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ABSTRACT. We consider differential systems with memory terms,
expressed by convolution integrals, which account for the past
history of one or more variables. The aim of this work is to ana-
lyze the passage to the singular limit when the memory kernel col-
lapses into a Dirac mass. In particular, we focus on the reaction-
diffusion equation with memory, and we discuss the convergence
of solutions on finite time-intervals. When enough dissipativity
is present, we also establish convergence results of the global and
the exponential attractors. Nonetheless, the techniques here de-
vised are quite general, and suitable to be applied to a large variety
of models.
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1. INTRODUCTION

Many physical phenomena are properly described by (systems of ) partial differen-
tial equations where the dynamics is influenced by the past history of one or more
variables. This amounts to averaging some quantities by means of convolution
integrals against a positive summable function, the so-called memory kernel. In the
limiting situation, when the kernel is a Dirac mass, one recovers the corresponding
models without memory. The presence of the memory may render, in some cases,
the description of the phenomena more accurate. On the other hand, equations
with memory are usually much more difficult to handle than the corresponding
ones without memory. Besides, in many situations, the contribution of the past
history is not so relevant to significantly affect the results, and so to justify the
introduction of further mathematical complications. There are however certain
models, such as those describing high-viscosity liquids at low temperatures, or the
thermomechanical behavior of polymers (see, e.g., [5, 16–18, 23]), where the past
history plays a nontrivial role that has to be taken into account.

On the contrary, if the system keeps a very short memory of the past (which
translates into having a rapidly fading memory kernel) a sensible difference be-
tween the two descriptions is not expected. Hence, from an heuristic point of
view, it is reasonable to believe that if the memory kernel “looks like” a Dirac mass,
then the past history is negligible. Clearly, one would like to render this qualita-
tive statement more precise, and somehow to provide quantitative estimates. This
is precisely the aim of this work. Namely, we want to show that systems with
memory converge in an appropriate sense to the corresponding systems without
memory, as the memory kernel converges to the Dirac mass. Incidentally, this fact
has a sort of philosophical implication. Indeed, it is not out of the ordinary to
hear people say that parabolic equations are unphysical, due to the infinite propa-
gation speed of disturbances, so that in the “real world” the evolution is necessarily
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hyperbolic. On the other hand, as we will see in a while, it is always possible to
view a parabolic equation as the limiting case of an equation with memory of
hyperbolic type. Thus, if the memory kernel is very close to a Dirac mass, the
parabolic equation provides in fact an accurate description of the phenomenon
under consideration (cf. [6, 19]).

Our intention in the present paper is to establish an abstract theory of wide
application, and then treat in detail a particular, albeit fairly significant, problem.
To better explain our strategy, let us introduce two concrete, and in some sense
paradigmatic, examples.

1.1. The reaction-diffusion equation. Let Ω ⊂ Rn be a smooth bounded
domain. For u = u(x, t) : Ω× (0,∞)→ R, we consider the equation

(1.1) ut −∆u+ϕ(u) = f , t > 0,

where, for simplicity, we put all the physical constants equal to one. The functions
ϕ and f are a suitable nonlinearity and a time-independent source term, respec-
tively. Thinking, for instance, of heat propagation processes, Equation (1.1) is ob-
tained assuming the classical Fourier’s constitutive law. Appeared in the late 60’s,
the two famous works [2, 14] suggest that, in certain cases, it is physically more
reasonable to take a convolution average of (all or part of ) the term −∆u(t), in
order to account for the past history of u up to time t. This amounts to replacing
(1.1) with the equation

(1.2) ut −ω∆u− (1−ω)∫∞
0
k(s)∆u(t − s)ds +ϕ(u) = f , t > 0.

Notice that the convolution integral requires the knowledge of the values of u for
all past times; this implies that u = u(x, t) : Ω × R → R. We point out that
u(t) is supposed to be a given datum for t ≤ 0, where it need not fulfill Equation
(1.2). Here, ω ∈ [0,1) (for ω = 1 we would fall into the previous case), and the
memory kernel k : [0,∞) → R is a continuous nonnegative function, smooth on
(0,∞), vanishing at infinity and satisfying the relation

(1.3)
∫∞

0
k(s)ds = 1.

We refer to the problems with ω = 0 and ω > 0 as the Gurtin-Pipkin and the
Coleman-Gurtin models, respectively. From the physical viewpoint, the presence
of the memory accounts for the resistance of the system to a change of state. For
instance, the heat equation of Gurtin-Pipkin type is fully hyperbolic. So, in par-
ticular, infinite propagation speed of initial disturbances is no longer supported.
This matches with the reasonable assumption that if one heats one side of a rod,
the effect cannot be instantaneous on the opposite side.
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Let now ω ∈ [0,1) be fixed. It is clear that if we (formally) choose k = δ0
(the Dirac mass at zero), Equation (1.2) turns into Equation (1.1). Hence, for
ε ∈ (0,1], let us set

kε(s) = 1
ε
k
(
s
ε

)
.

Then we consider the family of equations

(1.4) ut −ω∆u− (1−ω)∫∞
0
kε(s)∆u(t − s)ds +ϕ(u) = f , t > 0.

Since kε → δ0 in the distributional sense, our purpose is to show in what terms
we can say that (1.4) converges to the limiting equation (1.1) as ε → 0.

Remark 1.1. The limit process ε → 0 is singular, since when we collapse
into (1.1) we lose the information on the past history of u. Indeed, (1.1), besides
proper boundary conditions, requires only the initial value of u at the initial time
t = 0. This will be more evident in the next sections, where, following a bril-
liant intuition of Dafermos [3], we introduce the notion of extended phase-space,
which is the natural setting to treat equations with memory within the frame-
work of dynamical systems. The extended phase-space is constructed adding a
further component to the usual phase-space associated to the corresponding lim-
iting equation, using the past history as an additional variable of the system. The
new component is a weighted Banach space, whose weight is determined by the
memory kernel.

1.2. The damped wave equation. Let Ω ⊂ Rn be a smooth bounded do-
main, and let ε ∈ (0,1]. For u = u(x, t) : Ω×R → R, we consider the equation

(1.5) utt +αut − hε(0)∆u− ∫∞
0
h′ε(s)∆u(t − s)ds +ϕ(u) = f , t > 0,

arising, for instance, in the theory of viscoelasticity (see, e.g., [5,23]). Here, α ≥ 0
and the memory kernel hε is a sufficiently smooth function of the form

hε(s) = kε(s)+ k∞,

with k∞ > 0. The functions kε, ϕ and f are as in the former case. A formal
integration by parts, recalling that k vanishes at infinity, yields

∫∞
0
h′ε(s)∆u(t − s)ds = ∫∞

0
k′ε(s)∆u(t − s)ds

= −kε(0)∆u(t)+ ∫∞
0
kε(s)∆ut(t − s)ds.
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Therefore (1.5) can be rewritten as

(1.6) utt +αut − k∞∆u− ∫∞
0
kε(s)∆ut(t − s)ds +ϕ(u) = f , t > 0.

Letting ε → 0 we (formally) obtain the limiting equation

(1.7) utt +αut − k∞∆u−∆ut +ϕ(u) = f , t > 0,

that is, the (strongly) damped wave equation. Again, it is interesting to specify in
what sense we may speak of convergence of (1.6) to (1.7).

In this work, we investigate in detail the case of the reaction-diffusion equa-
tion. The damped wave equation, as well as other physically relevant models with
memory, will be analyzed in forthcoming papers. Nonetheless, we want to estab-
lish some general results, suitable to treat a quite vast class of models with memory.

2. PRELIMINARIES

Let us consider Equation (1.4). For the sake of simplicity, we shall restrict to
the physically relevant case of space-dimension n = 3. In order to carry out our
analysis, and to exploit the machinery of the theory of dynamical systems, we need
to associate with the equation a strongly continuous semigroup of operators (cf.
Remark 1.1). This can be done, along the line of [3], by introducing the so-called
integrated past history of u, i.e., the auxiliary variable

(2.1) ηt(x, s) =
∫ s

0
u(x, t −y)dy, s > 0, t > 0.

Keeping in mind the hypotheses on k, and setting

(2.2) µ(s) = −(1−ω)k′(s),

a formal integration by part yields

(1−ω)
∫∞

0
kε(s)∆u(t − s)ds = ∫∞

0
µε(s)∆ηt(s)ds,

where

µε(s) = 1
ε2µ

(
s
ε

)
.

Hence (1.4) turns into

(2.3) ut −ω∆u− ∫∞
0
µε(s)∆η(s)ds +ϕ(u) = f , t > 0.
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At this point, a further equation ruling the evolution of η is needed. Differentia-
tion of equality (2.1) leads to

(2.4) ηtt(s) = −ηts(s)+u(t), t > 0.

The translation of (1.4) into the system (2.3)–(2.4), endowed with appropriate
initial and boundary conditions, will allow us to provide a description of the so-
lutions in terms of a strongly continuous semigroup of operators (or dynamical
system) Sε(t), acting on a proper (extended) phase-space (see [10, 11, 20]). No-
tice that, since u is supposed to be known for t ≤ 0, the initial condition for η is
given by

η0(s) =
∫ s

0
u(−y)dy.

Besides, from (2.1) we also get the boundary condition

(2.5) ηt(0) = lim
s→0

ηt(s) = 0, ∀ t ≥ 0.

Of course, one might think that the link between the original equation (1.4) and
system (2.3)–(2.4) along with the boundary condition (2.5) is only formal. It is
not so. Indeed, once appropriate initial and boundary conditions are given, it is
possible to show that (1.4) and (2.3)–(2.5) are completely equivalent (as a matter
of fact, it is actually true that the latter generalizes the former). The relationship
between the two descriptions is discussed in detail in the review paper [13], to
which we address the reader.

Remark 2.1. This approach is valid for partial differential equations with
memory of the first order in time. A similar argument applies verbatim to the
damped wave equation with memory, and, in general, to partial differential equa-
tions with memory of the second order in time (see [13, 22] for the details). The
only difference is the choice of the auxiliary variable, being this time ηt(x, s) =
u(x, t) − u(x, t − s), that is, the difference between the function at time t and
the past history of the function up to time t.

In the next sections, we introduce the proper functional setting to define the
semigroups Sε(t), along with the semigroup S0(t) related to the limiting equation
(1.1). Our first task is to show that Sε(t) and S0(t) are close within ε on every
time-interval [0, T], T > 0. This is done in Section 5, where we provide results
both for the Coleman-Gurtin and the Gurtin-Pipkin cases. Then we study in
detail the asymptotic properties of the more dissipative Coleman-Gurtin model,
and we establish stability results which are independent of ε. In particular, we
prove the existence of global attractors Aε (in Section 7) and exponential attrac-
tors Eε (in Section 9), which are continuous (in an appropriate sense) with respect
to the singular limit ε → 0. In order to accomplish this plan, we shall make
use of an abstract result (discussed in the Appendix) on the convergence of ex-
ponential attractors for systems with memory to the exponential attractors of the
corresponding limiting equations.
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3. NOTATION AND BASIC TOOLS

3.1. The functional setting. Given a Banach spaceH , we denote by BH (R)
the closed ball in H of radius R ≥ 0 centered at zero.

Let Ω ⊂ R3 be a smooth bounded domain. The symbols ‖ · ‖ and 〈·, ·〉 stand
for the norm and the inner product on L2(Ω), respectively. Let A = −∆ be the
Laplace operator on L2(Ω) with domain D(A) = H1

0(Ω)∩H2(Ω). We introduce
the hierarchy of Hilbert spaces

Hr = D(Ar/2), r ∈ R,

endowed with the inner products

〈u1, u2〉Hr = 〈Ar/2u1, Ar/2u2〉.

