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1. Introduction

Convexity properties of solutions to elliptic partial differential equations in convex domains are a
fascinating subject. One of the first results in this direction goes back to the work of Brascamp and Lieb [3]
from 1976, where they proved that the logarithm function applied to the first eigenfunction of the Laplace
operator with zero Dirichlet boundary conditions in a convex domain is concave. Notice that the first
eigenfunction itself is not concave in any domain (as it can be easily seen), thus considering a transformation
(in this case, taking the logarithm) of the solution is necessary. Previously, in 1971, Makar-Limanov [12] had
proved that if u is the positive solution to the torsion equation ∆u+1 = 0 in the convex domain Ω , then

√
u

is concave. Later, at the beginning of the eighties, Korevaar [10,11] and Kennington [9] were able to derive
these results from general convexity principles (see also [1,2,4–6,8,13]). Given a convex domain Ω ⊂ Rn
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and a function u : Ω̄ → R, these convexity principles are essentially maximum principles for the auxiliary
function

Cu(y1, y3, λ) := u(λy1 + (1 − λ)y3) − λu(y1) − (1 − λ)u(y3), (1.1)

for y1, y3 ∈ Ω̄ and λ ∈ [0, 1]. Positivity (negativity) of Cu in Ω̄ × Ω̄ × [0, 1] is equivalent to concavity
(convexity) of the function u.

As a by product of the general theory, some results about concavity of positive solutions of notable
semilinear problems can be obtained. For instance (see [9, Theorem 4.2]), if n ≥ 2, γ ∈ (0, 1), Ω is a bounded
convex domain of Rn that satisfies an interior ball condition and u ∈ C2(Ω) ∩ C(Ω̄) is a solution to

∆u+ uγ = 0, u = 0 on ∂Ω , u > 0 in Ω , (1.2)

then u(1−γ)/2 is concave in Ω̄ . Also (see [9, Theorem 4.1]), if γ ≥ 1 and u ∈ C2(Ω) ∩ C(Ω̄) is a solution to

∆u+ f(x) = 0, u = 0 on ∂Ω , u > 0 in Ω , (1.3)

for some nonnegative f : Ω → R such that fγ is concave, then

uα is concave in Ω̄ if 0 < α ≤ γ

1 + 2γ ,

and the upper bound is sharp (cf. Property 2 and Theorem 6.2 of [9]). Roughly speaking, some form of
concavity on the nonlinear term forces a suitable power of the positive solution to be concave. Similar
statements hold in some cases when one takes the logarithm of the first eigenvalue of the Laplace or p-Laplace
operator with Dirichlet boundary conditions, see [14]. See also [1,2,5] for general concavity principles for some
classes of fully nonlinear elliptic problems, obtained with different techniques compared to [9,11].

It is rather natural to wonder what happens if the concavity of the nonlinear term is broken down by
a small perturbation. Is then the corresponding solution of the problem convex up to a small perturbation
function of proportional size?

The answer is affirmative and it follows from approximate convexity principles that we prove in Theo-
rems 2.5 and 2.10, in combination with constraints furnished by the boundary conditions of the problems
under consideration. As a consequence of the approximate convexity principles we obtain the corresponding
results of approximate convexity of perturbed problems like the ones in (1.2) and (1.3).

The main applications of this paper are given in the following informal terms.
Let n ≥ 2, γ ∈ [0, 1], Ω a bounded strictly convex domain of Rn that satisfies an interior ball condition.

Let u ∈ C2(Ω) ∩ C(Ω̄) be a solution to

∆u+ uγ − u
1+γ

2 g(u) = 0, u = 0 on ∂Ω , u > 0 in Ω .

