X−) = i(M ∩ (X(Ω) \ X+)) = k.

We define a mapping ℎ : [0, 1] × (X− \ {0}) → (X− \ {0}) by setting for all (t, u) ∈ [0, 1] × (X− \ {0})

ℎ(t, u) = (1 − t)u + t
p1/pu
‖u‖

.

It is easily seen that, by means of ℎ, the setM ∩ X− is a deformation retract ofX− \ {0}, so we have

i(X− \ {0}) = k.

Analogously we see that
i(X(Ω) \ X+) = k.

Brought to you by | Universita degli Studi di Ferrara
Authenticated

Download Date | 4/4/16 12:02 PM



A. Iannizzotto et al., Fractional p-Laplacian problems | 113

Now we prove that, for ñ > 0 small enough,

Φ(u) ≤ 0 for all u ∈ Bñ(0) ∩ X−,

Φ(u) ≥ 0 for all u ∈ Bñ(0) ∩ X+.
(4.7)

Indeed, for all u ∈ X− \ {0}, we have by (4.6)

Φ(u) ≤ (1 −
ë
ëk

)
‖u‖p

p
+ o(‖u‖p) as ‖u‖ → 0,

and the latter is negative for ‖u‖ > 0 small enough. Besides, for all u ∈ X+ \ {0}, we have

Φ(u) ≥ (1 −
ë

ëk+1
)
‖u‖p

p
+ o(‖u‖p) as ‖u‖ → 0,

and the latter is positive for ‖u‖ > 0 small enough. So (4.7) holds.
Now we apply Proposition 2.10 and conclude that Ck(Φ, 0) ̸= 0.
If we assume either (ii) or (iii), we can develop the same argument for Φ1 (replacing one of the strict

inequalities ëk < ë < ëk+1 with the convenient sign condition on G(x, è(u(x))) a.e. in Ω). Then we apply
Lemma 4.3 and obtain Ck(Φ, 0) = Ck(Φ1, 0) ̸= 0.

Now we are ready to prove our main result:

Proof of Theorem 4.1. We argue by contradiction, assuming

K(Φ) = {0}. (4.8)

Let ç < 0 be as in Lemma 4.2. Since there is no critical value forΦ in [ç, 0) andΦ satisfies (PS) inX(Ω), by the
Second Deformation Theorem the set Φç is a deformation retract of Φ0 \ {0}. Analogously, since there is no
critical value in (0,∞),Φ0 is a deformation retract ofX(Ω). So we have for all k ∈ ℕ0

Ck(Φ, 0) = Hk(Φ0, Φ0 \ {0}) = Hk(X(Ω), Φç) = 0.

We can easily check that, in all cases (i)–(iii), one of the assumptions of either Lemma 4.4 or 4.5 holds for
some k ∈ ℕ0, a contradiction. Thus, (4.8) must be false and there exists some u ∈ K(Φ) \ {0}, which turns out
to be a non-zero solution of (4.1).

5 Multiplicity for the coercive case
In this section, following the methods of Liu and Liu [26] (see also Liu and Li [27]), we prove a multiplicity
result for problem (1.3), under assumptions which make the energy functional coercive. More precisely, by
a truncation argument andminimization, we prove the existence of two constant sign solutions (one positive,
the other negative), then we apply Morse theory to find a third non-zero solution.

We assume thatΩ has a C1,1 boundary. The hypotheses on the reaction term f in (1.3) are the following:

HypothesisH5. The mapping f : Ω × ℝ → ℝ is a Carathéodory mapping,

F(x, t) =
t

∫
0

f(x, ó) dó for all (x, t) ∈ Ω × ℝ,

and
(i) |f(x, t)| ≤ a(1 + |t|r−1) a.e. inΩ and for all t ∈ ℝ (a > 0, 1 < r < p∗

s ),
(ii) f(x, t)t ≥ 0 a.e. inΩ and for all t ∈ ℝ,
(iii) limt→0

f(x,t)−b|t|q−2t
|t|p−2t = 0 uniformly a.e. inΩ (b > 0, 1 < q < p),

(iv) lim sup|t|→∞
pF(x,t)
|t|p < ë1 uniformly a.e. inΩ.
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WedefineΦ as in (2.2). Sincewe are interested in findingminimizers of truncated versions ofΦ, we shall need
a nonlocal analogous of a well-known result of Garcìa Azorero, Peral Alonso and Manfredi [17] about local
minimizers of functionals in Hölder and Sobolev topologies, which holds under suitable regularity assump-
tions. We briefly discuss such issue before introducing the main result.

For all x ∈ Ω we set
ä(x) := dist(x, ℝN \ Ω).

Accordingly, we define the weighted Hölder-type spaces (á, ã ∈ (0, 1))

C0
ä(Ω) := {u ∈ C0(Ω) :

u
äã

admits a continuous extension toΩ},

C0,á
ä (Ω) := {u ∈ C0(Ω) :

u
äã

admits an á-Hölder continuous extension toΩ},

endowed with the norms

‖u‖C0ä(Ω) :=
"""""""
u
äã

"""""""∞
,

‖u‖C0,áä (Ω) := ‖u‖C0ä(Ω) + sup
x,y∈Ω, x ̸=y

|u(x)/ä(x)ã − u(y)/ä(y)ã|
|x − y|á

,

respectively. Clearly, if u ∈ C0
ä(Ω), then u = 0 on àΩ. In general, all functions that vanish at àΩ will be iden-

tified with their zero-extensions to ℝN. By the Arzelà–Ascoli Theorem, the embedding C0,á
ä (Ω) í→ C0

ä(Ω) is
compact for all 0 < á < 1. Further, C0

ä(Ω) is an ordered Banach space with order cone

C+ = {u ∈ C0
ä(Ω) : u(x) ≥ 0 for all x ∈ Ω}.