It is well known that Hr1 ø Hr2 for r1 > r2.
Next, let µ ∈ C1(R+) ∩ L1(R+), with R+ = (0,∞), fulfill the following

conditions:

µ(s) ≥ 0, ∀ s ∈ R+,(3.1)

µ′(s)+ δµ(s) ≤ 0, ∀ s ∈ R+, for some δ > 0.(3.2)

Notice that µ is decreasing, and the Gronwall Lemma entails the exponential decay

(3.3) µ(s) ≤ µ(s0)e−δ(s−s0), ∀ s ≥ s0 > 0.

For any given ε ∈ (0,1], we define the function

µε(s) = 1
ε2µ

(
s
ε

)
,

and we consider the weighted Hilbert spaces

Mr
ε = L2

µε(R
+,Hr+1), r ∈ R,

endowed with the inner products

〈η1, η2〉Mr
ε =

∫∞
0
µε(s)〈A(1+r)/2η1(s),A(1+r)/2η2(s)〉ds.

The embeddings Mr1
ε ⊂ Mr2

ε are clearly continuous for r1 > r2. Unfortunately,
they are not compact (cf. [22]). To bypass this obstacle, we need to construct
further spaces.
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Let Tε be the linear operator on M0
ε with domain

D(Tε) = {η ∈M0
ε | ηs ∈M0

ε, η(0) = 0}

defined by
Tεη = −ηs, η ∈ D(Tε).

Here, ηs denotes the distributional derivative of η with respect to the internal vari-
able s (indeed, Tε is the infinitesimal generator of the right-translation semigroup
on M0

ε). It is worth noting that, on account of (3.2), there holds (cf. [13])

(3.4) 〈Tεη, η〉M0
ε
≤ − δ

2ε
∥∥η∥∥2

M0
ε
, ∀η ∈ D(Tε).

Then, we introduce the spaces

Lrε = {η ∈Mr
ε | η ∈ D(Tε), sup

x≥1
xTεη(x) <∞}.

Here, Tεη is the tail function of η, given by

Tεη(x) = ε
∫
(0,1/x)∪(x,∞)

µε(s)‖A1/2η(s)‖2 ds, x ≥ 1.

It is readily seen (cf. [8]) that Lrε is a Banach space endowed with the norm

∥∥η∥∥2
Lrε =

∥∥η∥∥2
Mr
ε
+ ε∥∥Tεη∥∥2

M0
ε
+ sup
x≥1

xTεη(x).

On account of an immediate generalization of a compactness result [22, Lemma
5.5] (see also [8]), we have the following result.

Lemma 3.1. Let K ⊂M0
ε satisfy, for some r > 0,

sup
η∈K

[‖η‖Mr
ε + ‖ηs‖M−1

ε

]
<∞ and lim

x→∞
[

sup
η∈K

Tεη(x)
] = 0.

Then K is relatively compact in M0
ε. As a consequence, Lrε øM0

ε for every r > 0.

Finally, for ε ∈ [0,1], we define the product Banach spaces

H r
ε =

{
Hr ×Mr

ε , if ε > 0,
Hr , if ε = 0,

Zrε =
{
Hr ×Lrε , if ε > 0,
Hr , if ε = 0,
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normed by

∥∥(u,η)∥∥2
H r
ε
= ∥∥u∥∥2

Hr +
∥∥η∥∥2

Mr
ε
,∥∥(u,η)∥∥2

Zrε =
∥∥u∥∥2

Hr +
∥∥η∥∥2

Lrε .

Remark 3.2. When ε = 0, we agree to interpret the pair (u,η) just as u.
Accordingly, the norms reduce to the first summands only.

In particular, H 0
ε will be the extended phase-space on which we shall con-

struct the dynamical system associated with our problem. Due to Lemma 3.1,
Zrε ø H 0

ε for every r > 0. We shall also make use of the lifting map Lε : H 0
0 →

H 0
ε , and of the projection maps P : H 0

ε →H 0
0 and Qε : H 0

ε →M0
ε , given by

Lεu =
{
(u,0), if ε > 0,
u, if ε = 0,

and
P(u,η) = u, Qε(u,η) = η.

In view of the remark above, if ε = 0, then P and Q0 are the identity and the null
map, respectively.

3.2. The representation formula. Assume that u is a given function be-
longing to L1(0, T ;H1) for every T > 0. Then, for every η0 ∈ M0

ε, the Cauchy
problem ηt = Tεη+u, t > 0,

η0 = η0,

has a unique solution η ∈ C([0,∞),M0
ε) which has the explicit representation

formula (see [13])

(3.5) ηt(s) =


∫ s

0
u(t −y)dy, 0 < s ≤ t,

η0(s − t)+
∫ t

0
u(t −y)dy, s > t.

We now establish some results that will be needed in the sequel.

Lemma 3.3. Let η0 ∈ D(Tε), and assume that ‖A1/2u(t)‖ ≤ ρ, for some
ρ > 0 and every t ≥ 0. Then

ε
∥∥Tεηt∥∥2

M0
ε
≤ e−δtε∥∥Tεη0

∥∥2
M0
ε
+ ‖µ‖L1ρ2, ∀ t ≥ 0.
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Proof. Since η0(0) = 0, we can express Tεηt through the representation for-
mula (3.5), so getting

Tεηt(s) =
−u(t − s), 0 < s ≤ t,
Tεη0(s − t), s > t.

Consequently,

ε
∥∥Tεηt∥∥2

M0
ε
≤ ρ2

∫ t
0
εµε(s)ds + ε

∫∞
t
µε(s)‖A1/2Tεη0(s − t)‖2 ds.

Observe that ∫ t
0
εµε(s)ds =

∫ t/ε
0
µ(s)ds ≤

∫∞
0
µ(s)ds <∞.

Moreover, since ε ≤ 1, appealing to (3.3) we obtain

ε
∫∞
t
µε(s)‖A1/2Tεη0(s − t)‖2 ds ≤ e−δtε∥∥Tεη0

∥∥2
M0
ε
,

as claimed. ❐

Lemma 3.4. Let η0 ∈ D(Tε), and assume that ‖A1/2u(t)‖ ≤ ρ, for some
ρ > 0 and every t ≥ 0. Then

sup
x≥1

xTεηt (x) ≤ sup
x≥1

xTεη0
(x)Ψ(t)+Πρ2, ∀ t ≥ 0,

where Ψ(t) = 2(t + 2)e−δt and Π > 0 is a given constant.

Proof. Defining η0(s) = 0 for s < 0, from (3.5), we get at once the inequality

‖A1/2ηt(s)‖2 ≤ 2ρ2s2 + 2‖A1/2η0(s − t)‖2.

Fix now x ≥ 1 and t ≥ 0. Then

xTεηt (x) ≤ 2ρ2εx
∫
(0,1/x)∪(x,∞)

s2µε(s)ds

+ 2εx
∫ 1/x

min{1/x,t}
µε(s)‖A1/2η0(s − t)‖2 ds

+ 2εx
∫∞

max{x,t}
µε(s)‖A1/2η0(s − t)‖2 ds.
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Concerning the first term of the right-hand side, notice that

x
∫ 1/x

0
s2µε(s)ds = εx

∫ 1/(εx)

0
s2µ(s)ds

≤
∫ 1/(εx)

0
sµ(s)ds ≤

∫∞
0
sµ(s)ds,

and

x
∫∞
x
s2µε(s)ds = εx

∫∞
x/ε
s2µ(s)ds

≤ ε2 sup
y≥0

[
y
∫∞
y
s2µ(s)ds

]
.

Hence, setting

Π = 2
∫∞

0
sµ(s)ds + 2 sup

y≥0

[
y
∫∞
y
s2µ(s)ds

]
,

which is certainly finite due to (3.3), we learn that

2ρ2εx
∫
(0,1/x)∪(x,∞)

s2µε(s)ds ≤ Πρ2.

We now estimate the remaining terms. Exploiting (3.3), and recalling that ε ≤ 1,
we have

2εx
∫ 1/x

min{1/x,t}
µε(s)‖A1/2η0(s − t)‖2 ds

≤ 2εxe−δt
∫ 1/x−t

min{0,1/x−t}
µε(s)‖A1/2η0(s)‖2 ds

≤ 2e−δtxTεη0
(x),

and

2εx
∫∞

max{x,t}
µε(s)‖A1/2η0(s − t)‖2 ds

≤ 2εxe−δt
∫∞

max{x−t,0}
µε(s)‖A1/2η0(s)‖2 ds.

If t > x − 1, then

2εxe−δt
∫∞

max{x−t,0}
µε(s)‖A1/2η0(s)‖2 ds < 2(t + 1)e−δtTεη0

(1).
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Conversely, if t ≤ x − 1,

2εxe−δt
∫∞

max{x−t,0}
µε(s)‖A1/2η0(s)‖2 ds

≤ 2xe−δtTεη0
(x − t)

≤ 2e−δt(x − t)Tεη0
(x − t)+ 2te−δtTεη0

(1).

In either case we conclude that

2εxe−δt
∫∞

max{x−t,0}
µε(s)‖A1/2η0(s)‖2 ds ≤ 2(t + 1)e−δt sup

x≥1
xTεη0

(x).

Adding the inequalities above we get the thesis. ❐

Clearly, if we only require that ‖A1/2u(t)‖ ≤ ρ for every t ∈ [0, T], then
the results above hold on [0, T]. Hence, a straightforward consequence of (3.5),
Lemma 3.3 and Lemma 3.4 is

Corollary 3.5. If η0 ∈ D(Tε) and u ∈ L∞(0, T ;H1) for every T > 0, then
ηt ∈ D(Tε) for all t ≥ 0.

We will also make use of a weakened version of Lemma 3.4 on finite-time
intervals.

Lemma 3.6. Let η0 ∈ D(Tε) and T > 0. Assume that∫ T
0
‖A1/2u(y)‖2 dy ≤ ρ,

for some ρ > 0. Then

sup
x≥1

xTεηt (x) ≤ Ξ(ρ + sup
x≥1

xTεη0
(x)), ∀ t ∈ [0, T],

where Ξ = Ξ(T) > 0 is a given constant.

Proof. The argument is, with minor changes, the same of the previous proof.
From (3.5), we have now the inequality

‖A1/2ηt(s)‖2 ≤ 2ρs + 2‖A1/2η0(s − t)‖2.

But, reasoning as before,

εx
∫
(0,1/x)∪(x,∞)

sµε(s)ds ≤
∫∞

0
µ(s)ds + ε2 sup

y≥0

[
y
∫∞
y
sµ(s)ds

]
.

The details are left to the reader. ❐
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3.3. Hausdorff distances and fractal dimension. LetH be a Banach space.
Given B1, B2 ⊂H , we denote by

distH (B1,B2) = sup
z1∈B1

inf
z2∈B2

‖z1 − z2‖H

the Hausdorff semidistance in H from B1 to B2, and by

distsym
H (B1,B2) = max{distH (B1,B2),distH (B2,B1)}

the symmetric Hausdorff distance in H between B1 and B2, respectively. Also,
given a relatively compact set B ⊂H , we denote by

dimH [B] = lim sup
r→0

lnNr (B,H )
ln(1/r)

the fractal dimension in H of B. The (finite) number Nr (B,H ) is the mini-
mum number of r -balls of H necessary to cover B. We address the reader, for
instance, to the treatise [24] for more details on these definitions and the related
applications.

3.4. Some useful lemmas. We recall three technical results that will be needed
in the course of this investigation. The first two are a generalized version of
the Gronwall Lemma (see [21, Appendix]) and the uniform Gronwall Lemma
[24, Lemma III.1.1], respectively, whereas the latter is the so-called transitivity
property of exponential attraction, devised in [4, Theorem 5.1].