Then under a few assumptions such as requiring that g is monotone, δ-approximate harmonic convex for
γ ∈ [0, 1) and δ-approximate convex for γ = 1, and that the nonlinear term uγ −u(1+γ)/2g(u) stays positive,
there exists a concave function v such that

(1) if γ ∈ [0, 1), then
∥u(1−γ)/2 − v∥L∞(Ω) ≤ Cδ,

(2) if γ = 1, then
∥ log u− v∥L∞(Ω) ≤ Cδ,

for some universal positive constant C.
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This main application is proved in Theorem 4.4 and Corollary 4.2 (some less restrictive hypothesis will
be required in the respective results). Furthermore, we provide a result for a problem like the one in (1.3),
as follows.

Let n ≥ 2, Ω be a bounded convex domain of Rn. Let u ∈ C2(Ω) ∩ C(Ω̄) be a solution to

∆u+ f(x) − u
1+γ

1+2γ g(x) = 0, u = 0 on ∂Ω , u > 0 in Ω .

Asking hypothesis on the concavity and strict positivity of f , approximate harmonic convexity of g, and
requiring that the nonlinearity stays positive, there exists a concave function such that v : Ω → R

∥u
γ

1+2γ − v∥L∞(Ω) ≤ Cδ

for some universal positive constant C. This result is given in Theorem 4.5.
In the rest of the paper, we introduce the framework and state the approximate convexity principles in

Section 2. Boundary conditions of particular problems (that we use in Section 3) will allow us to give some
explicit examples in the last Section 4.

2. Approximate convexity principles

Let Ω ⊂ Rn be a convex domain (i.e. a connected open set) here and in the rest of the paper. We denote
by y1, y3 the generic points of Ω and by y2 their convex combination, precisely

for any y1, y3 ∈ Ω̄ , λ ∈ [0, 1] y2 = λy1 + (1 − λ)y3.

We adopt the same notation for s1, s3 ∈ R, denoting s2 ∈ R as their convex combination.
Let u : Ω̄ → R and δ > 0. As in [7], we say that u is δ-convex in Ω̄ if

Cu(y1, y3, λ) ≤ δ, for all y1, y3 ∈ Ω̄ and any λ ∈ [0, 1],

where Cu is defined in (1.1). We say that u is δ-concave if −u is δ-convex (notice also that C−u = −Cu). Also,
with an abuse of notation, for y1, y3 ∈ Ω̄ , s1, s3 ∈ R and λ ∈ [0, 1] we define

Cg((y1, s1), (y3, s3), λ) = g(y2, s2) − λg(y1, s1) − (1 − λ)g(y3, s3) (2.1)

as the convexity function of some g : Ω̄ × R → R, jointly in its two variables. We write also

Cg(·,u(·))(y1, y3, λ) = Cg((y1, u(y1)), (y3, u(y3)), λ)

as the convexity function of g : Ω̄ × R → R jointly in two variables, along u : Ω̄ → R.

Remark 2.1. We make a remark on the notation adopted in the course of this paper. If g depends only on
the variable y ∈ Ω̄ then the two notions in (1.1) and (2.1) coincide. Nonetheless, we still use the notation
Cg when the function g depends only on s ∈ R, and in general to denote the convexity function in one, or
jointly in two variables. We point out once more that the notation Cg(·,u(·)) is referred to the joint convexity
of g, and contains no information about the convexity of u itself.

We say that g is jointly convex in Ω̄ if and only if for all (y1, s1), (y3, s3) ∈ Ω̄ × R and any λ ∈ [0, 1] we
have that Cg((y1, s1), (y3, s3), λ) ≤ 0, that g is jointly δ-convex if

Cg((y1, s1), (y3, s3), λ) ≤ δ
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and is jointly δ-concave if −g is jointly δ-convex. In particular, g is jointly convex along u if

Cg(·,u(·))(y1, y3, λ) ≤ δ, for all y1, y3 ∈ Ω̄ and any λ ∈ [0, 1]

and g is jointly δ-concave along u when −g is jointly δ-convex along u. Of course, asking that g is concave
along u is a refinement, and joint concavity of g implies the concavity along u.