Lemma 5.1. The interior of C+, with respect to the topology of C0
ä(Ω), is

int(C+) = {u ∈ C0
ä(Ω) : u(x)d(x)−ã > 0 for all x ∈ Ω}.

Proof. First,weprove thedirect inclusion, by contradiction.Assume thatu ∈ int(C+) and there exists an ̄x ∈ Ω
such that u( ̄x)ä( ̄x)−ã = 0 (recall that uä−ã is identified with its continuous extension to Ω). We can find ù > 0
and a non-negative function v ∈ C0(ℝN) such that v(x) = 0 in ℝN \ Bù( ̄x) and v( ̄x) > 0. For all n ∈ ℕ set
un = u − väã/n. Then, un ∈ C0

ä(Ω) and, as n → ∞,

‖un − u‖C0ä(Ω) =
"""""""
un
äã

−
u
äã

"""""""C0(Ω)
=

‖v‖C0(Bù( ̄x))

n
→ 0,

while for all n ∈ ℕ we have
un( ̄x)ä( ̄x)−ã < 0.

This, in turn, implies that un(xn) < 0 for some xn ∈ Ω, hence un ∉ C+, a contradiction.
We now prove the reverse inclusion, arguing again by contradiction. To this end, assume that u ∈ C0

ä(Ω)
and u(x)ä(x)−ã > 0 in Ω, and that there exist sequences (un) in C0

ä(Ω), (xn) in Ω such that un → u in C0
ä(Ω)

and un(xn) < 0 for all n ∈ ℕ. Up to a relabeled subsequence, xn → x for some x ∈ Ω, so we have
un(xn)
ä(xn)ã

→
u(x)
ä(x)ã

.

Hence, u(x)ä(x)−ã ≤ 0, a contradiction.

We will assume that the following regularity condition holds:

Condition (RC). Let f satisfy HypothesisH5 (i)–(ii). Then, there exist á, ã ∈ (0, 1), only depending on the data
of (1.3), such that:
(i) if u ∈ X(Ω) is a bounded weak solution of (1.3), then u ∈ C0,ã(Ω) ∩ C0,á

ä (Ω) and, if ±u(x) > 0 in Ω, then
±u(x)ä(x)−ã > 0 inΩ,

(ii) if u ∈ X(Ω) and, for all 0 < ù < 1, the restrictionΦ|Bù(u) attains its infimum at uù ∈ Bù(u), then uù ∈ C0,á
ä (Ω)

and
sup
0<ù<1

‖uù‖C0,áä (Ω) < ∞.

Condition (RC) plays an essential role in the proof of the following result.
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Proposition 5.2. If u ∈ X(Ω) ∩ C0
ä(Ω) and ñ > 0 are such thatΦ(u + ℎ) ≥ Φ(u) for all ℎ ∈ X(Ω) ∩ C0

ä(Ω) satisfy-
ing ‖ℎ‖C0ä(Ω) ≤ ñ, then there exists an ù > 0 such thatΦ(u + ℎ) ≥ Φ(u) for all ℎ ∈ X(Ω) satisfying ‖ℎ‖ ≤ ù.

Proof. We argue by contradiction, assuming that there exists some ñ > 0 such that Φ(u + ℎ) ≥ Φ(u) for all
ℎ ∈ X(Ω) ∩ C0

ä(Ω) satisfying ‖ℎ‖C0ä(Ω) < ñ, while there exists a sequence (ℎn) in X(Ω) such that ‖ℎn‖ ≤ 1/n and
Φ(u + ℎn) < Φ(u), for all n ∈ ℕ. With no loss of generality we may assume that

Φ(u + ℎn) = inf
ℎ∈B1/n(0)Φ(u + ℎ),

so by Condition (RC) (ii) we can find á, ã ∈ (0, 1) such that the sequence (ℎn) is bounded in C0,á
ä (Ω). By the

compact embedding C0,á
ä (Ω) í→ C0

ä(Ω), we have, up to a relabeled subsequence, ℎn → 0 in C0
ä(Ω) (recall

that ℎn(x) → 0 a.e. inΩ). For n ∈ ℕ big enough, we have

‖ℎn‖C0ä(Ω) < ñ and Φ(u + ℎn) < Φ(u),

against our assumption.

The main result of this section is the following:

Theorem 5.3. If Hypothesis H5 and Condition (RC) hold, then problem (1.3) admits at least three non-zero
solutions.

Remark 5.4. In the linear case p = 2, (RC) holds with ã = s due to the results of [39, 40]. Such a case was
carefully studied by Iannizzotto, Mosconi and Squassina [19], who, through di�erent L∞-bounds and a non-
local Hopf Lemma, prove versions of Proposition 5.2 and Theorem 5.3 with no regularity assumption. How to
achieve (RC) in the nonlinear case p ̸= 2 is still an open problem, yet a partial result in this direction (namely,
Cá-regularity up to the boundary of the weak solutions) is provided in the forthcoming paper [20].