Lemma 3.7. Let Φ be a nonnegative absolutely continuous function on [0,∞)
which satisfies, for some ν > 0 and 0 ≤ σ < 1, the differential inequality

d
dt
Φ + νΦ ≤ g(1+ Φσ ),

where g is nonnegative function satisfying

sup
t≥0

∫ t+1

t
g(y)dy <∞.

Then there exists C = C(σ, ν, g) such that

Φ(t) ≤ 1
1− σ Φ(0)e−νt + C, ∀ t ≥ 0.

Lemma 3.8. Let Φ be a nonnegative absolutely continuous function on [0,∞)
which satisfies, for some nonnegative function g, the differential inequality

d
dt
Φ ≤ g(1+ Φ).
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Assume also that supt≥0

∫ t+1

t
Φ(y)dy ≤ c0 and supt≥0

∫ t+1

t
g(y)dy ≤ c1, for

some c0, c1 ≥ 0. Then

Φ(t + 1) ≤ (c0 + c1)ec1 , ∀ t ≥ 0.

Lemma 3.9. Let S(t) be a strongly continuous semigroup on a Banach spaceH .
Let B0, B1, B2 ⊂H be such that

distH (S(t)B0,B1) ≤ J1e−ϑ1t,

distH (S(t)B1,B2) ≤ J2e−ϑ2t,

for some ϑ1, ϑ2 > 0 and J1, J2 ≥ 0. Assume also that, for all z1, z2 ∈H , there holds

‖S(t)z1 − S(t)z2‖H ≤ eϑ0t‖z1 − z2‖H ,
for some ϑ0 ≥ 0. Then it follows that

distH (S(t)B0,B2) ≤ (J1 + J2)e−ϑt,

where ϑ = ϑ1ϑ2/(ϑ0 + ϑ1 + ϑ2).

3.5. A word of warning. Throughout the paper, we will denote by c ≥ 0 a
generic constant. All the quantities appearing in the sequel, and c in particular,
are understood to be independent of ε ∈ [0,1]. Further dependencies of c will
be specified on occurrence. Besides, we will diffusely make use (without explicit
mention) of the Young, the Hölder and the Poincaré inequalities, as well as of the
Sobolev embeddings.

4. THE REACTION-DIFFUSION EQUATION WITH MEMORY

Letω ∈ [0,1) be fixed. For ε ∈ (0,1], we consider the family of Equations (1.4),
along with the limiting equation (1.1). In view of the preceding discussion, we
translate (1.4) into the system (2.3)–(2.4) with the boundary condition (2.5). We
also take the Dirichlet boundary condition for u, i.e.,

u(t) = 0, on ∂Ω.
The equality above holds for all t ∈ R when ε > 0, and for t ≥ 0 when ε = 0.
Concerning the memory kernel µ, we assume hereafter (3.1)–(3.2). Notice that,
due to the normalization condition (1.3) and the position (2.2), we have

(4.1)
∫∞

0
sµε(s)ds = 1−ω, ∀ ε ∈ (0,1].

Indeed, (4.1) is obtained integrating by parts and observing that k (being summa-
ble and decreasing) satisfies

lim
s→∞ sk(s) = 0.
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Conditions on ϕ and f . For both the Coleman-Gurtin and the Gurtin-
Pipkin models, let ϕ ∈ C1(R), with

ϕ(0) = 0,

be such that

(4.2) lim inf
|x|→∞

ϕ′(x) > −ωλ1,

where λ1 is the first eigenvalue of A. In particular, ϕ′ is bounded below, i.e.,

(4.3) inf
x∈R

ϕ′(x) ≥ −`, ∀x ∈ R,

for some ` ≥ 0. Moreover,

(4.4) |ϕ′(x)| ≤ c(1+ |x|γ), ∀x ∈ R, γ ≤ 4.

Notice that the physically significant case of the derivative of the double-well po-
tential, namely, ϕ(x) = x3 − x, is an allowed nonlinearity. Finally, we assume

f ∈ H0 independent of time.

Remark 4.1. In view of the results that we have in mind, other conditions
are possible for ϕ. For instance, one could replace (4.2) and (4.4) with

a1|x|p − c ≤ xϕ(x) ≤ a2|x|p + c, ∀x ∈ R,

for some p ≥ 2 and some a2 ≥ a1 ≥ 0.

We have now all the ingredients to introduce the following problems, depend-
ing on ε ∈ [0,1].

Problem Pε (ε > 0). Let ω ∈ [0,1). Given (u0, η0) ∈ H 0
ε , find (u,η) ∈

C([0,∞),H 0
ε ) solution tout +ωAu+

∫∞
0
µε(s)Aη(s)ds +ϕ(u) = f ,

ηt = Tεη+u,

for t > 0, satisfying the initial conditions u(0) = u0 and η0 = η0.

Problem P0. Given u0 ∈H 0
0 , find u ∈ C([0,∞),H 0

0 ) solution to

ut +Au+ϕ(u) = f ,

for t > 0, satisfying the initial condition u(0) = u0.
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The Problems Pε (for ε ≥ 0) reformulate (1.1) and (2.3)–(2.5) in the correct
functional setting. The particular choice of the phase-spaces H 0

ε accounts for
the Dirichlet boundary condition (cf. [10, 11, 20]). Clearly, different boundary
conditions could be considered in the same fashion, such as Neumann’s, upon
properly redefining Hr .

Existence and uniqueness of solutions is ensured by the following theorem.

Theorem 4.2. For every ε ≥ 0, Problem Pε defines a strongly continuous semi-
group (or dynamical system) Sε(t) on the phase-space H 0

ε .

Proof. We prove the result for ε > 0, the other case being well known. Setting

ϕ0(x) =ϕ(x)+ `x, x ∈ R,

so that, by (4.3), ϕ′
0 ≥ 0, we rewrite our system as the ordinary differential equa-

tion on H 0
ε

d
dt
(u,η)+A(u,η) = (`u+ f ,0),

where A is the (nonlinear) operator on H 0
ε with domain

D(A) =
{
(u,η) ∈H 0

ε | u ∈ H1, η ∈ D(Tε),

ωu+
∫∞

0
µε(s)η(s)ds +A−1ϕ0(u) ∈ H2

}
,

defined by

A(u,η) =
(
A
[
ωu+

∫∞
0
µε(s)η(s)ds +A−1ϕ0(u)

]
, −Tεη−u

)
.

Appealing to maximal monotone operator theory (see [1, Théorème 3.4]), and
subsequently applying a standard fixed point argument to deal with the term `u,
we get the thesis if we show that A is maximal monotone. According to [1, Propo-
sition 2.2], this is true provided that

〈Az1 −Az2, z1 − z2〉H 0
ε
≥ 0, ∀z1, z2 ∈ D(A),

and range(I+A) = H 0
ε , where I is the identity map on H 0

ε . The first condition
follows directly from (3.4). Concerning the second, selecting (û, η̂) ∈ H 0

ε , we
have to solve in D(A) the elliptic problem

u+A
[
ωu+

∫∞
0
µε(s)η(s)ds +A−1ϕ0(u)

]
= û,(4.5)

η− Tεη−u = η̂.(4.6)
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Integration of (4.6) entails

(4.7) η(s) = (1− e−s)u+
∫ s

0
eσ−s η̂(σ)dσ.

Thus, Equation (4.5) turns into

(4.8) u+ dAu+ϕ0(u) = w,

where

w = û−
∫∞

0
µε(s)

∫ s
0
[eσ−sAη̂(σ)dσ]ds,

d =ω+
∫∞

0
µε(s)(1− e−s)ds > 0.

Notice now that w ∈ H−1. Indeed, by (3.2),∫∞
0
µε(s)

∫ s
0

[
eσ−s‖A1/2η̂(σ)‖dσ

]
ds

=
∫∞

0
eσ‖A1/2η̂(σ)‖

[ ∫∞
σ
µε(s)e−s ds

]
dσ

≤
∫∞

0
µε(σ)‖A1/2η̂(σ)‖dσ ≤

(∫∞
0
µε(σ)dσ

)1/2
‖η̂‖M0

ε
.

Thus, by standard arguments, Equation (4.8) has a (unique) solution u ∈ H1.
From (4.7) it is then easy to see that η ∈ M0

ε and η(0) = 0; besides, from (4.6)
we read that Tεη ∈M0

ε , and so η ∈ D(Tε). Finally, by comparison in (4.5),

ωu+
∫∞

0
µε(s)η(s)ds +A−1ϕ0(u) ∈ H2.

Hence (u,η) ∈ D(A).
Incidentally, observe that the result holds the same replacing (3.2) with the

milder condition µ′(s) ≤ 0. ❐

Remark 4.3. It is important to point out that with this method we obtain
weak solutions in the sense of maximal monotone operator theory (cf. [1, Defini-
tion 3.1]). In fact, it is not even necessary to restrict to the case γ ≤ 4 (one has
just to suitably modify the domain of A). It is understood that, whenever we per-
form multiplications, we are assuming to deal with a sequence of strong solutions
approximating the weak solution.

Remark 4.4. On account of the hypotheses on ϕ, when ω > 0 we also have
an integral control on the gradient of the first component of the solution, that is,
u ∈ L2(0, T ;H1) for every T > 0.
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For further use, we detail the continuous dependence estimate (cf. [11]).

Theorem 4.5. There exists κ0 > 0 such that,

(4.9) ‖Sε(t)z1 − Sε(t)z2‖H 0
ε
+ω‖PSε(t)z1 − PSε(t)z2‖L2(0,t;H1)

≤ eκ0t‖z1 − z2‖H 0
ε
,

for every t ≥ 0 and every z1, z2 ∈H 0
ε .

5. THE SINGULAR LIMIT ON FINITE TIME-INTERVALS

In this section, we provide a precise quantitative estimate of the closeness of the
semigroups Sε(t) and S0(t), as ε tends to zero, on finite time-intervals. For both
the Coleman-Gurtin and the Gurtin-Pipkin models, the core of our theory can be
summarized as follows. If we take initial data z = (u0, η0) in a bounded subset of
H 1
ε , then the first component of the solution Sε(t)z tends to S0(t)u0 in the H0-

norm on every time-interval [0, T], whereas the second component goes to zero
in the history-space M0

ε on every time-interval [τ, T], with τ > 0. Nonetheless,
as it is to be expected, the results are stronger when ω > 0. Therefore, we will
analyze the two models separately.

5.1. The Coleman-Gurtin case. Let ω ∈ (0,1) be fixed. Then we have the
following result.

Theorem 5.1. For every R ≥ 0 there exist KR ≥ 0 such that, for any z =
(u0, η0) ∈ BH 1

ε (R) and every t ≥ 0, there hold

‖PSε(t)z − S0(t)Pz‖H0 ≤ KRh(t) 8
√
ε,(5.1)

‖PSε(t)z − S0(t)Pz‖L2(0,t;H1) ≤ KRh(t) 8
√
ε,(5.2)

‖QεSε(t)z‖M0
ε
≤ ‖η0‖M0

ε
e−δt/(4ε) +KR

√
ε,(5.3)

where
h(t) = (1+ t)3/4e`t,

with ` given by (4.3).

Theorem 5.2. If in addition u0 belongs to a bounded subset of H2, then the term
8
√
ε above can be replaced by 4

√
ε times a constant depending on the H2-bound of u0.

Remark 5.3. Collecting (5.1) and (5.3), we obtain the estimate

(5.4) ‖Sε(t)z − LεS0(t)Pz‖H 0
ε
≤ ‖η0‖M0

ε
e−δt/(4ε) + KRh(t) 8

√
ε.

