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Abstract We study a class of logarithmic Schrödinger equations with periodic potential
which come from physically relevant situations and obtain the existence of infinitely many
geometrically distinct solutions.
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1 Introduction and results

We consider the equation

− �u + V (x)u = Q(x)u log u2 in R
N , (1.1)

where the external potential V and the term Q are 1-periodic functions of the variables
x1, . . . , xN , Q ∈ C1(RN ), min

RN Q > 0 and min
RN (V + Q) > 0. The problem is formally

associated with the energy functional J : H1(RN ) → R ∪ {+∞} defined by
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586 M. Squassina, A. Szulkin

J (u) = 1

2

∫
RN

(|∇u|2 + (V (x) + Q(x))u2)dx − 1

2

∫
RN

Q(x)u2 log u2 dx .

Problem (1.1) admits applications related to quantum mechanics, quantum optics, nuclear
physics, transport and diffusion phenomena, open quantum systems, effective quantum grav-
ity, theory of superfluidity and Bose–Einstein condensation (see e.g. [22] and the references
therein). We stress that, specifically, periodic potentials V can play a significant rôle in crys-
tals and in artificial crystals formed by light beams. Although the logarithmic Schrödinger
equation has been ruled out as a fundamental quantumwave equation by very accurate exper-
iments on neutron diffraction, it is currently under discussion if this equation can be adopted
as a simplifiedmodel for some physical phenomena.We refer the reader to [7–9] for existence
and uniqueness of solutions of the associated Cauchy problem in a suitable functional frame-
work and to a study of orbital stability, with respect to radial perturbations, of the ground
state solution (see [3–5]). In light of a simple modification (see formula (2.3) in Sect. 2) of
the standard logarithmic Sobolev inequality [15]
∫
RN

u2 log u2 ≤ a2

π
‖∇u‖22+(log ‖u‖22−N (1+log a))‖u‖22, for u ∈ H1(RN ) and a > 0,

(1.2)
it is easy to see that J (u) > −∞ for all u ∈ H1(RN ), but there exist u in H1(RN ) with∫
RN u2 log u2dx = −∞. Thus, in general, J fails to be finite and C1 smooth on H1(RN ).
Due to this loss of smoothness, in order to study existence of solutions, to the best of

our knowledge, at least three approaches were used so far in the literature. On the one hand,
in [7], the idea is to work in a suitable Banach space W endowed with a Luxemburg type
norm in order to make the functional J : W → R well defined and C1 smooth. On the
other hand, in [14] the authors penalize the nonlinearity around the origin and try to obtain
a priori estimates to get a nontrivial solution at the limit. However, the drawback of these
indirect approaches is that the Palais–Smale condition cannot be obtained, due to a loss of
coercivity of the functional J , and, in general, no multiplicity result can be obtained by the
Lusternik–Schnirelmann category theory. Recently, in [11], in the case of constant potentials
V and Q, the existence of infinitely many weak solutions was obtained by considering the
functional J on H1

rad(R
N ) as merely lower semicontinuous and by applying the nonsmooth

critical point theory of [12], originally formulated to tackle semilinear elliptic equations with
one-sided growth conditions, and based upon the general theory developed in [6,10]. The
restriction to the space of radially symmetric functions in H1(RN ) is related to having the
Palais–Smale condition (in a suitable sense) satisfied at an arbitrary energy level.

In this paper, we shall work in the unrestricted space H1(RN ) and we exploit the fact
that the functional J , although being nonsmooth, can be decomposed into the sum of a C1

functional and a convex lower semicontinuous functional. If u is a solution to (1.1), so are
the elements of its orbit under the action of ZN ,O(u) := {u(· − k) : k ∈ Z

N }, and two
solutions are said to be geometrically distinct if O(u1) ∩ O(u2) = ∅.

By adapting some arguments in [19] and using tools from [18], we prove the following
result.

Theorem 1.1 Equation (1.1) has infinitely many geometrically distinct solutions.

Furthermore, setting:

N :=
{
u ∈ H1(RN ) \ {0} :

∫
RN

(|∇u|2 + V (x)u2)dx =
∫
RN

Q(x)u2 log u2 dx

}
, (1.3)

we have the following existence result for ground state solutions to (1.1).
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Logarithmic NLS with periodic potential 587

Theorem 1.2 The infimum infN J > 0 is attained at a solution u to Eq. (1.1). Moreover,
u(x) > 0 for all x ∈ R

N or u(x) < 0 for all x ∈ R
N .

In the case of constant potentials, the ground state solution is known explicitly (it is called
the Gausson in the physical literature [3–5]) and, as proved in [11], it is nondegenerate, that
is to say the dimension of the nullspace of the linearized operator is N , i.e. smallest possible.

In what follows by a solution to (1.1) we shall always mean a function u ∈ H1(RN ) such
that u2 log u2 ∈ L1(RN ) and∫

RN
(∇u · ∇v + V (x)uv) dx =

∫
RN

Q(x)uv log u2 dx, for all v ∈ C∞
0 (RN ).