Furthermore, we define the harmonic convexity function jointly in the two variables (y, s) of the function
g : Ω̄ × R → R exclusively when

(1 − λ)g(y1, s1) + λg(y3, s3) > 0 or g(y1, s1) = g(y3, s3) = 0. (2.2)

This may seem a little weird to the reader, but its definition is justified by the use we make in the rest of
the paper, in particular in Lemma 2.9 (we note also that this definition coincides with the one given in [9]).
Thus, the definition is given for positive functions g, or changing sign functions that satisfy at the given
point ((y1, s1), (y3, s3), λ) one of the conditions in (2.2). Notice also that none of these conditions hold if
g < 0. We thus define

HCg((y1, s1), (y3, s3), λ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g(y2, s2) − g(y1, s1)g(y3, s3)

(1 − λ)g(y1, s1) + λg(y3, s3) ,

if (1 − λ)g(y1, s1) + λg(y3, s3) > 0
g(y2, s2), if g(y1, s1) = g(y3, s3) = 0.

In general, we say that g is δ-harmonic concave (δ-harmonic convex) if for all (y1, s1), (y3, s3) ∈ Ω̄ ×
R and any λ ∈ [0, 1] satisfying one of the two conditions in (2.2) we have that

HCg((y1, s1), (y3, s3), λ) ≥ −δ, (HCg((y1, s1), (y3, s3), λ) ≤ δ).

It is readily seen that a positive concave function g is harmonic concave. We notice also that the simple
inequality

g(y1, s1)g(y3, s3)
(1 − λ)g(y1, s1) + λg(y3, s3) ≤ λg(y1, s1) + (1 − λ)g(y3, s3)

that holds whenever (1 − λ)g(y1, s1) + λg(y3, s3) > 0 implies that

HCg((y1, s1), (y3, s3), λ) ≥ Cg((y1, s1), (y3, s3), λ).

In particular, all positive δ-harmonic convex functions are δ-convex, and all positive δ-concave are also
δ-harmonic concave.

We denote the harmonic convexity function of g along u as

HCg(·,u(·))(y1, y3, λ) = HCg((y1, u(y1)), (y3, u(y3)), λ).

We say that g is δ-harmonic concave (δ-harmonic convex) along u if for all y1, y3 ∈ Ω̄ and any λ ∈ [0, 1]
satisfying one of the two condition in (2.2), it holds that

HCg(·,u(·))(y1, y3, λ) ≥ −δ, (HCg(·,u(·))(y1, y3, λ) ≤ δ).

As expected from the previous work in the literature (for instance [8,9,11]), the convexity of solutions of
a second order elliptic problems with a nonlinear term in a convex domain depends solely on the convexity
and the monotonicity of the nonlinearity. We give in the next lemma a quantitative estimate of the convexity
function of the solution.

Let us also mention that, as in [8,9,11] it is crucial that the second order coefficients depend only on the
gradient of the solution. To our knowledge, convexity principles that allow a dependence on the solution
itself or x are not available.

For the sake of clarity, we give the next definition.
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Definition 2.2. We say that the triple (x1, x3, λ) is an interior point for Cu if each of x1, x2, x3 is in Ω

with x2 = λx1 + (1 − λ)x3, while we say that the point is on the boundary if at least one x1, x2, x3 belongs
to ∂Ω .

Here and in the rest of the section we consider aij : Rn → R measurable functions for all i, j = 1, . . . , n
and b : Ω × R × Rn derivable in the second variable, on its domain of definition. Moreover, we write [A,B]
to denote the non-orientated segment from A to B.

Lemma 2.3. We consider the equation in Ω

Lu = 0 in Ω , Lu :=
n∑

i,j=1
aij(Du)∂2

iju− b(x, u,Du). (2.3)

Let u ∈ C2(Ω) ∩ C(Ω̄) be a solution of (2.3) . We assume that

A = [aij(ξ)]i,j is symmetric, positive defined for all ξ ∈ Rn. (2.4)

Then, if Cu achieves a positive interior maximum at (x1, x3, λ) ∈ Ω × Ω × [0, 1] and there exists β > 0 such
that

inf
ξ∈[u(x2),λu(x1)+(1−λ)u(x3)]

∂ub(x2, ξ,Du(x1)) ≥ β (2.5)

then
Cu(x1, x3, λ) ≤ 1

β
C−b(·,u(·),Du(x1))(x1, x3, λ).