Let us make a few comments on these results. As shown in (5.4), the conver-
gence of the solution Sε(t)z to LεS0(t)Pz in H 0

ε occurs only on time-intervals
of the form [τ, T], with T > τ > 0. This is naturally due to the presence of the
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initial history η0. It is then apparent that, if we are given initial data of the form
(u0,0), the limiting process can be controlled on the whole time-interval [0, T].
We stress that the convergence of the solutions as ε tends to zero is uniform with
respect to initial data belonging to bounded subset of H 1

ε .
The proofs of the theorems require several steps. Along this subsection, the

generic constant c ≥ 0 may depend on R. We need to anticipate a result from the
subsequent Section 6 (cf. (6.4)–(6.5) and Remark 6.9). Namely, for all ε ∈ [0,1],

(5.5) sup
‖z‖H 1

ε
≤R

[
‖Sε(t)z‖H 1

ε
+ 1

1+ t
∫ t

0
‖APSε(y)z‖2dy

]
≤ c, ∀ t ≥ 0.

Let then ε ∈ (0,1] be fixed. Given z = (u0, η0) ∈ BH 1
ε
(R), we denote

(û(t), η̂t) = Sε(t)z and u(t) = S0(t)u0.

The main point is now to reconstruct the “missing” component ηt corresponding
to u(t), in order to perform an appropriate comparison with Sε(t)z. Hence, let
ηt be the solution at time t of the Cauchy problem in M0

ε{
ηt = Tεη+u, t > 0,
η0 = η0.

We first estimate the norms of η̂t and ηt in M0
ε in terms of ε. Incidentally, this

will entail the relation (5.3).

Lemma 5.4. There holds

max
{∥∥η̂t∥∥2

M0
ε
,
∥∥ηt∥∥2

M0
ε

} ≤ ∥∥η0
∥∥2
M0
ε
e−δt/(2ε) + cε, ∀ t ≥ 0.

Proof. We write the proof for η (the other one being the same). So, mul-
tiplying the equation for η times η in M0

ε, and exploiting (3.4) and (5.5), we
get

d
dt
∥∥η∥∥2

M0
ε
+ δ
ε
∥∥η∥∥2

M0
ε
≤ c

∫∞
0
µε(s)‖A1/2η(s)‖ds

≤ c
(∫∞

0
µε(s)ds

)1/2
‖η‖M0

ε

= c√
ε
‖η‖M0

ε
≤ δ

2ε
∥∥η∥∥2

M0
ε
+ c.

The assertion then follows from the Gronwall Lemma. ❐
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The next step is the control of the difference between û(t) and u(t). Preliminarily
notice that

(5.6)
∫∞
√
ε
sµε(s)ds ≤ cε, ∀ ε > 0.

This easily follows from (3.3) (actually, this estimate is rather gross, but enough
for our scopes). Consequently, we deduce

(5.7)
∫∞
√
ε
µε(s)ds ≤ c

√
ε, ∀ ε > 0.

Lemma 5.5. For every t ≥ 0, there holds

‖û(t)−u(t)‖2 +
∫ t

0
‖A1/2û(y)−A1/2u(y)‖2 dy ≤ c(1+ t)3/2e2`t 4

√
ε.

Proof. Set

ū(t) = û(t)−u(t) and η̄t = η̂t − ηt.

Then we have the system
ūt +ωAū+

∫∞
0
µε(s)Aη̂(s)ds − (1−ω)Au+ϕ(û)−ϕ(u) = 0,

η̄t = Tεη̄+ ū,
(ū(0), η̄0) = (0,0).

We multiply the first equation by ū in H0, and the second by η̄ in M0
ε. Taking

(3.4) into account and adding the results, we end up with

d
dt
(∥∥ū∥∥2 + ∥∥η̄∥∥2

M0
ε

)+ 2ω‖A1/2ū‖2 ≤ −2〈ϕ(û)−ϕ(u), ū〉

− 2
∫∞

0
µε(s)〈A1/2η(s),A1/2ū〉ds + 2(1−ω)〈A1/2u,A1/2ū〉.

By virtue of (4.3), we readily get

−2〈ϕ(û)−ϕ(u), ū〉 ≤ 2`‖ū‖2.

Exploiting the normalization property (4.1) and the representation formula (3.5)
for η, we have the equality

−2
∫∞

0
µε(s)〈A1/2η(s),A1/2ū〉ds + 2(1−ω)〈A1/2u,A1/2ū〉 = 2

5∑
j=1

Ij,
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where we set

I1(t) =
∫∞
√
ε
sµε(s)〈A1/2u(t),A1/2ū(t)〉ds,

I2(t) = −
∫∞
√
ε
µε(s)〈A1/2ηt(s),A1/2ū(t)〉ds,

I3(t) = −
∫ √ε

min{√ε,t}
µε(s)〈A1/2η0(s − t),A1/2ū(t)〉ds,

I4(t) =
∫ √ε

min{√ε,t}
(s − t)µε(s)〈A1/2u(t),A1/2ū(t)〉ds,

I5(t) =
∫ √ε

0
µε(s)

[∫min{s,t}

0
〈A1/2u(t)−A1/2u(t −y),A1/2ū(t)〉dy

]
ds.

Hence, the differential inequality above turns into

d
dt
(∥∥ū∥∥2 + ∥∥η̄∥∥2

M0
ε

)+ 2ω‖A1/2ū‖2 ≤ 2`‖ū‖2 + 2
5∑
j=1

Ij.

We now have to estimate the terms Ij .
• From (5.5) and (5.6),

I1(t) ≤ cε.
• From (5.5), (5.7) and Lemma 5.4,

I2(t) ≤ c
∫∞
√
ε
µε(s)‖A1/2ηt(s)‖ds

≤ c
∫∞
√
ε
µε(s)‖A1/2ηt(s)‖2 ds + c

∫∞
√
ε
µε(s)ds

≤ c∥∥ηt∥∥2
M0
ε
+ c√ε ≤ ce−δt/(2ε) + c√ε.

• We assume t <
√
ε, otherwise I3(t) = 0. From (3.3) and (5.5),

I3(t) ≤ c
∫ √ε
t
µε(s)‖A1/2η0(s − t)‖ds

≤ ce−δt/ε
∫∞

0
µε(s)‖A1/2η0(s)‖ds

≤ ce−δt/ε
(∫∞

0
µε(s)ds

)1/2
‖η0‖M0

ε
≤ c√

ε
e−δt/ε,

which then holds for all t ≥ 0.
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• Reasoning as in the previous case, and using (4.1), we have

I4(t) ≤ ce−δt/ε
∫∞

0
sµε(s)ds = ce−δt/ε.

• From the Agmon inequality,

‖ϕ(u)‖2 ≤ c(1+ ∥∥u∥∥6
L6

∥∥u∥∥4
L∞
) ≤ c(1+ ‖A1/2u‖8 ‖Au‖2) ≤ c(1+ ‖Au‖2).

Hence, on account of (5.5) for ε = 0, it is apparent from the equation that

∫ t
0

∥∥ut(w)∥∥2 dw ≤ c(1+ t),

which implies, for y ∈ [0, t],

‖u(t)−u(t −y)‖ ≤
∫ t
t−y

‖ut(w)‖dw ≤ c(1+ t)1/2√y.
Therefore, due to (4.1),

I5(t) =
∫ √ε

0
µε(s)

[∫min{s,t}

0
〈u(t)−u(t −y),Aū(t)〉dy

]
ds

≤ ‖Aū(t)‖
∫ √ε

0
µε(s)

[∫min{s,t}

0
‖u(t)−u(t −y)‖dy

]
ds

≤ c(1+ t)1/2 4
√
ε ‖Aū(t)‖

∫ √ε
0
sµε(s)ds

≤ c(1+ t)1/2 4
√
ε ‖Aū(t)‖.

Collecting all the estimates above, we finally obtain

d
dt
(‖ū‖2 + ∥∥η̄∥∥2

M0
ε

)+ 2ω‖A1/2ū‖2 ≤ 2`‖ū‖2 + g1 + g2,

where we put

g1(t) = c
√
ε + c√

ε
e−δt/(2ε) ,

g2(t) = c(1+ t)1/2 4
√
ε ‖Aū(t)‖.

Observe that ∫ t
0
g1(y)dy ≤ c(1+ t)

√
ε, ∀ t ≥ 0.
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Besides, from (5.5),

∫ t
0
g2(y)dy ≤ c(1+ t)3/2 4

√
ε, ∀ t ≥ 0.

Hence, recalling that (ū(0), η̄0) = (0,0), the Gronwall Lemma and a subsequent
integration on (0, t) yield the thesis. ❐

Conclusion of the proofs of Theorem 5.1 and Theorem 5.2. As we saw, inequal-
ity (5.3) follows from Lemma 5.4, whereas by Lemma 5.5 we find the estimates
(5.1)–(5.2). If in addition u0 ∈ BH2(R′), for some R′ ≥ 0, then it is well known
that u(t) is uniformly bounded in H2. By comparison, this furnishes a uniform
bound of ut in H0 (with a bound depending on R′). Hence, when estimating
I5(t), one has

‖u(t)−u(t −y)‖ ≤
∫ t
t−y

‖ut(w)‖dw ≤ cy,

for some c ≥ 0 depending on R′. Thus, completing the argument, one obtains
4
√
ε times a suitable constant depending on R′ in place of 8

√
ε. ❐

5.2. The Gurtin-Pipkin case. We now examine the case ω = 0. Here,
we have to take f ∈ H1. As in the previous case, we will establish two results,
depending on the regularity of initial data.

Theorem 5.6. For every R ≥ 0, T > 0, and z = (u0, η0) ∈ BH 1
ε
(R), there

exists KR,T ≥ 0 such that, for every t ∈ [0, T], there hold

‖PSε(t)z − S0(t)Pz‖H0 ≤ KR,T 16
√
ε,

and
‖QεSε(t)z‖M0

ε
≤ ‖η0‖M0

ε
e−δt/(4ε) + KR,T

√
ε.

With more regular initial data, we can improve the first estimate.

Theorem 5.7. If in addition u0 belongs to a bounded subset of H2, then the term
16
√
ε above can be replaced by 8

√
ε times a constant depending on the H2-bound of u0.

Proof. Both results are obtained repeating with minor modifications the ar-
guments of the former case, except that now we make the restriction t ∈ [0, T].
In the sequel, the generic constant c ≥ 0 may depend on R and T .

Arguing as in the proof of the subsequent Lemma 6.8 (now for ω = 0), the
reader will have no difficulties to see that, when f ∈ H1,

‖Sε(t)z‖H 1
ε ≤ c, ∀ t ∈ [0, T].
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As before, we introduce (u,η), (û, η̂) and (ū, η̄). The analogue of Lemma 5.4
now reads

(5.8) max
{∥∥η̂t∥∥2

M0
ε
,
∥∥ηt∥∥2

M0
ε

} ≤ ∥∥η0
∥∥2
M0
ε
e−δt/(2ε) + cε, ∀ t ∈ [0, T].

Concerning Lemma 5.5, the only difference here is the treatment of I5(t) (keeping
in mind that now c depends also on T ). For y ∈ [0, t], with t ∈ [0, T], we have

‖A1/2u(t)−A1/2u(t −y)‖
≤ ‖u(t)−u(t −y)‖1/2 ‖Au(t)−Au(t −y)‖1/2

≤ c 4
√
y [h(t)+ h(t −y)],

where we put h(t) = ‖Au(t)‖1/2χ[0,∞)(t). Hence, for every t ∈ [0, T],

I5(t) ≤ 2‖A1/2ū(t)‖
∫ √ε

0
µε(s)

[∫min{s,t}

0
‖A1/2u(t)−A1/2u(t −y)‖dy

]
ds

≤ 8
√
ε g3(t),

having set

g3(t) = c
∫ √ε

0
µε(s)

[∫ s
0
[h(t)+ h(t −y)]dy

]
ds.

By (5.5) (that still holds for ε = 0), we learn that

∫ T
0
g3(t)dt = c

∫ √ε
0
µε(s)

[∫ s
0

∫ T
0
[h(t)+ h(t −y)]dt dy

]
ds ≤ c.