Note that since |u log u2| ≤ C(1 + |u|q), where q > 1, we may use local estimates and
standard bootstrap to assert that u is, in fact, a classical solution (cf. [17, Appendix B]).

Notation.C,C1,C2 etc. will denote positive constants whose exact values are inessential.
〈. , .〉 is the duality pairing between E ′ and E , where E is a Hilbert (more generally, Banach)
space and E ′ is its dual. ‖ · ‖p is the norm of the space L p(RN ). 2∗ := 2N/(N − 2) if
N ≥ 3 and 2∗ := ∞ if N = 1 or 2. BR(x) denotes the open ball centered at x and having
radius R and SR(x) := ∂BR(x). For a functional J , we set Jb := {u ∈ E : J (u) ≤ b},
Ja := {u ∈ E : J (u) ≥ a} as well as Jba := Ja ∩ Jb.

2 Proof of Theorem 1.1

In order to prove Theorem 1.1, we first need to state some preliminary results.

2.1 Preliminary results

We shall denote by E the Hilbert space of functions u ∈ H1(RN ) and we endow it with the
norm

‖u‖ :=
(∫

RN
(|∇u|2 + (V (x) + Q(x))u2)dx

)1/2

.

Furthermore, let us set:

F1(s) :=
{

− 1
2 s

2 log s2, |s| < δ,

− 1
2 s

2(log δ2 + 3) + 2δ|s| − 1
2 δ

2, |s| > δ,

F2(s) :=
{
0, |s| < δ,

1
2 s

2 log(s2/δ2) + 2δ|s| − 3
2 s

2 − 1
2 δ

2, |s| > δ.

Then F2(s) − F1(s) = 1
2 s

2 log s2 and F1 is convex, provided δ > 0 is sufficiently small
which we assume from now on. Moreover, F1, F2 ∈ C1(R). Re-write the functional J as
J (u) = �(u) + �(u), u ∈ E , where we have set:

�(u) := 1

2
‖u‖2 −

∫
RN

Q(x)F2(u) dx,

�(u) :=
∫
RN

Q(x)F1(u) dx .

Choosing p ∈ (2, 2∗), we have |F ′
2(s)| ≤ C |s|p−1 for some C > 0 and all s ∈ R, and

hence it follows that � ∈ C1(E,R) [21, Lemma 3.10]. Note that � is convex, � ≥ 0 and
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588 M. Squassina, A. Szulkin

�(u) = +∞ for certain u ∈ E . Moreover, it is easy to see by Fatou’s lemma that � (and
therefore also J ) is lower semicontinuous (cf. [11, Proposition 2.9]).

Remark 2.1 Theorems 1.1 and 1.2 remain valid for any F1, F2 such that F1, F2 ∈ C1(RN ),
F1 is convex and nonnegative, F1(0) = 0, |F ′

1(s)|, |F ′
2(s)| ≤ C(1+ |s|p−1) for some C > 0

and p ∈ (2, 2∗), and F ′
2(s)/s → 0 as s → 0. Some additional conditions may also be needed

in order to ensure that the corresponding functional J satisfies the conclusion of Lemma 2.9.
The proof is the same except that small modifications are necessary at some places because
|F ′

2(s)| ≤ C |s|p−1 may not hold. Instead, for each ε > 0 there exists Cε > 0 such that
|F ′

2(s)| ≤ ε|s| + Cε|s|p−1.

Lemma 2.2 If 	 ⊂ R
N is a bounded domain, then� (and hence J ) is of class C1 in H1(	).

Proof Since |F ′
1(s)| ≤ C(1 + |s|p−1), the conclusion follows from [21, Lemma 2.16]. In

[21] the result is stated in H1
0 (	) but the argument remains valid in H1(	). ��

We shall need the following definitions, essentially taken from [18]:

Definition 2.3 (i) The set

∂ J (u) := {w ∈ E ′ : 〈�′(u), v − u〉 + �(v) − �(u) ≥ 〈w, v − u〉, for all v ∈ E

is called the subdifferential of J at u.

(ii) u ∈ E is a critical point of J if J (u) < +∞ and 0 ∈ ∂ J (u), i.e.

〈�′(u), v − u〉 + �(v) − �(u) ≥ 0, for all v ∈ E .

(iii) (un) is a Palais–Smale sequence if (J (un)) is bounded and there exist εn → 0+ such
that

〈�′(un), v − un〉 + �(v) − �(un) ≥ −εn‖v − un‖, for all v ∈ E .

(iv) The set D(J ) := {u ∈ E : J (u) < +∞} is called the effective domain of J .

Lemma 2.4 If u ∈ D(J ), then ∂ J (u) �= ∅, i.e. there exists w ∈ E ′ such that

〈�′(u), v − u〉 + �(v) − �(u) ≥ 〈w, v − u〉, for all v ∈ E .