We follow in the next proof the main ideas from [11, Lemma 1.4]. We remark that this Lemma contributes
to the result in Theorem 2.5, which affirms that the δ-concavity of b along u implies the δ-convexity of the
solution u. Requiring thus a positive maximum of Cu is natural (otherwise, Cu ≤ 0 gives that u is convex,
and there would be nothing else to prove).

Proof. We consider x1 ̸= x3 and λ ∈ (0, 1) (i.e., x2 does not coincide with x1 or x3), otherwise Cu = 0,
which gives that u is convex. Given that (x1, x3, λ) is an interior maximum point, we have

Dy1Cu(x1, x3, λ) = Dy3Cu(x1, x3, λ) = 0,

therefore we may denote
Du(x1) = Du(x2) = Du(x3) := z.

Take now for v ∈ Rn

C̄(v) := u(x2 + v) − λu(x1 + v) − (1 − λ)u(x3 + v).

Since v = 0 gives a maximum, we have that

DvC̄(0) = 0 and [D2
vC̄(0)] ≤ 0.

Here [D2
vC̄(0)] denotes the Hessian with respect to v of C̄ at zero. Also notice that

(D2
vC̄(0))ij = ∂2

iju(x2) − λ∂2
iju(x1) − (1 − λ)∂2

iju(x3).

Since A is symmetrical and positive defined, we get that

A[D2
vC̄(0)] ≤ 0,
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hence
n∑

i,j=1
aij(z)

(
∂2

iju(x2) − λ∂2
iju(x1) − (1 − λ)∂2

iju(x3)
)

≤ 0. (2.6)

Using Eq. (2.3) we obtain

0 ≥ b(x2, u(x2), z) − λb(x1, u(x1), z) − (1 − λ)b(x3, u(x3), z).

Therefore, we get that

b(x2, u(x2), z) − b(x2, λu(x1) + (1 − λ)u(x3), z)
≤ λb(x1, u(x1), z) + (1 − λ)b(x3, u(x3), z) − b(x2, λu(x1) + (1 − λ)u(x3), z)
= C−b(·,u(·),z)(x1, x3, λ).

Using the mean value theorem of Lagrange, we have that there exists ξ between u(x2) and λu(x1) + (1 −
λ)u(x3) such that

∂ub(x2, ξ, z) (u(x2) − λu(x1) − (1 − λ)u(x3)) ≤ C−b(·,u(·),z)(x1, x3, λ),

hence, since Cu is positive at (x1, x3, λ), it follows that

Cu(x1, x3, λ) ≤ 1
β

C−b(·,u(·),z)(x1, x3, λ). (2.7)

This concludes the proof of the lemma. □

Roughly speaking the previous statement says that under the assumption that the function Cu achieves
a positive maximum in the interior of Ω × Ω × [0, 1], then this maximum is bounded from above by the
convexity function of −b along u (with b strictly increasing), computed at the interior maximum point of
Cu.

We recall now a result [7, Theorem 2] for δ-convex functions.

Proposition 2.4 (Hyers-Ulam Theorem). Let X be a space of finite dimension and D ⊂ X convex. Assume
that f : D → R is δ-convex. Then there exists g : D → R a convex function such that ∥f − g∥L∞(D) ≤ δkn,
where kn > 0 depends only on n = dim(X).

The following is the main δ-convexity tool for applications. It states that the approximate concavity of b
along u and the strict monotonicity of b yields in turn the approximate convexity of the solution u.