So we end up with

d
dt
(‖ū‖2 + ∥∥η̄∥∥2

M0
ε

) ≤ 2`‖ū‖2 + g1 + 8
√
ε g3,

with g1 as before. The Gronwall Lemma on [0, T] then furnishes

(5.9) ‖ū(t)‖2 ≤ c 8
√
ε, ∀ t ∈ [0, T].

Collecting (5.8)–(5.9) we have proved Theorem 5.6. The proof of Theorem 5.7
follows as in the Coleman-Gurtin case. ❐
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6. DISSIPATIVITY

Throughout the rest of the paper, we will focus on the asymptotic properties of
the semigroup Sε(t) in the Coleman-Gurtin case ω > 0. The case ω = 0, much
more critical in order to develop a global asymptotic analysis (due to the lack of
regularizing effects), will possibly be the object of future investigations. There is
no loss of generality to assume hereafter ω = 1

2 .
In the sequel, we will state results valid for all ε ∈ [0,1]. However, we will

limit ourselves to provide the proofs for ε > 0. The corresponding proofs for
ε = 0 are actually easier, and can be immediately recovered just putting µ0 ≡ 0.
Then, in the first equation the full term Au appears, whereas the second equation
is vacuously true.

The dissipative character of the system is witnessed by the following result.

Theorem 6.1. There exists R0 > 0 such that the set B0
ε = BH 0

ε
(R0) is an absorb-

ing set for Sε(t) on H 0
ε , uniformly in ε. Namely, given any bounded set B ⊂ H 0

ε ,
and setting R = supz∈B ‖z‖H 0

ε
, there exists t0 = t0(R) ≥ 0 such that

Sε(t)B ⊂ B0
ε, ∀ t ≥ t0.

Remark 6.2. The uniformity with respect to ε means that neither the radius
R0 of the ball B0

ε nor the entering time t0 depend on ε.

The theorem is an immediate consequence of the following lemma.

Lemma 6.3. There exist ν0 > 0 and C0 ≥ 0 such that

(6.1) ‖Sε(t)z‖H 0
ε
≤ ‖z‖H 0

ε
e−ν0t + C0, ∀ t ≥ 0,

for any z ∈H 0
ε .

Proof. Multiply the first and the second equation of Problem Pε by u and η,
in the respective spaces. Taking (3.4) into account, and adding the results, yields

d
dt
(‖u‖2 + ∥∥η∥∥2

M0
ε

)+ ‖A1/2u‖2 + δ
ε
∥∥η∥∥2

M0
ε
+ 2〈ϕ(u),u〉 ≤ 2〈f ,u〉.

By (4.2), it is easily seen that

2〈ϕ(u),u〉 ≥ −(1− 3ν)‖A1/2u‖2 − c,
for some ν > 0 (possibly very small). Moreover, as f ∈ H0 is constant in time,

2〈f ,u〉 ≤ ν‖A1/2u‖2 + c.
Hence, for some ν0 > 0 small enough, we find the inequality

(6.2)
d
dt
(‖u‖2 + ∥∥η∥∥2

M0
ε

)+ 2ν0
(‖u‖2 + ∥∥η∥∥2

M0
ε

)+ ν‖A1/2u‖2 ≤ c,

and the Gronwall Lemma entails the desired conclusion. ❐
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In light of the lemma above, we can choose R0 to be any number strictly greater
than C0 to fulfill the thesis of Theorem 6.1. Accordingly,

t0 = 1
ν0

ln+
(

R
R0 − C0

)
.

Remark 6.4. It is apparent from the proof that, if f ≡ 0 and xϕ(x) ≥ 0
for every x ∈ R (which occurs, for instance, if ϕ′ ≥ 0), then Sε(t) decays to zero
exponentially fast, with a decay rate independent of ε. In this case, with reference
to the next sections, the set {0} ⊂ H 0

ε is the (exponential) global attractor for
Sε(t) on H 0

ε .

Remark 6.5. Actually, Theorem 6.1 also holds for the Gurtin-Pipkin model.

Corollary 6.6. For any R ≥ 0 there exists Q0 = Q0(R) such that

(6.3) sup
‖z‖H 0

ε
≤R

∫ t+1

t
‖A1/2PSε(y)z‖2 dy ≤ Q0, ∀ t ≥ 0.

Proof. Integrate (6.2) on (t, t+1) and use (6.1). ❐

The next step is to show the existence of an absorbing set in Z1
ε .

Theorem 6.7. There exists R1 > 0 such that the setB1
ε = BZ1

ε
(R1) is an absorbing

set for Sε(t) on Z1
ε , uniformly in ε.

The proof of this theorem is based on the subsequent lemma.

Lemma 6.8. Given R ≥ 0 and ρ ≥ 0, there exist C1 = C1(ρ) > 0 and a positive
function Ψ1 vanishing at infinity such that, if ‖z‖Z1

ε
≤ R and ‖z‖H 0

ε
≤ ρ, there holds

(6.4) ‖Sε(t)z‖Z1
ε
≤ RΨ1(t)+ C1, ∀ t ≥ 0.

Moreover,

(6.5) sup
‖z‖Z1

ε
≤R

∫ t+1

t
‖APSε(y)z‖2 dy ≤ Q1, ∀ t ≥ 0,

for some Q1 = Q1(R).

Proof. In this proof, the generic constant c ≥ 0 may depend on ρ, but not on
R. Arguing like in the proof of Lemma 6.3, except that now the multiplications
are carried out in H1 and M1

ε, respectively, we come to the differential inequality

d
dt
(‖A1/2u‖2+∥∥η∥∥2

M1
ε

)+‖Au‖2+ δ
ε
∥∥η∥∥2

M1
ε
+2〈A1/2ϕ(u),A1/2u〉 ≤ 2〈f ,Au〉.
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Observe that 2〈f ,Au〉 ≤ 1
4‖Au‖2 + c. Moreover, from (4.3), there holds

2〈A1/2ϕ(u),A1/2u〉 = 2〈ϕ′(u)∇u,∇u〉
≥ −2`‖A1/2u‖2 ≥ −1

4
‖Au‖2 − c,

where the last passage follows by interpolation and by Lemma 6.3. Therefore, we
can choose ν1 > 0 small enough such that

(6.6)
d
dt
(‖A1/2u‖2 + ∥∥η∥∥2

M1
ε

)+ 2ν1
(‖A1/2u‖2 + ∥∥η∥∥2

M1
ε

)+ 1
4
‖Au‖2 ≤ c.

Applying the Gronwall Lemma first, and then integrating (6.6) on (t, t+1), we
prove the estimate

(6.7) ‖Sε(t)z‖H 1
ε ≤ Re−ν1t + c, ∀ t ≥ 0,

along with (6.5). Here we used the fact that ‖z‖H 1
ε ≤ ‖z‖Z1

ε ≤ R.
We are left to show the required control on the remaining part of the term

‖Sε(t)z‖Z1
ε . From (6.7), there is τ1 = τ1(R) such that ‖A1/2u(t)‖ ≤ c for all

t ≥ τ1. Thus, by Lemma 3.3 and Lemma 3.4 we get

(6.8) ε
∥∥Tεηt∥∥2

M0
ε
+ sup
x≥1

xTεηt (x) ≤
R

2(e−δt + Ψ(t))+ c, ∀ t ≥ τ1,

cR2, ∀ t ∈ [0, τ1].

Using (6.7)–(6.8), and keeping in mind Corollary 3.5, we easily recover (6.4). ❐

Remark 6.9. It is clear from the proof above that Lemma 6.8 holds the same
replacing Z1

ε with H 1
ε .

In light of Lemma 6.3 and Lemma 6.8, it is apparent that, selecting ρ > R0,
any number strictly greater than C1(ρ) is an admissible choice for R1 in order to
fulfill the thesis of Theorem 6.7.

When ε = 0, a stronger result holds. Namely, B1
0 absorbs bounded subsets

of H 0
0 . To see that, it is enough to apply Lemma 3.8 to (6.6), on account of the

integral estimate (6.3). Unfortunately, this cannot occur when ε > 0, due to the
hyperbolic character of the equation for η, that prevents any kind of regularization
of the solution. Nonetheless, it is still true that B1

ε is exponentially attracting in
H 0
ε .

Theorem 6.10. There exist κ1 > 0 and a positive increasing function Γ1 such
that, up to (possibly) enlarging the radius R1,

distH 0
ε
(Sε(t)B,B1

ε) ≤ Γ1(R)e−κ1t, ∀ t ≥ 0,

for every set B ⊂ BH 0
ε
(R).
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In view of Theorem 6.1 and estimate (6.1), it is enough to show that

distH 0
ε
(Sε(t)B0

ε,B1
ε) ≤ R0e−κ1t, ∀ t ≥ 0.

The proof of this fact is based on a suitable decomposition of the solution Sε(t)z.
Recalling (4.3), we set

ϕ0(x) =ϕ(x)+ `x, x ∈ R.
Obviously, ϕ′

0(x) ≥ 0 for every x ∈ R. Then, for z = (u0, η0), we write Sε(t)z
as the sum

Sε(t)z = Lε(t)z + Kε(t)z,
where Lε(t)z = (v(t), ξt) and Kε(t)z = (w(t), ζt) solve the problems

vt + 1
2Av +

∫∞
0
µε(s)Aξ(s)ds +ϕ0(u)−ϕ0(w) = 0,

ξt = Tεξ + v,
(v(0), ξ0) = (u0, η0),

and 
wt + 1

2Aw +
∫∞

0
µε(s)Aζ(s)ds +ϕ0(w)− `u = f ,

ζt = Tεζ +w,
(w(0), ζ0) = (0,0).

Notice that, in general, Lε(t) and Kε(t) are not semigroups. Let us establish some
properties of these maps.

Lemma 6.11. There exists κ1 > 0 such that

sup
z∈B0

ε

‖Lε(t)z‖H 0
ε
≤ R0e−κ1t, ∀ t ≥ 0.

Proof. Repeat, with the obvious changes, the proof of Lemma 6.3, noting
that

〈ϕ0(u)−ϕ0(w),v〉 = 〈ϕ0(u)−ϕ0(w),u−w〉 ≥ 0,

since ϕ′
0 ≥ 0. ❐

Lemma 6.12. There holds

sup
t≥0

sup
z∈B0

ε

‖Kε(t)z‖Z1
ε
≤ c,

for some c = c(R0).
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Proof. Mimicking the proof of Lemma 6.8, we get

d
dt
(‖A1/2w‖2 + ∥∥ζ∥∥2

M1
ε

)+ 2ν1
(‖A1/2w‖2 + ∥∥ζ∥∥2

M1
ε

)+ 1
4
‖Aw‖2

≤ c + 2`〈u,Aw〉.

Since u(t) is uniformly bounded in H0,

2`〈u,Aw〉 ≤ 1
8
‖Aw‖2 + c.

Thus, the Gronwall Lemma together with the condition (w(0), ζ0) = (0,0) bear
the estimate

sup
t≥0

sup
z∈B0

ε

‖Kε(t)z‖H 1
ε
≤ c.

The thesis then follows applying Lemma 3.3 and Lemma 3.4 (with null initial
data), and by Corollary 3.5. ❐

On account of Lemma 6.11 and Lemma 6.12, and redefining R1 to be greater
than the constant c(R0) above, we get at once the desired inequality

distH 0
ε
(Sε(t)B0

ε,B1
ε) ≤ R0e−κ1t, ∀ t ≥ 0.

In the sequel, we agree to redefine the radius R1 so that Theorem 6.10 holds
true.

Remark 6.13. Integrating the differential inequality in the proof of Lemma
6.12 on (0, t), we also find the estimate

sup
t≥0

∫ t+1

t
‖Aw(y)‖2 dy <∞.