Moreover, this w is unique and satisfies

〈�′(u), z〉 +
∫
RN

Q(x)F ′
1(u)z dx = 〈w, z〉 for all z ∈ E such that F ′

1(u)z ∈ L1(RN ).

Proof Assume by contradiction that for each w ∈ E ′ there exists v ∈ E such that

〈�′(u), v − u〉 + �(v) − �(u) − 〈w, v − u〉 < 0.

Let un ∈ C∞
0 (RN ), un → u in ‖ · ‖ as n → ∞. Then, by the lower semicontinuity of �,

lim sup
n→∞

(〈�′(un), v − un〉 + �(v) − �(un) − 〈w, v − un〉
)

≤ 〈�′(u), v − u〉 + �(v) − �(u) − 〈w, v − u〉 < 0.

So ∂ J (un) = ∅ for almost all n ≥ 1 which is impossible because un ∈ C∞
0 (RN ) and hence,

using Lemma 2.2 and convexity of �,

〈�′(un), v − un〉 + �(v) − �(un) ≥ 〈�′(un) + � ′(un), v − un〉 for all v.
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Logarithmic NLS with periodic potential 589

Let now v = u + t z, where z ∈ C∞
0 (RN ) and let w ∈ ∂ J (u). Then

〈�′(u), z〉 +
∫
RN

Q(x)
F1(u + t z) − F1(u)

t
dx ≥ 〈w, z〉.

Since the integrand is 0 for x /∈ supp z, we can pass to the limit as t → 0 (cf. Lemma 2.2)
and we obtain

〈�′(u), z〉 +
∫
RN

Q(x)F ′
1(u)z dx ≥ 〈w, z〉.

Since this also holds for −z,

〈�′(u), z〉 +
∫
RN

Q(x)F ′
1(u)z dx = 〈w, z〉, for all z ∈ C∞

0 (RN ).

By density of C∞
0 (RN ) in E , w is unique and the equality above holds for all z ∈ E such

that F ′
1(u)z ∈ L1(RN ). ��

Definition 2.5 Let u ∈ D(J ). Then the unique element w ∈ E ′ of ∂ J (u) introduced in
Lemma 2.4 will be denoted by J ′(u).

An immediate consequence of Lemma 2.4 is the following

Corollary 2.6 Suppose (J (un)) is bounded. Then (un) ⊂ E is a Palais–Smale sequence if
and only if J ′(un) → 0 in E ′ as n → ∞, or equivalently,

lim
n→∞ sup{〈J ′(un), v〉 : v ∈ C∞

0 (RN ), ‖v‖ = 1} = 0.

It follows from Lemma 2.4 that if u ∈ D(J ), then

〈J ′(u), v〉 = 〈�′(u), v〉 +
∫
RN

Q(x)F ′
1(u)v dx for all v ∈ E such that F ′

1(u)v ∈ L1(RN ).

Next we construct a vector field of pseudo-gradient type. Denote the set of critical points of
the functional J by K .

Lemma 2.7 There exist a locally finite countable covering (Wj ) of D(J )\K, a set of points
(u j ) ⊂ D(J ) \ K and a locally Lipschitz continuous vector field H : D(J ) \ K → E with
the following properties:

(i) The diameter of W j and the distance from u j to W j tend to 0 as j → ∞.
(ii) ‖H(u)‖ ≤ 1 and 〈J ′(u), H(u)〉 > z(u), where z(u) := min 1

2‖J ′(u j )‖ for all j such
that u ∈ Wj .

(iii) H has locally compact support, i.e. for eachu0 ∈ D(J )\K there exists a neighbourhood
U0 of u0 in D(J ) \ K and R > 0 such that supp H(u) ⊂ BR(0) for all u ∈ U0.

(iv) J (u) > J (u j ) − γ j for all j such that u ∈ Wj , where γ j > 0 and γ j → 0 as j → ∞.

(v) H is odd in u.

Remark 2.8 The special properties of the covering (Wj ) and the field H in Lemma 2.7 will
be essential in the proofs of Lemmas 2.13 and 2.14.
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590 M. Squassina, A. Szulkin

Proof Since E is separable, there exists a countable dense set of points (̃uk) ⊂ D(J ) \ K .
For each k we can choose ṽk ∈ C∞

0 (RN ), ‖̃vk‖ = 1, such that 〈J ′(̃uk), ṽk〉 > 1
2‖J ′(̃uk)‖.