Theorem 2.5 (δ-Convexity Principle I). Let u ∈ C2(Ω)∩C(Ω̄) be a solution of (2.3) and set M := ∥u∥C2(Ω),
m = ∥u∥L∞(Ω). For some δ ≥ 0 and β > 0 we assume that condition (2.4) holds, and furthermore, that

∂sb(x, s, z) ≥ β, for any (x, s, z) ∈ Ω × [−m,m] × B̄M , (2.8)

C−b(·,u(·),z)(x1, x3, λ) ≤ δ, for any (x1, x3, λ) ∈ Ω × Ω × [0, 1] and for all z ∈ B̄M . (2.9)

Then, if Cu achieves a positive interior maximum in Ω ×Ω × [0, 1], there exists a convex function v : Ω → R
such that

∥u− v∥L∞(Ω) ≤ kn

β
δ,

where kn > 0 is the constant introduced in Proposition 2.4 only dependent on the dimension n.



C. Bucur and M. Squassina / Nonlinear Analysis 192 (2020) 111661 7

Proof. The proof is a consequence of Lemma 2.3 and Proposition 2.4. □

Remark 2.6. For δ = 0 the assertion reduces exactly to the Korevaar maximum principle (see [11, Theorem
1.3, Lemma 1.4]).

Remark 2.7. One can obtain a statement similar to Theorem 2.5 in the parabolic case (check [11, Theorem
1.6]). Indeed, consider the problem

∂tu(t, x) = Lu(t, x) in (0, T ] × Ω , Lu(t, x) :=
n∑

i,j=1
aij(t,Du)∂2

iju(t, x) − b(t, x, u,Du). (2.10)

Let u be a solution of (2.10) such that u(t, ·) ∈ C2(Ω) ∩ C(Ω̄) for any t ∈ (0, T ] and u(·, x) ∈ C((0, T ]).
Assume that

A = [aij(t, ξ)]i,j is symmetric, positive defined for all ξ ∈ Rn, for any fixed t ∈ (0, T ]

and denote
Cu(t, x1, x3, λ) := Cu(t,·)(x1, x3, λ) = u(t, x2) − λu(t, x1) − (1 − λ)u(t, x3)

for any fixed t. Then, if Cu achieves a positive maximum at (t0, x1, x3, λ) ∈ (0, T ] ×Ω ×Ω × [0, 1] and there
exists β > 0 such that

inf
ξ∈[u(t0,x2),λu(t0,x1)+(1−λ)u(t0,x3)]

∂sb(t0, x2, ξ,Du(x1)) ≥ β (2.11)

then
Cu(t0, x1, x3, λ) ≤ 1

β
C−b(t0,·,u(t0,·),Du(x1))(x1, x3, λ).

To see this, it is enough to substitute Eq. (2.10) into (2.6), obtaining that

0 ≥ b(t0, x2, u(t0, x2), z) − λb(t0, x1, u(t0, x1), z) − (1 − λ)b(t0, x3, u(t0, x3), z)
+ ut(t0, x2) − λut(t0, x1) − (1 − λ)u(t0, x3).

We use the fact that Cu has a maximum in t0 ∈ (0, T ], getting

∂tCu(t, x1, x3, λ) t=t0 = ut(t0, x2) − λut(t0, x1) − (1 − λ)ut(t0, x3) ≥ 0,

and from there the proof follows as in Lemma 2.3. The analogue of Theorem 2.5 is obtained by imposing
that the function b(t, x, s, z) be jointly δ-convex along u for any z ∈ B̄t

M , with M = ∥u(t, ·)∥C2(Ω) and any
fixed t ∈ (0, T ]. In other words, there exist δ ≥ 0, β > 0 such that

∂sb(t, x, s, z) ≥ β for any (t, x, s, z) ∈ (0, T ] × Ω × [−m,m] × B̄t
M ,

sup
(x1,x3,λ)∈Ω×Ω×[0,1]

C−b(t,·,u(t,·),z)(x1, x3, λ) ≤ δ, for all z ∈ B̄t
M , and any t ∈ (0, T ].