7. GLOBAL ATTRACTORS

After Theorem 6.10, we learn that Sε(t) is asymptotically compact on the phase-
space H 0

ε . In other words, there exists a compact attracting set (namely, B1
ε) for

Sε(t). Thus, by means of well-known results of the theory of dynamical systems
(see, e.g., [24]), there holds the following result.

Theorem 7.1. For every ε ∈ [0,1], the strongly continuous semigroup Sε(t) act-
ing on the phase-space H 0

ε possesses a connected global attractor Aε which is bounded
in H 1

ε , uniformly with respect to ε.

Recall that the global attractor is the (unique) compact set which is at the same
time attracting (with respect to the Hausdorff semidistance) and fully invariant for
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the semigroup. Also, the attractor can be explicitly described as the section at time
t = 0 of the set of all complete bounded trajectories of the system.

If the nonlinearity ϕ and the source term f are more regular, so is the attrac-
tor. This issue will be discussed in detail in Section 9. Besides, Sε(t) is injective
on Aε.

Proposition 7.2. The semigroup Sε(t) uniquely extends to a strongly continuous
group of operators {S̃ε(t)}t∈R on Aε.

Proof. The result follows from the invariance ofAε and the backwards unique-
ness property of Sε(t) on Aε. We prove this last property for the case ε > 0 (cf.
[9], where a similar situation is encountered), whereas the case ε = 0 is classical
(see [24]). Denoting by (ū0, η̄0) the difference of two initial data, let (ū, η̄) be
the difference of the corresponding solutions. Assume that (ū(τ), η̄τ) = (0,0) at
a certain time τ > 0. We suppose that τ belongs to the support of µε (the other
case, which might be empty, is easier). Then, from the representation formula
(3.5), we see that η̄0 = 0, and so η̄t = 0 for t ∈ [0, τ]. But then the equation for
η̄ implies that ū = 0 in [0, τ]. We conclude that (ū0, η̄0) = (0,0). ❐

Finally, the family of global attractors {Aε} is upper semicontinuous at ε = 0,
with respect to the Hausdorff semidistance in H 0

ε .

Theorem 7.3. There holds

lim
ε→0
[distH 0

ε
(Aε,LεA0)] = 0.

Equivalently,
lim
ε→0
[distH0(PAε,A0)+ sup

z∈Aε

‖Qεz‖M0
ε
] = 0.

We need first a preparatory lemma.

Lemma 7.4. The family of maps

{u ∈ C(R,H0) | u(t) = PS̃ε(t)z, with z ∈Aε for some ε ∈ (0,1]}
is equicontinuous and equibounded in H1.

Proof. Notice first that S̃ε(t)z is well defined, in light of Proposition 7.2.
The equiboundedness in H1 follows at once from the fact that u(t) ∈ PAε for
every t ∈ R. Exploiting the invariance of the attractor, it is then enough to prove
the equicontinuity on the time-interval [1,2]. Directly from the equation, we see
that

‖ut‖2 ≤ c
(
‖Au‖2 + ‖ϕ(u)‖2 + 1

ε
∥∥η∥∥2

M1
ε
+ ‖f‖2

)
.

Using the Agmon inequality,

‖ϕ(u)‖2 ≤ c(1+ ‖Au‖2).
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On the other hand, repeating the proof of Lemma 5.4, taking now the products
in M1

ε , we obtain∥∥ηt∥∥2
M1
ε
≤ ce−δ/(2ε) + cε‖Au(t)‖2, ∀ t ∈ [1,2].

In conclusion,

‖ut‖2 ≤ c
(

1+ ‖Au‖2 + 1
ε
e−δ/(2ε)

)
,

so that the integral estimate (6.5) bears∫ 2

1
‖ut(y)‖2 dy ≤ c.

This yields the desired ( 1
2 -Hölder) equicontinuity. ❐

Proof of Theorem 7.3. The idea of the proof is borrowed from [12], along the
lines of [15]. Assume by contradiction that there exists εn ∈ (0,1], with εn → 0,
and a corresponding sequence zn ∈Aεn such that

inf
z0∈A0

‖zn − Lεnz0‖H 0
εn
≥ c > 0.

In view of Proposition 7.2, denote

un(t) = PS̃εn(t)zn and ηtn = QεnS̃εn(t)zn,
for every t ∈ R. Thanks to Lemma 7.4, we are in a position to apply Ascoli’s
theorem. Therefore, there exists u∗ ∈ C(R,H0) such that, up to a subsequence,

lim
n→∞‖un −u∗‖C([−T,T],H0) = 0,

for every T > 0. In addition,

sup
t∈R

‖u∗(t)‖ < ∞.

Furthermore, from Lemma 5.4 and the invariance of the attractor,

lim
n→∞‖η

0
n‖M0

εn
= 0.

Therefore, setting z∗ = (u∗(0),0), we get

lim
n→∞‖zn − Lεnz∗‖H 0

εn
= 0.

We reach the contradiction if we show that u∗(0) ∈ A0, which occurs if and only
if u∗ is a complete bounded trajectory of S0(t). The boundedness has already
been proved, and the remaining assertion is a consequence of Theorem 5.1. ❐
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8. FURTHER DISSIPATIVITY

In this section we show that, if we require sufficient regularity to the nonlinearity
ϕ and to the source term f , then the absorbing property holds true in higher-
order spaces as well, provided that the nonlinearity satisfies a further growth re-
striction. Throughout this section, let m ≥ 2 be any integer. We make the
following additional assumptions (besides setting ω = 1

2):

(8.1) f ∈ Hm−1, ϕ ∈ Cm−1(R), with γ < 4,

where, with reference to (4.4), γ is the growth rate of ϕ′. Moreover, we require
that

(8.2) if m ≥ 4, then ϕ(ι)(0) = 0 for ι = 2, . . . ,2
[
m
2

]
− 2.

Observe however that, to include the physically significant nonlinearity ϕ(x) =
x3 − x, we should restrict to m ≤ 5.

Then we have the following result.

Theorem 8.1. There exists Rm > 0 such that the set Bmε = BZmε (Rm) is an
absorbing set for Sε(t) on Zmε , uniformly in ε.

In light of Lemma 6.8, the thesis immediately follows exploiting an inductive
argument on m ≥ 2, on account of the following lemma.

Lemma 8.2. Given R ≥ 0 and ρ ≥ 0, there exist Cm = Cm(ρ) > 0, and a
positive function Ψm vanishing at infinity such that, if ‖z‖Zmε ≤ R and ‖z‖Zm−1

ε
≤ ρ,

there holds

(8.3) ‖Sε(t)z‖Zmε ≤ RΨm(t)+ Cm, t ≥ 0.

Moreover,

(8.4) sup
‖z‖Zmε ≤R

∫ t+1

t
‖A(m+1)/2PSε(y)z‖2 dy ≤ Qm, ∀ t ≥ 0,

for some Qm = Qm(R).
Proof. Let m ≥ 2 be a fixed integer. In this proof, the generic constant c ≥ 0

may depend on ρ, but not on R. Notice that the term

ε
∥∥Tεηt∥∥2

M0
ε
+ sup
x≥1

xTεηt (x),

can be estimated as in (6.8). Hence, in order to prove (8.3), it will suffice to show
that

(8.5) ‖Sε(t)z‖Hm
ε ≤ cRe−νmt + c, ∀ t ≥ 0,
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for some νm > 0. Arguing as in the proof of Lemma 6.8, taking this time the
products in Hm and Mm

ε , we find the inequality

d
dt
(‖Am/2u‖2 + ∥∥η∥∥2

Mm
ε

)+ ‖A(m+1)/2u‖2 + δ
ε
∥∥η∥∥2

Mm
ε

≤ −2〈ϕ(u),Amu〉 + 2〈f ,Amu〉.

Since f ∈ Hm−1,

2〈f ,Amu〉 ≤ 1
4
‖A(m+1)/2u‖2 + c.

Now we have to proceed differently, according to the value of m.

CASE m = 2. By virtue of the Agmon inequality and Theorem 6.7,

‖ϕ′(u)‖L∞ ≤ c
(
1+ ∥∥u∥∥γL∞) ≤ c(1+ ‖Au‖γ/2),

so that we deduce the estimate

−2〈ϕ(u),A2u〉 = −2〈ϕ′(u)∇u,∇Au〉
≤ c(1+ ‖Au‖γ/2)‖A1/2u‖‖A3/2u‖

≤ 1
4
‖A3/2u‖2 + c‖Au‖γ + c.

Hence we obtain

d
dt
(‖Au‖2 + ∥∥η∥∥2

M2
ε

)+ 2ν2
(‖Au‖2 + ∥∥η∥∥2

M2
ε

)+ 1
4
‖A3/2u‖2 ≤ c + c‖Au‖γ.

for some ν2 > 0 sufficiently small. Setting σ = max{(γ − 2)/2,0} ∈ [0,1), the
right-hand side of the inequality above is less than or equal to

c + c‖Au‖2(‖Au‖2 + ∥∥η∥∥2
M2
ε

)σ .
Thanks to (6.5), we can apply Lemma 3.7, which entails (8.5). With a subsequent
integration on (t, t + 1), we recover the integral estimate (8.4).

CASE m > 2. We exploit an inductive argument on m. Assuming that the
result holds for m− 1, we have

sup
t≥0

sup
‖z‖Hm−1

ε
≤ρ
‖A(m−1)/2u(t)‖ ≤ c.

Moreover, since now u(t) is uniformly bounded in L∞(Ω),
sup
t≥0

m−1∑
ι=0

‖ϕ(ι)(u(t))‖L∞ ≤ c.
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Therefore, appealing to (8.2), we get that ϕ(u) ∈ Hm−1, and it is a standard
matter to check that ‖A(m−1)/2ϕ(u)‖ ≤ c. Accordingly,

−2〈ϕ(u),Amu〉 = −2〈A(m−1)/2ϕ(u),A(m+1)/2u〉
≤ 1

4
‖A(m+1)/2u‖2 + c.

In conclusion, we get

d
dt
(‖Am/2u‖2 + ∥∥η∥∥2

Mm
ε

)+ 2νm
(‖Am/2u‖2 + ∥∥η∥∥2

Mm
ε

)+ 1
4
‖A(m+1)/2u‖2 ≤ c,

for a suitable νm > 0. Arguing as in the previous case, we reach the thesis. ❐

Remark 8.3. The restriction γ < 4 (which is required only to treat the case
m = 2) is actually unnecessary when ε = 0. Indeed, in that situation, the final
differential inequality is

d
dt
‖Au‖2 + 2ν2‖Au‖2 + 1

4
‖A3/2u‖2 ≤ c + c‖Au‖γ.

Hence, if γ = 4, we reach the thesis exploiting Lemma 3.8. By the same token,
Bm0 is an absorbing set in the phase-space H 0

0 .

Of course, if ε > 0 we cannot expect that Bmε is an absorbing set in H 0
ε .

Nonetheless, it is exponentially attracting.

Theorem 8.4. There exist κm > 0 and an increasing positive function Γm such
that, up to (possibly) enlarging the radius Rm,

distH 0
ε
(Sε(t)B,Bmε ) ≤ Γm(R)e−κmt, ∀ t ≥ 0,

for every set B ⊂ BH 0
ε
(R).

The result is a direct consequence of Lemma 3.9, Theorem 4.5, Theorem
6.10, and Lemma 8.5 below.

Lemma 8.5. There exists Γm > 0 such that, up to (possibly) enlarging the radius
Rm,

distH 0
ε
(Sε(t)Bm−1

ε ,Bmε ) ≤ Γme−κ1t, ∀ t ≥ 0.