Since ṽk has compact support, u �→ 〈J ′(u), ṽk〉 is continuous according to Lemma 2.2 and
hence

〈J ′(u), ṽk〉 >
1

2
‖J ′(̃uk)‖. (2.1)

for all u in some neighbourhood W (̃uk) of ũk in D(J ) \ K . Moreover, we may assume that
the diameter of W (̃uk) tends to 0 as k → ∞ and by the lower semicontinuity of J , W (̃uk)
may be chosen so that J (u) > J (̃uk) − 1/k in W (̃uk). Clearly, (W (̃uk)) is a covering of
D(J ) \ K . Since E is metric and hence paracompact, we can find a locally finite refinement
(Wj ) of (W (̃uk)) and for eachWj we choose u j := ũk j for some k j such thatWj ⊂ W (̃uk j )
(note that u j may not be in Wj ). So (Wj ) and (u j ) satisfy (i) and by (2.1), the inequality

〈J ′(u), v j 〉 >
1

2
‖J ′(u j )‖

holds for u j = ũk j , v j = ṽk j and all u ∈ Wj ⊂ W (̃uk j ).
Let ρ̃ j (u) := dist(u, E \ Wj ),

ρ j (u) := ρ̃ j (u)
/ ∞∑

j=1

ρ̃ j (u) and H(u) :=
∞∑
j=1

ρ j (u)v j .

It is easy to see that the properties (ii)-(iv) are satisfied (in (iv) we take γ j = 1/k j ). Moreover,
as J is even, H may be constructed so that H(−u) = −H(u) (e.g. by taking ±Wj , ±u j

etc.). Hence also (v) holds. ��
Lemma 2.9 If (un) is a sequence such that (J (un)) is bounded above and J ′(un) → 0, then
(un) is bounded. Moreover, since � ≥ 0, (J (un)) is also bounded below and hence it is a
Palais–Smale sequence.

Proof Let (un) ⊂ E be a sequence with (J (un)) bounded above and J ′(un) → 0 as n → ∞.
Then, choosing v = un as test function, we end up with

C1‖un‖22 ≤
∫
RN

Q(x)u2n dx = 2J (un) − 〈J ′(un), un〉 ≤ C + o(1)‖un‖, as n → ∞.

(2.2)
Replacing u by

√
Qu in (1.2) yields

∫
RN

Qu2 log(Qu2) dx ≤ 2a2

π

(
‖√Q∇u‖22 + ‖u∇√

Q‖22
)

+
(
log ‖√Qu‖22 − N (1 + log a)

)
‖√Qu‖22.

This gives, taking a > 0 small enough,∫
RN

Q(x)u2 log u2 dx ≤ 1

2
‖∇u‖22 + C2(log ‖u‖22 + 1)‖u‖22. (2.3)

So using (2.2), we obtain

C ≥ 2J (un) = ‖un‖2 −
∫
RN

Q(x)u2n log u
2
n dx ≥ 1

2
‖un‖2 − C2(log ‖un‖22 + 1)‖un‖22

≥ 1

2
‖un‖2 − C3(1 + ‖un‖1+δ), as n → ∞,

123

Author's personal copy



Logarithmic NLS with periodic potential 591

where we can take δ < 1. Hence (un) is bounded, proving the first assertion. Then the second
assertion immediately follows. ��

Assume throughout the rest of this section that J has only finitely many critical orbits
and choose a finite set F ⊂ K such that F = −F and each critical orbit has a unique
representative in K .

Lemma 2.10 κ := inf{‖u − v‖ : u, v ∈ K , u �= v} > 0.

Proof This follows by a straightforward modification of the proof of [19, Lemma 2.13].

In the next three lemmas we adapt some arguments from [19]. ��
Lemma 2.11 Let (u1n), (u

2
n) ⊂ E be two Palais–Smale sequences, Then either ‖u1n −u2n‖ →

0 as n → ∞ or lim supn→∞ ‖u1n − u2n‖ ≥ κ .

Proof By Lemma 2.9, it follows that (u1n) and (u2n) are bounded in E . Choose p ∈ (2, 2∗).
Then |F ′

2(s)| ≤ C |s|p−1 for some C > 0 and all s ∈ R.
Suppose first ‖u1n − u2n‖p → 0 as n → ∞. Then, by Definition 2.3(iii), we obtain

〈�′(u1n), u2n − u1n〉 + �(u2n) − �(u1n) ≥ −εn‖u2n − u1n‖,
and a similar inequality holds with the roles of u1n and u

2
n interchanged. Hence

‖u1n − u2n‖2 = 〈�′(u1n), u1n − u2n〉 − 〈�′(u2n), u1n − u2n〉
+

∫
RN

Q(x)(F ′
2(u

1
n) − F ′

2(u
2
n))(u

1
n − u2n) dx

≤ 2εn‖u1n − u2n‖ + C
∫
RN

Q(x)(|u1n |p−1 + |u2n |p−1)|u1n − u2n | dx
≤ 2εn‖u1n − u2n‖ + D‖u1n − u2n‖p.