In the next theorem, we encompass the case in which β (from Theorem 2.5) may reach zero. The proof
follows that of Korevaar in [11, Lemma 1.5, Theorem 1.4], we provide here a complete proof. Namely, we
consider a perturbation of the problem in way that will allow us to apply Theorem 2.5 to the solution of
the perturbed problem on a smaller domain. Notice that we obtain a significant result if b is jointly convex
(i.e., one gets that u is convex, as in Korevaar’s result). When δ > 0 however, we are only able to provide a
rate of convergence of the solution of the perturbed problem to a convex function, whereas the solution of
the perturbed problem converges uniformly to the solution of the initial problem. The precise result goes as
follows.
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Proposition 2.8. Let u ∈ C2(Ω) ∩ C(Ω̄) be a solution of (2.3) and assume that (2.4) and (2.8) hold for
β = 0. Let Ω ′ ⋐ Ω be smooth. If Cu achieves a positive interior maximum in Ω ′ × Ω ′ × [0, 1], then for every
η > 0 there exist δ0(η,Ω ′) such that for any 0 < δ < δ0(η,Ω ′) there exist a function vδ : Ω ′ → R, a convex
function wδ : Ω ′ → R such that whenever (2.9) holds, then

∥u− vδ∥L∞(Ω ′) ≤ η,

∥wδ − vδ∥L∞(Ω ′) ≤ kn

√
δ,

where kn > 0 is the constant introduced in Proposition 2.4 only dependent on the dimension n.

Proof. For ε ∈ (0, 1/2) small, there exist w and M > 0 (independent of ε) such that the function v, given
as

vε = u+ εw, ∥w∥C2,α(Ω ′) ≤ M,

solves the perturbed problem⎧⎪⎨⎪⎩
n∑

i,j=1
aij(Dv)∂2

ijv = b(x, v,Dv) + εv in Ω ′

v = u on ∂Ω ′.

(2.12)

Indeed, let us take a Taylor expansion in ε. For aij(Du+ εDw) we get

aij(Dv) = aij(Du) + ε

n∑
k=1

∂pk
aij(Du)∂kw + ε2G1(Dw),

while for b(x, u+ εw,Du+ εDw)

b(x, v,Dv) = b(x, u,Du) + ε

(
n∑

k=1
∂pk

b(x, u,Du)∂kw + ∂ub(x, u,Du)w
)

+ ε2G2(w,Dw).

Summing up we get that
n∑

i,j=1
aij(Du)∂2

iju+ ε

[
n∑

i,j=1
aij(Du)∂2

ijw +
n∑

k=1
∂kw

(
∂pk

aij(Du)∂2
iju− ∂pk

b(x, u,Du)
)

− ∂ub(x, u,Du)w
]

= b(x, u,Du) + εu+ ε2G(w,Dw,D2w).

In the above computation, G1, G2, G represent the rest of order two of the Taylor expansions. Just to be
precise, for some ξ ∈ (0, ε) we have

G(w,Dw,D2w) = w +
n∑

l,k=1
∂pkpl

aij(Du+ ξDw)∂kw∂lw+
[
∂2

ub(x, u+ ξw,Du+ ξDw)w2

+
n∑

k=1

(
2∂upk

b(x, x, u+ ξw,Du+ ξDw)w∂kw

+
n∑

l=1
∂pkpl

b(x, u+ ξw,Du+ ξDw)∂kw∂lw

)]
+

n∑
k=1

∂pk
aij(Du)∂2

ijw∂kw.

Knowing that u satisfies Eq. (2.3), and dividing by ε > 0 we get that
n∑

i,j=1
aij(Du)∂2

ijw +
n∑

k=1
∂kw

(
∂pk

aij(Du)∂2
iju− ∂pk

b(x, u,Du)
)

− ∂ub(x, u,Du)w

= u+ εG(w,Dw,D2w).
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Then w solves the problem⎧⎪⎨⎪⎩ L̃w =
n∑

i,j=1
aij(x)∂2

ijw +
n∑

k=1
ck(x)∂kw + d(x)w = f, in Ω ′

w = 0, on ∂Ω ′,

with
ck(x) = ∂pk

aij(Du)∂2
iju− ∂pk

b(x, u,Du), f(x) = u+ εG(w,Dw,D2w),

and
d(x) = −∂ub(x, u,Du) ≤ 0.