We introduce two truncated energy functionals by setting for all u ∈ X(Ω)

Φ±(u) =
‖u‖p

p
− ∫

Ω

F(x, ±u±) dx, (5.1)

where t± = max{±u, 0}. The following lemma displays some properties ofΦ±:

Lemma 5.5. We haveΦ± ∈ C1(X(Ω)). Moreover,
(i) if u ∈ X(Ω) is a critical point ofΦ±, then ±u(x) ≥ 0 a.e. inΩ,
(ii) 0 is not a local minimizer ofΦ±,
(iii) Φ± is coercive inX(Ω).

Proof. We consider Φ+, the argument for Φ− being analogous. By HypothesisH5 (ii), we have f(x, 0) = 0 a.e.
in Ω, so (x, t) → f(x, t+) is Carathéodory and satisfies a growth condition similar to Hypothesis H5 (i). So,
Φ+ ∈ C1(X(Ω)) with derivative given for all u, v ∈ X(Ω) by

⟨Φ�
+(u), v⟩ = ⟨A(u), v⟩ − ∫

Ω

f(x, u+)v dx.

Now we prove (i). AssumeΦ�
+(u) = 0 inX(Ω)∗. We recall the elementary inequality

|î− − ç−|p ≤ |î − ç|p−2(î − ç)(ç− − î−),

holding for all î, ç ∈ ℝ. Testing with −u− ∈ X(Ω), we have

‖u−‖p ≤ ⟨A(u), −u−⟩ = −∫
Ω

f(x, u+)u− dx = 0.

Hence, u ≥ 0 a.e. inΩ.
Now we prove (ii). By HypothesisH5 (i)–(ii), we have a.e. inΩ and for all t ∈ ℝ

F(x, t+) ≥ C0|t|
q − C1|t|

r (C0, C1 > 0). (5.2)
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Consider a function ū ∈ X(Ω), ū(x) > 0 a.e. inΩ. For all ó > 0 we have

Φ+(óū) =
óp‖ū‖p

p
− ∫

Ω

F(x, óū) dx ≤
óp‖ū‖p

p
− óqC0‖ū‖

q
Lq(Ω) + órC1‖ū‖

r
r,

and the latter is negative for ó > 0 close enough to 0. So, 0 is not a local minimizer ofΦ+.
Finally, we prove (iii). By HypothesisH5 (iv), for all ù > 0 small enough, we have a.e. inΩ and for all t ∈ ℝ

F(x, t+) ≤
ë1 − ù
p

|t|p + C.

By the definition of ë1, we have for all u ∈ X(Ω)

Φ+(u) ≥
‖u‖p

p
−
ë1 − ù
p

‖u‖pLp(Ω) − C ≥
ù

pë1
‖u‖p − C,

and the latter goes to∞ as ‖u‖ → ∞. So,Φ+ is coercive inX(Ω).

Now we can prove our main result:

Proof of Theorem 5.3. The functionalΦ+ is coercive and sequentially weakly lower semi-continuous inX(Ω),
so there exists u+ ∈ X(Ω) such that

Φ+(u+) = infu∈X(Ω)
Φ+(u).

Since u+ is a critical point of Φ+, by Lemma 5.5 (i)–(ii) we have u+(x) ≥ 0 a.e. in Ω and u+ ̸= 0. By Hypo-
thesisH5 (ii) and Proposition 2.2, we have u+(x) > 0 a.e. inΩ.

Now we invoke Condition (RC) (i) and find á, ã ∈ (0, 1) such that u+ ∈ C0,á
ä (Ω) and u(x)ä(x)−ã > 0 inΩ. By

Lemma 5.1, then, u+ ∈ int(C+). Let ñ > 0 be such that u+ + ℎ ∈ int(C+) for all ℎ ∈ X(Ω) ∩ C0
ä(Ω), ‖ℎ‖C0ä(Ω) ≤ ñ.

SinceΦ andΦ+ agree on int(C+), for all ℎ ∈ X(Ω) ∩ C0
ä(Ω), ‖ℎ‖C0ä(Ω) ≤ ñ we have

Φ(u+) ≤ Φ(u + ℎ).

By Proposition 5.2, u+ turns out to be a local minimizer ofΦ inX(Ω), henceΦ�(u+) = 0 inX(Ω)∗.
Similarly, we find a local minimizer u− ∈ X(Ω) ∩ (− int(C+)) ofΦ, withΦ�(u−) = 0.
From now on we argue by contradiction, assuming that

K(Φ) = {0, u±}. (5.3)

Note that Φ(u±) < Φ(0) = 0. In particular, 0 and u± are isolated critical points, so we can compute the corre-
sponding critical groups. Clearly, since u± are strict local minimizers ofΦ, we have for all k ∈ ℕ0

Ck(Φ, u±) = äk, 0ℤ2. (5.4)

Now we prove that for all k ∈ ℕ0

Ck(Φ, 0) = 0. (5.5)

By (5.2), for all u ∈ X(Ω) \ {0} we can find ó(u) ∈ (0, 1) such that Φ(óu) < 0 for all 0 < ó < ó(u). Besides,
HypothesisH5 (iii) implies

lim
t→0

qF(x, t) − f(x, t)t
|t|p

= 0.