So ‖u1n − u2n‖ → 0.
Suppose now ‖u1n − u2n‖p �→ 0. By Lions’ lemma [16, Lemma I.1], [21, Lemma 1.21],

we can find ε > 0 and (yn) ⊂ R
N with∫
B1(yn)

(u1n − u2n)
2 dx ≥ ε,

after passing to a subsequence. Since J is invariant under translations u �→ u(·−k), k ∈ Z
N ,

we may assume the sequence (yn) is bounded. Hence, passing to a subsequence once more,
u1n ⇀ u1, u2n ⇀ u2 and u1 �= u2. The functional � is lower semicontinuous and hence
weakly lower semicontinuous (by convexity). So �(u1) < ∞ and therefore u1 ∈ D(J ).
Moreover, since 〈J ′(u1n), v〉 → 0 for all v ∈ C∞

0 (RN ), it is easy to see that u1 ∈ K .
Similarly, u2 ∈ K . Hence

lim sup
n→∞

‖u1n − u2n‖ ≥ ‖u1 − u2‖ ≥ κ,

concluding the proof. ��
Remark 2.12 For the purpose of the next sectionwe note that if there are finitelymany critical
orbits below a certain level d > 0, then the conclusions of Lemmas 2.10, 2.11 as well as of
Lemmas 2.13 and 2.14 below remain valid on Jd . The proofs go through unchanged except
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592 M. Squassina, A. Szulkin

that we need to show that u1, u2 ∈ Jd in the proof of Lemma 2.11. Since (u1n) is bounded
and J ′(u1) = 0, we have

d ≥ J (u1n) = J (u1n) − 1

2
〈J ′(u1n), u1n〉 + o(1) = 1

2

∫
RN

Q(x)(u1n)
2dx + o(1)

≥ 1

2

∫
RN

Q(x)(u1)2dx + o(1) = J (u1) − 1

2
〈J ′(u1), u1〉 + o(1) = J (u1) + o(1).

So u1 ∈ Jd and similarly, u2 ∈ Jd .

Consider now the flow η given by{
d
dt η(t, u) = −H(η(t, u)),

η(0, u) = u, u ∈ D(J ) \ K ,
(2.4)

and let (T−(u), T+(u)) be the maximal existence time for the trajectory t �→ η(t, u).

Lemma 2.13 Let u ∈ D(J )\K. Then either limt→T+(u) η(t, u) exists and is a critical point
of J or limt→T+(u) J (η(t, u)) = −∞. In the latter case T+(u) = +∞.

Proof Since η(s, u) = u − ∫ s
0 H(η(τ, u)) dτ and H has locally compact support, τ �→

J (η(τ, u)) is continuously differentiable. To see this, consider

1

h
(�(η(t + h, u)) − �(η(t, u))) = 1

h

∫
RN

Q(x)(F1(η(t + h, u)) − F1(η(t, u))) dx .

Since η(s, u(x)) = u(x) for all s ∈ [0, t + h] and |x | large enough, we can pass to the limit
as h → 0 using Lemma 2.2 and we obtain, by Lemma 2.7,

d

dt
J (η(t, u)) = −〈J ′(η(t, u)), H(η(t, u))〉 ≤ −z(η(t, u)) < 0.

So t �→ J (η(t, u)) is decreasing.
Suppose T+(u) < ∞ and let 0 ≤ s < t < T+(u). Then

‖η(t, u) − η(s, u)‖ ≤
∫ t

s
‖H(η(τ, u))‖ dτ ≤ t − s.

Hence the limit exists and if it is not a critical point, then η(·, u) can be continued for
t > T+(u).

Suppose T+(u) = +∞ and J (η(t, u)) is bounded below. It suffices to show that for
each ε > 0 there exists tε > 0 such that ‖η(tε, u) − η(t, u)‖ < ε whenever t ≥ tε .
Assuming the contrary, we can find ε ∈ (0, κ/2) and (tn) ⊂ R

+ with tn → +∞ and
‖η(tn, u) − η(tn+1, u)‖ = ε for all n ≥ 1. Choose the smallest t1n ∈ (tn, tn+1) such that
‖η(tn, u) − η(t1n , u)‖ = ε/3 and let κn := min{z(η(s, u)) : s ∈ [tn, t1n ]}. Then κn > 0 and

ε

3
= ‖η(t1n , u) − η(tn, u)‖ ≤

∫ t1n

tn
‖H(η(s, u))‖ ds ≤ t1n − tn

≤ 1

κn

∫ t1n

tn
〈J ′(η(s, u)), H(η(s, u))〉 ds = 1

κn

(
J (η(tn, u)) − J (η(t1n , u))

)
.