Proof. The proof follows step by step the one of Theorem 6.10, with the only
difference that here we need the estimate supt≥0 supz∈Bm−1

ε
‖Kε(t)z‖Zmε ≤ c, for

some c = c(Rm−1). Since by Theorem 8.1 u(t) is uniformly bounded in Hm−1,
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we have 2`〈u,Amw〉 ≤ 1
4‖A(m+1)/2w‖2 + c. Hence, by mimicking the proof of

Lemma 8.2, there holds

d
dt
(‖Am/2w‖2 + ∥∥ζ∥∥2

Mm
ε

)+ 2νm
(‖Am/2w‖2 + ∥∥ζ∥∥2

Mm
ε

)+ 1
2
‖A(m+1)/2w‖2

≤ −2〈ϕ0(w),Amw〉 + c.

In order to derive the suitable differential inequality that, via a Gronwall Lemma,
will provide the desired conclusion, we just follow the proof of Lemma 8.2, with
the obvious changes. For the case m = 2, note that the final step is based on the
inequality

sup
t≥0

∫ t+1

t
‖Aw(y)‖2 dy <∞,

formulated in Remark 6.13. ❐

Till the end of this work, we agree to redefine inductively the radii Rm so that
Theorem 8.4 holds true.

9. ROBUST EXPONENTIAL ATTRACTORS

In this last section, we state and prove the main result about the asymptotic behav-
ior of solutions for the Coleman-Gurtin model (as usual, we put ω = 1

2 ). Again,
we have to make the requirement that (4.4) holds with γ < 4.

Theorem 9.1. Assume that γ < 4. Then for every ε ∈ [0,1] there exists a set
Eε, compact in H 0

ε and bounded in Z1
ε , which satisfies the following conditions.

(i) Eε is positively invariant for Sε(t), that is,

Sε(t)Eε ⊂ Eε, ∀ t ≥ 0.

(ii) There exist κ > 0 and a positive increasing function M (both independent of ε)
such that, for every bounded set B ⊂ B0

Hε
(R), there holds

distH 0
ε
(Sε(t)B,Eε) ≤M(R)e−κt, ∀ t ≥ 0.

(iii) The fractal dimension of Eε in H 0
ε is uniformly bounded with respect to ε.

(iv) There exist Θ ≥ 0 and τ ∈ (0, 1
8] such that

distsym

H 0
ε
(Eε,LεE0) ≤ Θετ.

The last property (iv) witnesses the robustness of the family {Eε} with respect
to the singular limit ε → 0, and it is equivalent to

distsym
H0 (PEε,E0)+ sup

z∈Eε
‖Qεz‖M0

ε
≤ Θετ.
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Since Eε is a compact attracting set, it follows that Aε ⊂ Eε. As a byproduct
we have the following result.

Corollary 9.2. If γ < 4, the global attractor Aε has finite fractal dimension,
uniformly with respect to ε.

With further hypotheses on ϕ and f , we can strengthen the thesis.

Theorem 9.3. Assume in addition that (8.1)–(8.2) hold for m ≥ 2. Then Eε is
bounded in Zmε and the constant τ appearing in (iv) is replaced by 2τ.

Before going to the proofs of the theorems, let us briefly discuss the further
regularity of Eε (and, consequently, of Aε). From Theorem 9.3 we see that Eε is
bounded in Hm

ε . Indeed, Eε is contained by construction in Bmε . Hence, Eε is
as regular as ϕ and f permit.

Proposition 9.4. Let γ < 4, f ∈ C∞(Ω̄), and ϕ ∈ C∞(R) with ϕ(ι)(0) = 0
for all ι ≠ 1. Then Eε (and henceAε) belongs to Bmε , for everym ≥ 0. In particular,

PAε ⊂ PEε ⊂ C∞(Ω̄).
Remark 9.5. The global attractor A0 fulfills the regularity properties above

without the constraint γ < 4, for it belongs to Bm0 (cf. Remark 8.3).

Actually, one could easily recast all the calculations made so far by replacing,
form ≥ 1, the space Lmε with Lmε ∩H1

µ(R+,Hm). This yields the following result.

Corollary 9.6. Let ε > 0, γ < 4, f ∈ C∞(Ω̄), and ϕ ∈ C∞(R) with
ϕ(ι)(0) = 0 for all ι ≠ 1. Then

QεAε ⊂ QεEε ⊂ C∞([0, s∞)× Ω̄),
where s∞ = sup{s | µε(s) > 0} (possibly, s∞ = ∞).

Proof of Theorem 9.1. We want to exploit the abstract Theorem A.2 given in
Appendix A. Preliminarily notice that, due to the exponential attraction property
provided by Theorem 6.10, and using the transitivity of exponential attraction
(i.e., Lemma 3.9) together with estimate (4.9), it suffices to show that

distH 0
ε
(Sε(t)B1

ε,Eε) ≤ M1e−κt, ∀ t ≥ 0,

for some M1 ≥ 0, in place of the stronger condition (ii). According to the nota-
tions of Appendix A, we set

X = Y † = H0, X′ = Hβ, Y = H1, Y ′ = H1+β,

where β = (4 − γ)/2. Without loss of generality, we may assume γ > 2, so that
β ∈ (0,1). Besides, we set Bε = B1

ε, and we denote by t1 the entering time of Bε
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into itself. So, in particular, Sε(t)Bε ⊂ Bε for every t ≥ t1. It is readily seen that
Bε is closed in Hε (which, in our concrete situation, is the space H 0

ε ). We are
now left to verify hypotheses (H1)–(H5) of Theorem A.2, that will guarantee the
existence of a set Eε ⊂ Bε with the desired properties.

Hence, let t? ≥ t1 to be determined later, and set Sε = Sε(t?). Conditions
(H2)–(H3), with Σ(ε) = 8

√
ε, immediately follow from Theorem 5.1 (cf. (5.4)),

whereas (H4) is a consequence of (4.9). Besides, due to (4.9), to prove (H5) (for
α = 1

2 ) it is enough to show that there exists a positive constant c(ε) such that

‖Sε(t1)z − Sε(t2)z‖Hε ≤ c(ε)
√
|t1 − t2|,

for every t1, t2 ∈ [t?,2t?] and every z ∈ Bε. But this follows from the bound

‖ut‖L2(t?,2t?;H0) + ‖ηt‖L2(t?,2t?;M0
ε) ≤ c(ε),

which is in turn a consequence of (6.4)–(6.5) (cf. the proof of Lemma 7.4) and
Lemma 3.3.

Thus, we are left to prove (H1). To this aim, we decompose the map Sε(t)
into the sum

Sε(t) = Lε(t)+ Kε(t),

where, for z ∈ Bε, Lε(t)z = (v(t), ξt) and Kε(t)z = (w(t), ζt) solve the
problems


vt + 1

2Av +
∫∞

0
µε(s)Aξ(s)ds = 0,

ξt = Tεξ + v,
Lε(0)z = z,

and 
wt + 1

2Aw +
∫∞

0
µε(s)Aζ(s)ds +ϕ(u) = f ,

ζt = Tεζ +w,
Kε(0)z = 0.

It is readily seen that Lε(t) is a strongly continuous semigroup of linear operators
on Hε. Moreover, it is exponentially stable, with a decay rate independent of ε
(cf. Remark 6.4). Hence, choosing any λ < 1

2 , we can fix t? ≥ t1 large enough
such that

‖Lεz1 − Lεz2‖Hε ≤ λ‖z1 − z2‖Hε , ∀z1, z2 ∈ Bε,
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where we set Lε = Lε(t?). Let now z1, z2 ∈ Bε. Denoting the difference
(w̄(t), ζ̄) = Kε(t)z1 −Kε(t)z2, we end up with the system


w̄t + 1

2Aw̄ +
∫∞

0
µε(s)Aζ̄(s)ds +ϕ(u1)−ϕ(u2) = 0,

ζ̄t = Tεζ̄ + w̄,
z̄(0) = 0,

where ui(t) = PSε(t)zi. Multiplying the first equation by w̄ in Hβ, and the
second by ζ̄ in Mβ

ε , exploiting (3.4) and adding the resulting equations, we get

d
dt
(‖Aβ/2w̄‖2 + ∥∥ζ̄∥∥2

Mβ
ε

)+ ‖A(1+β)/2w̄‖2 ≤ 2〈ϕ(u2)−ϕ(u1),Aβw̄〉.

Using (4.4) and the generalized Hölder inequality with exponents{
2,

3
1− β,

6
1+ 2β

, ∞
}
,

we get
2
〈
ϕ(u2)−ϕ(u1), Aβw̄

〉 ≤ g‖u1 −u2‖‖Aβw̄‖L6/(1+2β) ,

with
g = c(1+ ∥∥u1∥∥2

L∞
∥∥u1∥∥γ−2

L6 + ∥∥u2∥∥2
L∞
∥∥u2∥∥γ−2

L6

)
.

Due to the continuous embedding H1−β ⊂ L6/(1+2β)(Ω),
‖Aβw̄‖L6/(1+2β) ≤ c‖A(1+β)/2w̄‖.

On the other hand, the uniform bound on ui(t) in H1 given by (6.4) and the
Agmon inequality entail g ≤ c(1+‖Au1‖+‖Au2‖). Finally, from the continuous
dependence estimate (4.9),

‖u1(t)−u2(t)‖ ≤ c‖z1 − z2‖Hε , ∀ t ∈ [0, t?].

Collecting all the information obtained so far, we deduce the differential inequality

d
dt
(‖Aβ/2w̄‖2+∥∥ζ̄∥∥2

Mβ
ε

)+1
2
‖A(1+β)/2w̄‖2 ≤ c(1+‖Au1‖2+‖Au2‖2)

∥∥z1−z2
∥∥2
Hε
,

for every t ∈ [0, t?]. Notice that, from (6.5),

∫ t?
0
(1+ ‖Au1(y)‖2 + ‖Au2(y)‖2)dy ≤ c.



Singular Limit of Differential Systems with Memory 207

Therefore, integration on (0, t?) leads to

(9.1) ‖Kε(t)z1 −Kε(t)z2‖H β
ε
≤ c‖z1 − z2‖Hε , ∀ t ∈ [0, t?].

Also, we find

(9.2)
∫ t?

0
‖A(1+β)/2w̄(y)‖2 dy ≤ c∥∥z1 − z2

∥∥2
Hε
.

Hence, setting Kε = Kε(t?), we have in particular

∥∥Kεz1 −Kεz2
∥∥
H β
ε
≤ c‖z1 − z2‖Hε ,

To complete the proof of (H1) we need to prove the inequality above with H′
ε in

place of H β
ε . This amounts to showing that

sup
x≥1

xTεη(x) ≤ c
∥∥z1 − z2

∥∥2
H 0
ε
,

ε
∥∥Tεη∥∥2

M−1
ε
≤ c∥∥z1 − z2

∥∥2
H 0
ε
,

where we put for simplicity η = ζ̄t? . The first inequality is an immediate conse-
quence of (9.2) and Lemma 3.6 (where w̄ plays the role of u). The second one is
proved recasting Lemma 3.3 in M−1

ε on [0, t?], using the estimate (9.1) to con-
trol w̄ in H0. In both cases it is crucial to use the fact that ζ̄0 = 0. This finishes
the proof of Theorem 9.1. ❐

Proof of Theorem 9.3. The argument here is exactly the same, except that
now we set Bε = Bmε . Due to the exponential attraction property given by Theo-
rem 8.4, it will suffice to prove

distH 0
ε
(Sε(t)Bmε ,Eε) ≤M1e−κt, ∀ t ≥ 0,

for some M1 ≥ 0, in place of (ii). On account of Theorem 5.2, here Σ(ε) = 4
√
ε .