So, for all ù > 0 we can find Cù > 0 such that a.e. inΩ and for all t ∈ ℝ
!!!!!!!
F(x, t) −

f(x, t)t
q

!!!!!!!
≤ ù|t|p + Cù|t|

r.

By the relations above we have

∫
Ω

(F(x, u) −
f(x, u)u

q
) dx = o(‖u‖p) as ‖u‖ → 0.

For all u ∈ X(Ω) \ {0} we have
1
q
d
dó

Φ(óu)|ó=1 =
‖u‖p

q
− ∫

Ω

f(x, u)u
q
dx = Φ(u) + (

1
q
−

1
p
)‖u‖p + o(‖u‖p) as ‖u‖ → 0.
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So we can find some ñ > 0 such that, for all u ∈ Bñ(0) \ {0} withΦ(u) > 0,

d
dó

Φ(óu)|ó=1 > 0. (5.6)

This assures uniqueness of ó(u) defined as above, for all u ∈ Bñ(0) with Φ(u) > 0. We set ó(u) = 1 for all
u ∈ Bñ(0) with Φ(u) ≤ 0, so we have defined a mapping ó : Bñ(0) → (0, 1]. By (5.6) and the Implicit Function
Theorem, ó turns out to be continuous. We set for all (t, u) ∈ [0, 1] × Bñ(0)

ℎ(t, u) = (1 − t)u + tó(u)u,

so ℎ : [0, 1]×Bñ(0) → Bñ(0) is a continuous deformation and the setBñ(0)∩Φ
0 is a deformation retract ofBñ(0).

Similarly we deduce that the set Bñ(0) ∩ Φ0 \ {0} is a deformation retract of Bñ(0) \ {0}. So, by recalling that
dim(X(Ω)) = ∞, we have

Ck(Φ, 0) = Hk(Bñ(0) ∩ Φ0, Bñ(0) ∩ Φ0 \ {0}) = Hk(Bñ(0), Bñ(0) \ {0}) = 0,

the last passage following from contractibility of Bñ(0) \ {0}.
Now we compute the critical groups at infinity. Reasoning as in Lemma 5.2, we see thatΦ is coercive. So,

being also sequentially weakly lower semi-continuous,Φ is bounded below inX(Ω). Take

ç < inf
u∈X(Ω)

Φ(u),

then we have for all k ∈ ℕ0

Ck(Φ,∞) = Hk(X(Ω), Φç) = äk, 0ℤ2. (5.7)

We recall Proposition 2.8. In our case, by (5.4), (5.5), and (5.7), the Morse identity reads as
∞

∑
k=0

2äk, 0t
k =

∞

∑
k=0

äk, 0t
k + (1 + t)Q(t),

where Q is a formal power series with coe�cients inℕ0. Choosing t = −1, the relation above leads to a con-
tradiction, hence (5.3) cannot hold. So there exists a further critical point ũ ∈ K(Φ) \ {0, u±} ofΦ. Thus, u+, u−,
and ũ are pairwise distinct, non-zero weak solutions of (1.3).

Remark 5.6. A careful look at the proof of Theorem 5.3 reveals the following situation: either (1.3) admits
infinitely many non-zero weak solutions (if u± is not a strict local minimizer), or it admits at least three
non-zero weak solutions, one of which, denoted ũ, is of mountain pass type, i.e. C1(Φ, ũ) ̸= 0 (recall Propo-
sition 2.7). This can be seen directly, by constructing a path joining u+ and u−, or by contradiction. Assume
that C1(Φ, ũ) = 0. Then, from the Morse identity we would have

ℎ = 1 + q0 + (q0 + q1)t + t2Q1(t),

where ℎ ∈ ℕ, ℎ ≥ 2, Q(t) = q0 + q1t + ⋅ ⋅ ⋅ (qk ∈ ℕ for all k ∈ ℕ0). This implies q0 ≥ 1, hence a first-order term
appears on the right-hand side, a contradiction.

Combining ingeniously the techniques seen above and in Section 4, we can prove a multiplicity result
for problem (4.1). Such a result requires modified hypotheses (involving the second variational eigenvalue
defined in (2.6)).

HypothesisH�5. The mapping g : Ω × ℝ → ℝ is a Carathéodory mapping,

G(x, t) =
t

∫
0

g(x, ó) dó,

and
(i) |g(x, t)| ≤ a(1 + |t|r−1) a.e. inΩ and for all t ∈ ℝ (a > 0, p < r < p∗

s ),
(ii) limt→0

g(x,t)
|t|p−1 = 0 uniformly a.e. inΩ,

(iii) ë2|t|
p + g(x, t)t ≥ 0 a.e. inΩ and for all t ∈ ℝ,

(iv) lim|t|→∞
ë|t|p+pG(x,t)

|t|p < ë1 uniformly a.e. inΩ.
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Note that, by HypothesisH�5 (iv), we have in particular

lim
|t|→∞

G(x, t)
|t|p

= −∞,

thus we places ourselves again in the coercive case. Our multiplicity result is the following:

Theorem 5.7. If HypothesisH�5, Condition (RC), and one of the following hold:
(i) ë > ë2, ë ∉ (ëk),
(ii) ë ≥ ë2 and G(x, t) ≥ 0 for a.e. inΩ and for all |t| ≤ ä (for some ä > 0),
(iii) ë ≥ ë3 and G(x, t) ≤ 0 for a.e. inΩ and for all |t| ≤ ä (for some ä > 0),
then problem (4.1) admits at least three non-zero solutions.