Since J (η(tn, u))− J (η(t1n , u)) → 0, it follows that κn → 0. Hence we can find s1n ∈ [tn, t1n ]
such that z(η(s1n , u)) → 0 as n → ∞. So by Lemma 2.7 there exist u1n (where u

1
n = u jn for

some jn) such that J ′(u1n) → 0, J (u1n) ≤ J (η(s1n , u))+γ 1
n and‖u1n−η(s1n , u)‖ → 0.Here it is
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important that the diameter ofWjn and the distance fromu jn toWjn in Lemma2.7 tend to 0 and
that (iv) of this lemma gives a uniform bound from above for J (u1n). Similarlywe can first find
the largest t2n ∈ [t1n , tn+1] for which ‖η(tn+1, u) − η(t2n , u)‖ = ε/3 and then s2n ∈ [t1n , tn+1]
and u2n such that J ′(u2n) → 0, J (u2n) ≤ J (η(s2n , u)) + γ 2

n and ‖u2n − η(s2n , u)‖ → 0. Since
(J (u1n)), (J (u2n)) are bounded above, (u1n) and (u2n) are Palais–Smale sequences according
to Lemma 2.9. Hence

ε

3
≤ lim sup

n→∞
‖u1n − u2n‖ ≤ 2ε < κ,

a contradiction to Lemma 2.11. This completes the proof. ��
Let d > 0 and choose ε0 > 0 such that Jd+2ε0

d−2ε0
∩ K = Kd := {u ∈ K : J (u) = d}.

Denote

Uδ(Kd) := {u ∈ E : dist(u, Kd) < δ}.
Lemma 2.14 For each δ > 0 there exists ε ∈ (0, ε0) such that

lim
t→T+(u)

J (η(t, u)) < d − ε, whenever u ∈ Jd+ε \Uδ(Kd).

Moreover, η(t, u) /∈ Uδ/2(Kd) ∩ Jd−ε for any t ∈ [0, T+(u)).

Proof Assume without loss of generality that δ < κ . Let

τ := inf{z(u) : u ∈ Jd+2ε0
d−2ε0

∩Uδ(Kd) \Uδ/2(Kd)}.
We show that τ > 0. Arguing by contradiction, we find a sequence w1

n ∈ Jd+2ε0
d−2ε0

∩Uδ(Kd) \
Uδ/2(Kd) with z(w1

n) → 0 and then, using Lemma 2.7, u1n (where u1n = u jn for some jn)
such that J ′(u1n) → 0, ‖u1n − w1

n‖ → 0 and J (u1n) ≤ J (w1
n) + γ 1

n (γ 1
n → 0). Hence J (u1n)

is bounded above, so (u1n) is a Palais–Smale sequence by Lemma 2.9. Using Lemma 2.10
and Z

N -invariance of J we may assume w1
n ∈ Uδ(u0) \ Uδ/2(u0) for some u0 ∈ Kd . Set

u2n := u0 for all n. This is obviously a Palais–Smale sequence and we have

δ

2
≤ lim sup

n→∞
‖u1n − u2n‖ ≤ δ < κ,

a contradiction to Lemma 2.11. So τ > 0. If the conclusion of the lemma is false, there exists
w ∈ Kd such that η(t, u) will enter Uδ/2(w). Set

t1 := sup{t ∈ [0, T+(u)) : η(t, u) /∈ Uδ(w)},
t2 := inf{t ∈ (t1, T

+(u)) : η(t, u) ∈ Uδ/2(w)}.
Then

δ

2
≤ ‖η(t2, u) − η(t1, u)‖ ≤

∫ t2

t1
‖H(η(s, u))‖ ds ≤ t2 − t1

and therefore

J (η(t2, u)) − J (η(t1, u)) = −
∫ t2

t1
〈J ′(η(s, u)), H(η(s, u))〉 ds ≤ −τ(t2 − t1) ≤ −τδ

2
.

So J (η(t2, u)) ≤ d + ε − τδ/2 < d − ε for ε small. Hence η(t, u) cannot enter Uδ/2(w) ∩
Jd−ε. ��
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Lemma 2.15 There exist ρ, b > 0 such that J (u) ≥ 0 for all u ∈ Bρ(0) and J (u) ≥ b for
all u ∈ Sρ(0).

Proof Recalling that � ≥ 0 and |F ′
2(s)| ≤ C |s|p−1, we obtain J (u) ≥ �(u) = 1

2‖u‖2 +
o(‖u‖2). Hence the conclusion. ��

In the proof of Theorem 1.1 we shall need a variant of Benci’s pseudoindex [1,2] which
we now introduce. Let � := {A ⊂ D(J ) : A = −A and A is compact} and

H := {h : D(J ) → E, h odd homeomorphism onto h(D(J ))

and J (h(u)) ≤ J (u) for all u ∈ D(J )}.
Denote Krasnoselskii’s genus of A ∈ � by γ (A) [17] and set

i∗(A) := min
h∈H γ (h(A) ∩ Sρ(0)),

where ρ is as in Lemma 2.15.

Lemma 2.16 Let A, B ∈ �.

(i) If A ⊂ B, then i∗(A) ≤ i∗(B).
(ii) i∗(A ∪ B) ≤ i∗(A) + γ (B).
(iii) If g ∈ H, then i∗(A) ≤ i∗(g(A)).
(iv) Let Ek be a k-dimensional subspace of D(J ). Then i∗(Ek ∩ BR(0)) ≥ k whenever R

is large enough.