By iteration we will consider w1 = 0 and take{
L̃wk+1 = u+ εG(wk, Dwk, D2wk) in Ω ′

wk+1 = 0 on ∂Ω ′.
(2.13)

Notice that considering a problem {
L̃w = f(x) in Ω ′

w = 0 on ∂Ω ′,

by Schauder estimates there exists K1 > 0 such that

∥w∥C2,α(Ω ′) ≤ K1∥f∥C0,α(Ω ′).

Also, since G ∈ C1, one has for v ∈ C2,α(Ω ′) that if

∥v∥C2,α(Ω ′) ≤ K2 =⇒ ∥G(v,Dv,D2v)∥C0,α(Ω ′) ≤ K3,

for some K2,K3 > 0. Using these two remarks for the problem (2.13), there exists ε0 > 0 such that for any
ε ≤ ε0

∥wk∥C2,α(Ω ′) ≤ K4.

Consider now the problem for ηk+1 = wk+1 − wk, namely{
L̃ηk+1 = εG̃(ηk, Dηk, D2ηk) in Ω ′

ηk+1 = 0 on ∂Ω ′.

To get G̃, by Lagrange theorem, we have

G(wk, Dwk, D2wk) −G(wk−1, Dwk−1, D2wk−1)
= DG(ξk) · (ηk, Dηk, D2ηk) := G̃(ηk, Dηk, D2ηk),

for some ξk ∈ R×Rn ×R2n laying on the segment that unites the two arguments of G. Therefore we obtain
that

∥ηk+1∥C2,α(Ω ′) ≤ εK1∥G̃∥C0,α(Ω ′) ≤ εK∥G∥C1∥ηk∥C2,α(Ω ′),

hence for ρ < 1 (since ε is arbitrarily small)

∥wk+1 − wk∥C2,α(Ω ′) ≤ ρ∥wk − wk−1∥C2,α(Ω ′).

Therefore there exists w ∈ C2,α(Ω ′) such that wk → w in C2,α(Ω ′) with

∥w∥C2,α(Ω ′) ≤ K4.
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We apply to vε as the solution of (2.12) Theorem 2.5 (where b(x, v,Dv) from Theorem 2.5 is given by
b(x, v,Dv) + εv in our case). Then

∂vb(x, v,Dv) + ε ≥ ε > 0.

By Theorem 2.5 there exists a convex function wε such that

∥wε − vε∥L∞(Ω ′) ≤ kn
δ

ε
.

Set ε =
√
δ. Then ∥wδ − vδ∥L∞(Ω ′) ≤ kn

√
δ. Of course u = limδ→0 vδ. Then the assertion follows. □

In the next lemma, we relax the conditions we ask to the nonlinear term. Following the work in [8,9], we
can ask the function b to be δ-harmonic concave and obtain anyways the δ-convexity of the solution to the
problem (2.3). As a matter of fact, we can estimate the convexity function of the solution by the harmonic
concavity function of the nonlinear term and its rate of monotonicity.

Lemma 2.9. Let u ∈ C2(Ω)∩C(Ω̄) be a solution of (2.3) and assume that (2.4) holds. Then, if Cu achieves
a positive interior maximum at (x1, x3, λ) ∈ Ω ×Ω × [0, 1] and there exists β > 0 such that (2.11) holds, then

Cu(x1, x3, λ) ≤ −
HCb(·,u(·),Du(x1))(x1, x3, λ)

β
.

We follow in the next proof the main ideas from [9, Theorem 3.1] (another proof is given in [8, Theorem
3.13]).