Proof. Clearly, we have 0 ∈ K(Φ). Reasoning as in the proof of Theorem 5.3, we find some u± ∈ K(Φ) \ {0}
with Ck(Φ, u±) = äk, 0ℤ2 and see that Ck(Φ,∞) = äk, 0ℤ2 for all k ∈ ℕ0. Besides, in all cases (i)–(iii), we argue
as in Lemma 4.5 and find k ≥ 2 such that Ck(Φ, 0) ̸= 0. Then we apply [35, Proposition 3.28 (ii)] and deduce
that there exists some ũ ∈ K(Φ) such that either Φ(ũ) < 0 and Ck−1(Φ, ũ) ̸= 0, or Φ(ũ) > 0 and Ck+1(Φ, ũ) ̸= 0.
Clearly, ũ ̸= 0. Moreover, since k ≥ 2, it follows at once that ũ ̸= u±. Thus, u+, u−, and ũ are pairwise distinct,
non-zero weak solutions of (4.1).

6 Asymptotically p-linear case
In this section we deal with problem (1.3), in the case when f(x, ⋅ ) is asymptotically p-linear at infinity, i.e.

lim
|t|→∞

f(x, t)
|t|p−2t

= ë

uniformly a.e. in Ω, for some ë ∈ (0,∞). The problem is said to be of resonant type if ë ∈ ò(s, p), of non-
resonant type otherwise. The two cases require di�erent techniques to prove the existence of a non-zero
solution (analogous results in the non-resonant case for the p-Laplacian were proved by Liu and Li [27], on
the basis of Perera [34]). If f(x, ⋅ ) has a p-linear behavior at zero as well, but with a di�erent slope, then we
can prove the existence of two non-zero solutions, one non-negative, the other non-positive, both in the reso-
nant and non-resonant case, by employing a truncation method (see Zhang, Li, Liu and Feng [46] and Li and
Zhou [24] for the p-Laplacian case).

We state here our first set of hypotheses:

HypothesisH6. The mapping f : Ω × ℝ → ℝ is a Carathéodory mapping,

F(x, t) =
t

∫
0

f(x, ó) dó for all (x, t) ∈ Ω × ℝ,

and
(i) |f(x, t)| ≤ a(1 + |t|r−1) a.e. inΩ and for all t ∈ ℝ (a > 0, 1 < r < p∗

s ),

(ii) lim|t|→∞
f(x,t)
|t|p−2t = ë uniformly a.e. inΩ (ë > 0),

(iii) limt→0
f(x,t)−b|t|q−2t

|t|p−2t = 0 uniformly a.e. inΩ (b > 0, 1 < q < p).

Clearly, HypothesisH6 (iii) implies that

f(x, 0) = 0 a.e. inΩ,

so (1.3) admits the zero solution. We seek non-zero solutions, so with no loss of generality we may assume
that all critical points of the energy functionalΦ ∈ C1(X(Ω)) (defined as in (2.2)) are isolated.

First we introduce our existence result for the non-resonant case:

Theorem 6.1. If HypothesisH6 holds with ë ∉ ò(s, p), then problem (1.3) admits at least a non-zero solution.
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Proof. We first consider the case 0 < ë < ë1. In such a case, Φ is coercive and sequentially weakly lower
semi-continuous, so it has a global minimizer u ∈ K(Φ). By Proposition 2.7 (i), we have Ck(Φ, u) = äk, 0ℤ2
for all k ∈ ℕ0. If ë > ë1, then we can find k ∈ ℕ such that ëk < ë < ëk+1. By [35, Theorem 5.7], there exists
some u ∈ K(Φ) such thatCk(Φ, u) ̸= 0. In either case, we have found u ∈ K(Φ)with a non-trivial critical group.

ByHypothesisH6 (iii), reasoning as in the proof of Theorem5.3,we can see thatCk(Φ, 0) = 0 for all k ∈ ℕ0,
so u ̸= 0.

In the study of the resonant case, we meet a significant di�culty: the energy functional Φ need not satisfy
Condition (PS). So, we need to introduce additional conditions in order to ensure compactness of critical
sequences. We set for all (x, t) ∈ Ω × ℝ

H(x, t) = pF(x, t) − f(x, t)t.

We have the following existence result:

Theorem 6.2. If Hypothesis H6 holds with ë ∈ ò(s, p), and there exist k ∈ ℕ, ℎ0 ∈ L1(Ω) such that one of the
following holds:
(i) ëk < ë ≤ ëk+1,H(x, t) ≤ −ℎ0(x) a.e. inΩ and for all t ∈ ℝ, and

lim
|t|→∞

H(x, t) = −∞

uniformly a.e. inΩ,
(ii) ëk ≤ ë < ëk+1,H(x, t) ≥ ℎ0(x) a.e. inΩ and for all t ∈ ℝ, and

lim
|t|→∞

H(x, t) = ∞

uniformly a.e. inΩ,
then problem (1.3) admits at least a non-zero solution.