Proof (i) follows immediately from the properties of genus [17].
(ii) For each h ∈ H,

i∗(A ∪ B) ≤ γ (h(A ∪ B) ∩ Sρ(0)) = γ ((h(A) ∪ h(B)) ∩ Sρ(0))

≤ γ (h(A) ∩ Sρ(0)) + γ (B).

Taking the minimum over all h ∈ H on the right-hand side we obtain the conclusion.
(iii) Since J (g(u)) ≤ J (u) for all u ∈ D(J ), h ◦ g ∈ H if h ∈ H. Hence

min
h∈H γ (h(A) ∩ Sρ(0)) ≤ min

h∈H γ ((h ◦ g)(A) ∩ Sρ(0)).

(iv) It is easy to see that J (u) → −∞ uniformly for u ∈ Ek , ‖u‖ → ∞. So J (u) < 0 on
Ek\BR(0) if R is large enough. Let D := Ek∩BR(0). Suppose i∗(D) < k, choose h ∈ H
such that γ (h(D) ∩ Sρ(0)) < k and an odd mapping f : h(D) ∩ Sρ(0) → R

k−1 \ {0}.
Let U := h−1(Bρ(0)) ∩ Ek . Since J (h(u)) ≤ J (u) < 0 when u ∈ Ek \ BR(0), U ⊂ D
according to Lemma 2.15 and hence U is an open and bounded neighbourhood of 0 in
Ek . If u ∈ ∂U , then h(u) ∈ Sρ(0) and therefore f ◦ h : ∂U → R

k−1 \ {0}, contradicting
the Borsuk–Ulam theorem [17, Proposition II.5.2], [21, Theorem D.17]. So i∗(D) ≥ k.

��
2.2 Proof of Theorem 1.1 completed

Let

dk := inf
i∗(A)≥k

sup
u∈A

J (u).

Since there exist sets of arbitrarily large pseudoindex i∗, dk is well defined for all k ≥ 1 and
it follows from Lemma 2.15 that dk ≥ b.
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We shall show that Kdk �= ∅ and dk < dk+1 for all k, and this contradicts our assumption
that there are only finitely many critical orbits. Put d ≡ dk . By Lemma 2.10, γ (Kd) = 0
(if Kd = ∅) or 1. Let U := Uδ(Kd) where δ is so small that γ (U ) = γ (Kd) and choose
ε > 0 as in Lemma 2.14. Choose A ∈ � such that i∗(A) ≥ k and supu∈A J (u) ≤ d + ε. We
need to modify the flow η. Let χ1 : E → [0, 1] be locally Lipschitz continuous and such
that χ1 = 0 on Jd−2ε0 , χ1 > 0 otherwise. Since {u ∈ E : J (u) > d + 2ε0} is an open set,
there exists a locally Lipschitz continuous function χ2 : E → [0, 1] such that χ2 = 1 on
Jd+2ε0 \Uδ/2(Kd) and χ2 = 0 in a neighbourhood of K ∩ Jd−2ε0 . Put χ(u) = χ1(u)χ2(u).
The flow η̃ given by

{
d
dt η̃(t, u) = −χ(̃η(t, u))H (̃η(t, u)),

η̃(0, u) = u, u ∈ D(J )

is defined for all t > 0 an has the same flow lines on Jd+ε
d−ε \ Uδ/2(Kd) as η. Choose T

so that J (̃η(T, u)) < d − ε for all u ∈ A \ U . Such T exists because A is compact and
limt→T+(u) J (η(t, u)) ≤ d − 2ε0. The properties of pseudoindex give

k ≤ i∗(A) ≤ i∗(A \U ) + γ (U ) ≤ i∗(̃η(T, A \U )) + γ (U ) ≤ k − 1 + γ (Kd).

So γ (Kd) �= 0 and hence Kd �= ∅. If d ≡ dk = dk+1, then i∗(A) ≥ k + 1 and therefore
γ (Kd) ≥ 2 which is impossible. So dk < dk+1 for all k. ��

3 Proof of Theorem 1.2

Let u ∈ D(J ) \ {0}. Then the map s �→ J (su) admits a unique maximum point on (0,∞).
In fact, if ϕ : (0,∞) → R is the map defined by

ϕ(s) := J (su) = J (u)s2 − s2 log s
∫
RN

Q(x)u2dx, s > 0,

we have ϕ(s) > 0 for s > 0 sufficiently small and ϕ(s) < 0 for all s > 0 large enough.
Moreover, ϕ′(s) = 0 with s > 0 if and only if

J (u) = 2 log s + 1

2

∫
RN

Q(x)u2dx,

which proves the claim. Since ϕ′(s) = 〈J ′(su), u〉, the ray {su : s > 0} intersects the Nehari
manifold N (see definition (1.3)) at exactly one point. Moreover, there exists s0 > 0 such
that for all u ∈ D(J )∩ S1(0), s �→ �(su) is increasing when 0 < s < s0. Since s �→ �(su)

is increasing for all s > 0 (by convexity), N is bounded away from 0. Alternatively one can
observe that, if u ∈ N , then inequality (2.3) yields∫

RN

(|∇u|2 + V (x)u2
)
dx ≤ 1

2
‖∇u‖22 + C2(log ‖u‖22 + 1)‖u‖22.