The exponential attractor Eε found in this way will belong to Bmε . ❐

APPENDIX A. THE ABSTRACT RESULT

1.1. The setting. Let X, X′, Y †, Y , Y ′ be reflexive Banach spaces with em-
beddings X′ ø X and Y ′ ø Y ⊂ Y †. Let µ ∈ C(R+) ∩ L1(R+) be a nonnegative
decreasing function. For ε ∈ (0,1], we set

µε(s) = 1
ε2µ

(
s
ε

)
, s ∈ R+,
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and we consider the Banach spaces M′
ε = L2

µε(R
+, Y ′), Mε = L2

µε(R
+, Y ), M†

ε =
L2
µε(R

+, Y †), endowed with the usual norms, together with the space

Wε = {η ∈M′
ε | ηs ∈M†

ε , sup
x≥1

xTεη(x) <∞},

where
Tεη(x) = ε

∫
(0,1/x)∪(x,∞)

µε(s)
∥∥η(s)∥∥2

Y ds, x ≥ 1,

and ηs is the distributional derivative of η with respect to the internal variable s.
Then, Wε is a Banach space with the norm

∥∥η∥∥2
Wε
= ∥∥η∥∥2

M′
ε
+ ε∥∥ηs∥∥2

M†
ε
+ sup
x≥1

xTεη(x).

Finally, for ε ∈ [0,1], we define the product Banach spaces

Hε =
{
X ×Mε, if ε > 0,
X, if ε = 0,

H′
ε =

{
X′ ×Wε, if ε > 0,
X′, if ε = 0,

normed by

∥∥(u,η)∥∥2
Hε
= ∥∥u∥∥2

X +
∥∥η∥∥2

Mε
,∥∥(u,η)∥∥2

H′
ε
= ∥∥u∥∥2

X′ +
∥∥η∥∥2

Wε
.

It is understood that, when ε = 0, the pair (u,η) reads just u. Using an abstract
form of Lemma 3.1, we have the compact embedding H′

ε øHε. The lifting map
Lε : H0 →Hε, and the projection map P : Hε →H0 are given by

Lεu =
{
(u,0), if ε > 0,
u, if ε = 0,

P(u,η) = u.

Before proceeding, we need the following technical lemma.

Lemma A.1. The inequality

Nr (BH′
ε (1),Hε) ≤Nr (BH′

1
(1),H1)

holds for every r > 0 and every ε ∈ [0,1].
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Proof. The inequality is straightforward if ε = 0. If ε > 0, notice that z =
(u,η) ∈Hε if and only if ẑ = (u, η̂) ∈H1, having set η̂(s) = (1/√ε)η(εs). In
particular, ‖z‖Hε = ‖ẑ‖H1 . The thesis follows from the simple observation that
if z ∈ BH′

ε (1), then ẑ ∈ BH′
1
(1). Indeed,

∥∥ẑ∥∥2
H′

1
≤ ∥∥u∥∥2

X′ +
∥∥η∥∥2

M′
ε
+ ε2∥∥ηs∥∥2

M†
ε
+ ε sup

x≥1
xTεη(x) ≤

∥∥z∥∥2
H′
ε
≤ 1,

since ε ≤ 1. ❐

1.2. The theorem. For every ε ∈ [0,1], let Sε(t) : Hε → Hε be a strongly
continuous semigroup of operators. Assume that there exist R > 0 and t? > 0,
both independent of ε, and a family of closed sets Bε ⊂ BHε (R) such that

Sε(t)Bε ⊂ Bε, ∀ t ≥ t?.

Theorem A.2. Assume that there exist Λj ≥ 0, λ ∈ [0, 1
2), α ∈ (0,1], and a

continuous increasing function Σ : [0,1] → [0,∞) with Σ(0) = 0 (all independent
of ε) such that the following conditions hold.
(H1) The map Sε = Sε(t?) satisfies, for every z1, z2 ∈ Bε,

Sεz1 − Sεz2 = Lε(z1, z2)+Nε(z1, z2),

where

‖Lε(z1, z2)‖Hε ≤ λ‖z1 − z2‖Hε ,
‖Nε(z1, z2)‖H′

ε ≤ Λ1‖z1 − z2‖Hε .

(H2) There holds

‖Snε z − LεSn0 Pz‖Hε ≤ Λn2 Σ(ε), ∀z ∈ Bε, ∀n ∈ N.

(H3) There holds

‖Sε(t)z − LεS0(t)Pz‖Hε ≤ Λ3Σ(ε), ∀z ∈ Bε, ∀ t ∈ [t?,2t?].

(H4) The map
z , Sε(t)z : Bε → Bε

is Lipschitz continuous, with a Lipschitz constant independent of ε and of t ∈
[t?,2t?]. Here, Bε is endowed with the metric topology of Hε.

(H5) The map
(t, z), Sε(t)z : [t?,2t?]×Bε → Bε

is Hölder continuous of exponent α (with a constant that may depend on ε).
Again, Bε is endowed with the metric topology of Hε.
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Then there exists a family of compact sets Eε ⊂ Bε, such that

Sε(t)Eε ⊂ Eε, ∀ t ≥ 0,

with the following additional properties.
(T1) Eε attracts Bε with an exponential rate which is uniform with respect to ε, that

is,
distHε (Sε(t)Bε,Eε) ≤ M1e−κt, ∀ t ≥ 0,

for some κ > 0.
(T2) The fractal dimension of Eε is uniformly bounded with respect to ε, that is,

dimHε [Eε] ≤ M2.

(T3) There holds
distsym

Hε

(Eε,LεE0
) ≤M3[Σ(ε)]τ,

for some τ ∈ (0,1].
The positive constants κ, τ and Mj are independent of ε, and they can be explicitly
calculated.

The sets Eε are called exponential attractors (with respect to the topology of
Hε) for Sε(t) on Bε.

Remark A.3. Notice that condition (H1) is verified if the map Sε admits the
decomposition Sε = Lε +Kε such that, for every z1, z2 ∈ Bε,

‖Lεz1 − Lεz2‖Hε ≤ λ‖z1 − z2‖Hε ,
‖Kεz1 −Kεz2‖H′

ε ≤ Λ1‖z1 − z2‖Hε .

Remark A.4. Observe that (T3) is equivalent to

distsym
X (PEε,E0)+ sup

(u,η)∈Eε
‖η‖Mε ≤ M4[Σ(ε)]τ,

for some positive constantM4 independent of ε.

1.3. Sketch of the proof. The construction parallels the one of the proof of
the main theorem in [7] (but see also [4]). Thus, we will limit ourselves to treat
in detail only those passages where appreciable differences appear, and we address
the reader to [7] for the rest.

In the following, c will denote a generic positive constant independent of ε.
We define

Rn = R
(

1
2
+ λ

)n
, n ∈ N,
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and we put
N0 = max

{
3,N(1−2λ)/(4Λ1)(BH′

1
(1),H1)

}
.

First, we build (discrete) exponential attractors Edε for the maps Sε for ε = 0
or ε > ε0, where ε0 > 0 will be determined later (it might occur that ε0 ≥ 1, in
which case the construction for ε > ε0 is empty). This is done exactly as in [7].
Namely, we find for n ∈ N a family of finite sets En(ε) such that

En(ε) ⊂ Snε Bε, SεEn(ε) ⊂ En+1(ε),

En(ε) is a Rn-net of Snε Bε,
card[En(ε)] ≤ Nn+1

0 .

In the last inequality we can choose N0 for all the involved ε by force of Lemma
A.1. Then, we define

Edε =
⋃
n∈N

En(ε)
Hε
.

Note that the analogous union (made for ε = 0) in [7] is taken over N∪{0}. The
(compact) sets Edε are exponential attractors for Sε on Bε that satisfy

SεEdε ⊂ Edε ⊂ Bε,
distHε (S

n
ε Bε,Edε ) ≤ Rn,

dimHε [Edε ] ≤
lnN0

ln(2/(2λ+ 1))
.

Besides, it is apparent that

(A.1) distsym
Hε
(Edε ,LεEd0 ) ≤ c.

The next step is to determine ε0, in order to construct Edε for ε ∈ (0, ε0].
Without loss of generality, we assume Λ2 ≥ 1 and we choose ε0 ∈ (0,1] such
that, for all ε ∈ (0, ε0],

(A.2) ν(ε) = lnΣ(ε)
ln
( 1

2 + λ
)− lnΛ2

≥ 1.

Hence, let ε ∈ (0, ε0]. For every n ∈ N, we find a set Ên ⊂ B0 such that

Sn0 Ên = En(0) and card[Ên] ≤ Nn+1
0 ,

and we put
Ên(ε) = Ên × {0} ⊂ Bε.
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Clearly, PÊn(ε) = Ên, LεÊn = Ên(ε), card[Ên(ε)] ≤ Nn+1
0 . Finally, we define

Ẽn(ε) = Snε Ên(ε) ⊂ Bε. We shall prove the estimate

(A.3) distHε (S
n
ε Bε, Ẽn(ε)) ≤ 2Λn2 Σ(ε)+ Rn, ∀n ∈ N.

Fix z ∈ Bε. Recalling (H2),

‖Snε z − LεSn0 Pz‖Hε ≤ Λn2 Σ(ε).
Observe that LεEn(0) is a Rn-net of LεSn0 B0 in Hε. Thus there exists z̄ ∈ En(0)
such that

‖LεSn0 Pz − Lεz̄‖Hε ≤ Rn.
By the definition of Ên(ε), we can find ẑ ∈ Ên(ε) such that z̄ = Sn0 Pẑ. Hence,
applying (H2) once more,

‖Snε ẑ − Lεz̄‖Hε = ‖Snε ẑ − LεSn0 Pẑ‖Hε ≤ Λn2 Σ(ε).
Collecting the three inequalities above, we deduce (A.3), as claimed. At this point,
we set

τ = ln( 1
2 + λ)

ln( 1
2 + λ)− lnΛ2

∈ (0,1],

so that, in light of (A.2), we find the equality

Λν2Σ(ε) = (1
2
+ λ

)ν
= [Σ(ε)]τ,

for ν = ν(ε). We distinguish two cases. When 1 ≤ n ≤ ν, we set En(ε) = Ẽn(ε).
Thanks to (H2) and (A.3) there hold

distsym
Hε
(En(ε),LεEn(0)) ≤ c[Σ(ε)]τ ,(A.4)

distHε (S
n
ε Bε, En(ε)) ≤ cRn.(A.5)

For the case n > ν, the sets En(ε) are constructed by induction, paralleling the
construction of En(0) (cf. [7]; again, it is crucial to have Lemma A.1 at disposal),
starting from the initial step E[ν](ε), and asking (A.5) to hold for all n ∈ N.
Then, for every n ∈ N, the family En(ε) fulfills (A.5) and

(A.6)


En(ε) ⊂ Snε Bε,
SεEn(ε) ⊂ En+1(ε),

card[En(ε)] ≤ Nn+2
0 .
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Finally, we define

Edε =
⋃
n∈N

En(ε)
Hε
.

Clearly, SεEdε ⊂ Edε ⊂ Bε. Besides, by (A.1) and (A.4)–(A.6) (cf. [7]), we learn
that

distHε (S
n
ε Bε,Edε ) ≤ cRn,

dimHε [Edε ] ≤ c,
distsym

Hε
(Edε ,LεEd0 ) ≤ c[Σ(ε)]τ .

The passage from the discrete to the continuous case is obtained by setting

Eε =
⋃

t∈[t?,2t?]
Sε(t)Edε .

The verification of (T1)–(T3) goes exactly like in [7].

Acknowledgments. This research was partially supported by the Italian MIUR
Research Projects Metodi Variazionali ed Equazioni Differenziali Nonlineari, Mod-
ellizzazione Matematica ed Analisi dei Problemi a Frontiera Libera, and Metodi Vari-
azionali e Topologici nello Studio dei Fenomeni Nonlineari

We are indebted to the Referee for a very careful reading and many valuable
suggestions and comments.

REFERENCES
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