Proof. Since ë ∈ ò(s, p), by Proposition 2.3 (i) there exists some k ∈ ℕ such that ë ∈ [ëk, ëk+1], and the latter
is a non-degenerate interval. We assume (i). We aim at applying [35, Theorem 5.9], but first we need to verify
some technical conditions. Set for all u ∈ X(Ω)

Ψ(u) = Φ(u) −
1
p
⟨Φ�(u), u⟩ = −

1
p
∫
Ω

H(x, u) dx.

Then, for all u ∈ X(Ω) we have

Ψ(u) ≥
1
p
‖ℎ‖1,

hence Ψ is bounded below in X(Ω). Moreover, if (un) is a sequence in X(Ω) such that ‖un‖ → ∞ and
vn = ‖un‖

−1un → v in X(Ω), then in particular we have vn(x) → v(x) a.e. in Ω. So, by the Fatou Lemma we
have for all n ∈ ℕ, ó ≥ 1

Ψ(óun) = −
1
p
∫
Ω

H(x, ‖un‖óvn) dx,

and the latter tends to∞ as n → ∞. We conclude that Condition (H+) holds (see [35, p. 82]). So, by [35, Theo-
rem 5.9],Φ satisfies Condition (C) and there exists some u ∈ K(Φ) such that Ck(Φ, u) ̸= 0. Reasoning as in the
proof of Theorem 6.1 we see that u ̸= 0. Thus, (1.3) has a non-zero solution.

The argument for the case (ii) is analogous.

Remark 6.3. We note that, if we only assume Hypothesis H6 (i)–(ii), by the same arguments used in Theo-
rems 6.1 and 6.2 we can prove the existence of a (possibly zero) solution. This is still a valuable information,
since we have no condition on f( ⋅ , 0).

In the remaining part of the section we deal with the case of a reaction term fwhich behaves p-linearly both
at infinity and at zero, but with di�erent slopes. Our hypotheses are the following.
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HypothesisH�6. The mapping f : Ω × ℝ → ℝ is a Carathéodory mapping,

F(x, t) =
t

∫
0

f(x, ó) dó for all (x, t) ∈ Ω × ℝ,

and
(i) |f(x, t)| ≤ a(1 + |t|r−1) a.e. inΩ and for all t ∈ ℝ (a > 0, 1 < r < p∗

s ),

(ii) lim|t|→∞
f(x,t)
|t|p−2t = ë uniformly a.e. inΩ (ë > ë1),

(iii) limt→0
f(x,t)
|t|p−2t = ì uniformly a.e. inΩ (0 < ì < ë1).

ByHypothesisH�6 (iii), wehavef(x, 0) = 0 a.e. inΩ, hence problem (1.3) admits the zero solution. For non-zero
solutions, we have the following multiplicity result:

Theorem 6.4. If Hypothesis H�6 holds, then problem (1.3) admits at least two non-zero solutions, one non-
negative, the other non-positive.

Remark 6.5. If, beside Hypothesis H�6, we also assume a sign condition of the type f(x, t)t ≥ 0 a.e. in Ω and
for all t ∈ ℝ, then by applying Proposition 2.2 we can prove the existence of a strictly positive and of a strictly
negative solution.

Since f( ⋅ , 0) = 0, we can define truncated energy functionalsΦ± ∈ C1(X(Ω)) as in (5.1). We have

⟨Φ�
±(u), v⟩ = ⟨A(u) ∓ ëB±(u), v⟩ − ∫

Ω

g±(x, u)v dx for all u, v ∈ X(Ω),

where we set for all (x, t) ∈ Ω × ℝ
g±(x, t) = f(x, ±t±) ∓ ë(t±)p−1

and for all u, v ∈ X(Ω)
⟨B±(u), v⟩ = ∫

Ω

(u±)p−1v dx.

By the compact embeddingX(Ω) í→ Lp(Ω), B± : X(Ω) → X(Ω)∗ is a completely continuous operator.

Lemma 6.6. There exists some ñ > 0 such that ‖A(u) ∓ ëB±(u)‖∗ ≥ ñ‖u‖p−1 for all u ∈ X(Ω).

Proof. Wedeal withA − ëB+ (the argument forA + ëB− is analogous).We argue by contradiction: let (un), (ùn)
be sequences inX(Ω) and in (0,∞), respectively, such that ùn → 0 as n → ∞, and for all n ∈ ℕ

‖A(un) − ëB+(un)‖∗ = ùn‖un‖
p−1.

SinceA − ëB+ is (p − 1)-homogeneous, wemay assume ‖un‖ = 1 for all n ∈ ℕ. So (un) is bounded, and passing
to a relabeled subsequence we have un ⇀ u in X(Ω), un → u in Lp(Ω) and (u+n )

p−1 → (u+)p−1 in Lp�
(Ω). For

all n ∈ ℕ we have

|⟨A(un), un − u⟩| ≤ |⟨A(un) − ëB+(un), un − u⟩| + ë|⟨B+(un), un − u⟩|

≤ ùn‖un − u‖ + ë‖u+n ‖
p−1
p ‖un − u‖p,

and the latter tends to 0 as n → ∞. By the (S)-property of the operator A, we deduce un → u in X(Ω). So,
‖u‖ = 1 and for all v ∈ X(Ω)

⟨A(u), v⟩ = ë∫
Ω

(u+)p−1v dx.