Then, if ‖u‖ is so small that C2(log ‖u‖22 +1) ≤ inf V one gets the contradiction u = 0. Let

� := {α ∈ C([0, 1], E) : α(0) = 0, J (α(1)) < 0}
and

c := inf
α∈�

sup
s∈[0,1]

J (α(s)).
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By Lemma 2.15, c ≥ b > 0 (and c is the Mountain Pass level). Clearly, c ≤ cN := infN J .
Assume that, for some ε0 > 0, there exists no nontrivial solution below the energy level c+ε0.
According to Remark 2.12, we can use Lemma 2.14withUδ(Kc) = ∅ and a sufficiently small
ε < ε0. Let χ : E → [0, 1] be a locally Lipschitz continuous function such that χ = 0 on
J c/2, χ > 0 otherwise, and consider the flow

{
d
dt η̂(t, u) = −χ(̂η(t, u))H (̂η(t, u)),

η̂(0, u) = u, u ∈ J c+ε.

Choosing α ∈ � such that sups∈[0,1] J (α(s)) ≤ c+ ε and setting β(s) := η̂(T, α(s)), where
T is large enough, we obtain sups∈[0,1] J (β(s)) < c which is a contradiction because β ∈ �.
Hence there exists a sequence of nontrivial solutions (un) with lim supn→∞ J (un) ≤ c (we
do not exclude the possibility that un = u for all n and some u). Since un ∈ N and c ≤ cN , it
follows that c = cN and thus J (un) → c. Obviously, (un) is a Palais–Smale sequence, hence
it is bounded according to Lemma 2.9 and we may assume that un ⇀ u in E as n → ∞. As
we have seen earlier, u is a solution for (1.1). If ‖un‖p → 0 for some p ∈ (2, 2∗), then

0 = 〈J ′(un), un〉 ≥ ‖un‖2 − C
∫

{u2n≥1/e}
|un |p dx,

yielding ‖un‖ → 0 as n → ∞, contrary to the fact that (un) ⊂ N . Hence, by means of
Lions’ lemma [16, Lemma I.1], [21, Lemma 1.21], we have

∫
B1(yn)

u2n dx ≥ ε,

for some sequence (yn) ⊂ R
N and some ε > 0. As in the proof of Lemma 2.11 we

may assume, making translations if necessary, that (yn) is bounded. So for the (translated)
sequence (un) we have un ⇀ u �= 0 as n → ∞. Notice that J (u) = infN J . In fact,
J (u) ≤ c by the same argument as in Remark 2.12 and obviously, J (u) ≥ c. Hence u is a
ground state solution.

Finally, the solution u has constant sign. In fact, let us write u = u+ − u−. Then J (u) =
J (u+) + J (u−) and u+, u− ∈ D(J ). Moreover, 0 = 〈J ′(u), u+〉 = 〈J ′(u+), u+〉, so either
u+ ∈ N or u+ = 0. A similar conclusion holds for u−. Hence, either one of the functions
u+, u− is equal to 0 or J (u) ≥ 2c, which yields a contradiction. Suppose u = u+. Then, by
a slight variant of the argument in [11, Section 3.1] it follows from the maximum principle
(see [20, Theorem 1]) that u(x) > 0, for a.e. x ∈ R

N . ��

4 A note on the p-Laplacian

Our arguments also allow to prove Theorems 1.1 and 1.2 for the equation

− �pu + V (x)|u|p−2u = Q(x)|u|p−2u log |u|p, u ∈ W 1,p(RN ), (4.1)

where �pu := div(|∇u|p−2∇u) is the p-Laplacian (1 < p < N ) and V, Q satisfy the
conditions stated at the beginning of Sect. 1. Here one needs to make use of a p-logarithmic
Sobolev inequality, see e.g. [13] and the references therein. The functional corresponding to
(4.1) is
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J (u) = 1

p

∫
RN

(|∇u|p + (V (x) + Q(x))|u|p) dx

− 1

p

∫
RN

Q(x)|u|p log |u|p dx, u ∈ W 1,p(RN ).

In order to show boundedness of the sequence (un)with J (un) bounded above and J ′(un) →
0, one needs to use [13, formula (3)] with u replaced by Q1/pu and modify the proof of
Lemma 2.9 in a suitable way. We omit the easy but somewhat tedious details.
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