Reasoning as in Lemma 5.5 (i), we see that u(x) ≥ 0 a.e. inΩ. By Proposition 2.2, then, we have u(x) > 0 a.e. in
Ω. Thus, u turns out to be a positive ë-eigenfunction with ë > ë1, against Proposition 2.3 (iii). This concludes
the proof.

We point out the following technical lemma:

Lemma 6.7. The functionalsΦ± ∈ C1(X(Ω)) satisfy Condition (PS) inX(Ω).
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Proof. We deal withΦ+ (the argument forΦ− is analogous). Let (un) be a sequence inX(Ω) such that (Φ+(un))
is bounded inℝ andΦ�

+(un) → 0 inX(Ω)∗. We prove that (un) is bounded, arguing by contradiction: assume
that (passing if necessary to a subsequence) ‖un‖ → ∞ as n → ∞. Let ñ > 0 be as in Lemma 6.6. By Hypo-
thesisH�6 (i) and (iii), we have g+(x, t) = o(tp−1) as t → ∞, so there exists a constant Cñ > 0 such that a.e. inΩ
and for all t ∈ ℝ

|g+(x, t)| ≤
ñë1

2
(t+)p−1 + Cñ.

For all n ∈ ℕ, v ∈ X(Ω) we have

|⟨A(un) − ëB+(un), v⟩| ≤ |⟨Φ�
+(un), v⟩| + ∫

Ω

|g+(x, u)v| dx

≤ ‖Φ�
+(un)‖∗‖v‖ +

ñë1

2
‖u+n ‖

p−1
p ‖v‖p + Cñ‖v‖1

≤ ‖Φ�
+(un)‖∗‖v‖ +

ñ
2
‖un‖

p−1‖v‖ + C‖v‖.

So, using also Lemma 6.6, we have for all n ∈ ℕ

ñ‖un‖
p−1 ≤ ‖A(un) − ëB+(un)‖∗ ≤

ñ
2
‖un‖

p−1 + o(‖un‖
p−1),

a contradiction as n → ∞. Thus, (un) is bounded, and as in the proof of Proposition 2.1 we conclude that (un)
has a convergent subsequence.

Now we are ready to prove our main result:

Proof of Theorem 6.4. In Hypothesis H�6 (i) we can always set p < r < p∗
s . Choose real numbers ì < á < ë1 <

â < ë. By HypothesisH�6 (i) and (iii), there exists a constant Cá > 0 such that a.e. inΩ and for all t ∈ Ω

|F(x, t+)| ≤
á
p
|t|p + Cá|t|

r.

For all u ∈ X(Ω) we have

Φ+(u) ≥
‖u‖p

p
−
á
p
‖u‖pp − Cá‖u‖

r
r ≥ (1 −

á
ë1

)
‖u‖p

p
− C‖u‖r.

So, we can find R, c > 0 such that
inf

u∈àBR(0)Φ+(u) = c. (6.1)

By HypothesisH�6 (i)–(ii), there exists a constant Câ > 0 such that a.e. inΩ and for all t ∈ Ω

F(x, t+) ≥
â
p
(t+)p − Câ.

Let u1 ∈ X(Ω) be a positive ë1-eigenfunction (recall Proposition 2.3 (ii)). Then for all ó > 0 we have

Φ+(óu1) =
óp‖u1‖

p

p
− ∫

Ω

F(x, óu1) dx ≤
óp‖u1‖

p

p
−
âóp

p
‖u1‖

p
p + C ≤ óp(1 −

â
ë1

)
‖u1‖

p

p
+ C,

and the latter tends to −∞ as ó → ∞. So, Φ+ exhibits the ‘mountain pass geometry’. By Lemma 6.7, the
functional Φ+ satisfies Condition (PS) in X(Ω). Hence, by the Mountain Pass Theorem, there exists some
u+ ∈ K(Φ+) such that Φ+(u+) ≥ c, with c as in (6.7). In particular, then, u+ ̸= 0. Reasoning as in the proof of
Lemma 5.5 (i) we see that u+(x) ≥ 0 a.e. inΩ, hence u ∈ K(Φ) turns out to be a non-negative, non-zero solution
of problem (1.3).

In a similar way, working on Φ−, we produce a non-positive, non-zero solution u− of problem (1.3)
(in particular, u+ ̸= u−).

Remark 6.8. We could have denoted f(x, t) = ë|t|p−2t + g(x, t) for all (x, t) ∈ Ω × ℝ as in Section 4, with
g(x, t) = o(|t|p−1) at infinity. But in Theorem 6.4, this would have lead to unnatural condition on the behavior
of g(x, ⋅ ) at zero.
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7 Pohožaev identity and nonexistence
In this section we discuss possible non-existence results for problems involving the operator (−Δ)sp via
a convenient Pohožaev identity. We focus first on the autonomous equation

(−Δ)sp u = f(u) inℝN, (7.1)

where 0 < s < 1 < p < N, f ∈ C(ℝ), and we set for all (x, t) ∈ Ω × ℝ

F(t) =
t

∫
0

f(ó) dó.

A weak solution of (7.1) is a function u ∈ Ws,p(ℝN) such that for all v ∈ Ws,p(ℝN)

⟨A(u), v⟩ = ∫
ℝN f(u)v dx.

Asusual,weak solutions of (7.1) canbedetectedas the critical points of an energy functionalΦ ∈ C1(Ws,p(ℝN))
defined by setting for all u ∈ Ws,p(ℝN)

Φ(u) =
[u]ps,p
p

− ∫
ℝN F(u) dx,

by assuming convenient growth conditions on f.
Let u ∈ Ws,p(ℝN) be aweak solution of (7.1).We define a continuous path ãu : ]0, 1] → Ws,p(ℝN) by setting

for all è ∈ ]0, 1] and x ∈ ℝN

ãu(è)(x) := u(èx).

A simple scaling argument shows that, for all è ∈ ]0, 1],

Φ ∘ ãu(è) =
èsp−N

p
[u]ps,p − è−N ∫

ℝN F(u) dx

and
d
dè

Φ ∘ ãu(è)|è=1 =
sp − N

p
[u]ps,p + N ∫

ℝN F(u) dx.

The general form of the Pohožaev identity for problem (7.1) is
d
dè

Φ ∘ ãu(è)|è=1 = 0,

which, in our case, is easily seen to be equivalent to the following formula:

∫
ℝN(

N − sp
Np

f(u)u − F(u)) dx = 0. (7.2)

Identity (7.2) is a major tool to prove non-existence results for problem (7.1). Nevertheless, it requires a more
sophisticated machinery, as we need to deduce that

⟨Φ�(u), (x ⋅ ∇u)⟩ = 0,

and hence we need good regularity results in order to justify that v = x ⋅ ∇u is an admissible test function for
problem (7.1). Such a regularity theory is not available yet.

Remark 7.1. In the semi-linear case p = 2, for which the regularity theory is well established, a version of (7.2)
has recently be proved by Chang and Wang [10, Proposition 4.1]. Namely, for any weak solution u ∈ Hs(ℝN)
of

(−Δ)s u = f(u) inℝN,
we have

∫
ℝN(

N − 2s
2N

f(u)u − F(u)) dx = 0.
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Now we introduce a bounded, smooth domain Ω and couple (7.1) with zero Dirichlet conditions outside Ω,
i.e., we consider the problem

{
{
{

(−Δ)sp u = f(u) inΩ,

u = 0 inℝN \ Ω.
(7.3)

Obviously, a weak solution of (7.3) is understood as u ∈ X(Ω) such that, for all v ∈ X(Ω),

⟨A(u), v⟩ = ∫
Ω

f(u)v dx.

In this framework, things become even more involved due to the presence of a boundary contribution in the
identity. A reasonable candidate to play the role of (7.2), for a weak solution u ∈ X(Ω) of (7.3), is the following
formula:

∫
Ω

(
N − sp
Np

f(u)u − F(u)) dx = −M ∫
àΩ

!!!!!!!
u

d(x)ã
!!!!!!!

p
(x ⋅ í) dò, (7.4)

whereM > 0, ã ∈ (0, 1) depend on s, p, andN, í denotes the outward normal unit vector to àΩ (see (RC) and
the related discussion in Section 5). If Ω is star-shaped, by means of (7.4) one should be able to prove some
non-existence results for problem (7.3) of the following type:

Conjecture 7.2. If f ∈ C(ℝ) satisfies for all t ∈ ℝ

N − sp
Np

f(t)t − F(t) ≥ 0,

then problem (7.3) does not admit any positive bounded weak solution. Moreover, if the inequality above is
strict for all t ∈ ℝ \ {0}, then problem (7.3) does not admit any non-zero bounded solution.

If we reduce ourselves to the pure power-type reaction terms f(t) = |t|r−2t (r > 0), then the assumption of
Conjecture 7.2 becomes r ≥ p∗

s , so non-zero solutions are ruled out for r > p∗
s (as expected).

Remark 7.3. A comparison with some well-known special cases is in order. In the local, nonlinear case
(s = 1, p > 1), our (7.4) yields the classical Pohožaev identity for the p-Laplacian (see Guedda and Veron [18]),
provided we setM = (p − 1)/(Np), ã = s = 1, and recall that for all x ∈ àΩ

lim
ℎ→0+

!!!!!!!
u(x − ℎí)

ℎ

!!!!!!!
= |∇u(x) ⋅ í|.

In the semi-linear case (s ∈ (0, 1), p = 2), (7.4) with ã = s andM = Γ(1 + s)2/(2N) becomes

∫
Ω

(
N − 2s
2N

f(u)u − F(u)) dx = −
Γ(1 + s)2

2N
∫
àΩ

(
u

d(x)s
)
2
(x ⋅ í) dò,

namely the Pohožaev identity obtained for the fractional Laplacian by Ros Oton and Serra [40, Theorem 1.1].
Such an identity has been applied to prove non-existence results of the type discussed above (see [40, Corol-
laries 1.2 and 1.3]). Note that for s = 1, p = 2, the values ofM agree as Γ(2) = 1.

Remark 7.4. In the non-linear case p ̸= 2, other approaches may lead to non-existence results. For instance,
again Ros Oton and Serra [38] have obtained the following result for problem (1.3): if f ∈ C0,1

loc(Ω × ℝ) is of
supercritical type, i.e., if

(N − sp)f(x, t)t − NpF(x, t) − px ⋅ Fx(x, t) > 0

holds for all (x, t) ∈ Ω × ℝ, then (1.3) does not admit any non-zero bounded solutionwhich belongs toC1,á(Ω)
(0 < á < 1).
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