Proof. If x1 = x3, or λ = 0, or λ = 1 then Cu = 0 and there is nothing to prove. In the other cases as in
Lemma 2.3, we notice that we have that

Du(x1) = Du(x2) = Du(x3) =: z

and we name the matrix A := [aij(z)]. Let us also define the 2n× 2n matrices

C := [D2Cu(x1, x3, λ)] =
[
D2

x1Cu(x1, x3, λ) D2
x1,x3Cu(x1, x3, λ)

D2
x1,x3Cu(x1, x3, λ) D2

x3Cu(x1, x3, λ)

]
(which is negative defined since (x1, x3, λ) is a maximum for Cu in the interior of its domain), and

B :=
[
s2A stA
stA t2A

]
for any s, t ∈ R (which is positive defined, since A is so). We have from linear algebra arguments (see i.e.
[9, Lemma A.1]) that Tr(BC) ≤ 0. This means that

s2Tr(AD2
x1Cu) + t2Tr(AD2

x3Cu) + 2stTr(AD2
x1,x3Cu) ≤ 0.

Denoting
α = Tr(AD2

x1Cu), γ = Tr(AD2
x3Cu), β = Tr(AD2

x1,x3Cu)

it holds that
s2α+ t2γ + 2stβ ≤ 0,

thus
α ≤ 0, γ ≤ 0, β2 − αγ ≤ 0. (2.14)
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Using as in the proof of [9, Theorem 3.1]

Qη =
n∑

i,j=1
aij(Du(η))∂2

iju(η)

we compute

α =
n∑

i,j

aij(z)
(
λ2∂2

iju(x2) − λ∂2
iju(x1)

)
= λ2Qx2 − λQx1

γ =
n∑

i,j

aij(z)
(
(1 − λ)2∂2

iju(x2) − (1 − λ)∂2
iju(x3)

)
= (1 − λ)2Qx2 − (1 − λ)Qx3

β = λ(1 − λ)
n∑

i,j

aij(z)∂2
iju(x2) = λ(1 − λ)Qx2 .

This together with (2.14) leads to

Qx2(λQx3 + (1 − λ)Qx1) ≤ Qx1Qx3 , Qx2 ≤ 1
λ
Qx1 , Qx2 ≤ 1

1 − λ
Qx3 .

If λQx3 + (1 − λ)Qx1 ≤ 0 then

Qx1Qx3 ≥ Qx2(λQx3 + (1 − λ)Qx1) ≥ 1
λ
Qx1(λQx3 + (1 − λ)Qx1) = Qx1Qx3 + 1 − λ

λ
Q2

x1

hence Qx1 = 0, and in the same way Qx3 = 0. Then it can happen that either

λQx3 + (1 − λ)Qx1 ≤ 0 =⇒ Qx1 = Qx3 = 0, Qx2 ≤ 0, (2.15)

or
λQx3 + (1 − λ)Qx1 > 0 =⇒ Qx2 ≤

Qx1Qx3

(1 − λ)Qx1 + λQx3
, (2.16)

(see also [9, (3.5)], but we remark that the notations and signs there are different). By using Eq. (2.3) it
holds that

Qη = b(η, u(η), Du(η)) for η = x1, x2, x3,

hence we get in the case (2.16)

b(x2, u(x2), z) ≤ b(x1, u(x1), z)b(x3, u(x3), z)
(1 − λ)b(x1, u(x1), z) + λb(x3, u(x3), z) .

Then
b(x2, u(x2), z) − b(x2, λu(x1) + (1 − λ)u(x3), z)

≤ b(x1, u(x1), z)b(x3, u(x3), z)
(1 − λ)b(x1, u(x1), z) + λb(x3, u(x3), z) − b(x2, λu(x1) + (1 − λ)u(x3), z)

= − HCb(·,u(·),z)(x1, x3, λ).

By Lagrange’s mean value theorem, there exists some ξ ∈ [u(x2), λu(x1) + (1 − λ)u(x3)] such that

∂ub(x2, ξ, z)Cu(x1, x3, λ) ≤ −HCb(·,u(·),z)(x1, x3, λ).

Notice also that in the case (2.15), since Qx2 ≤ 0, one gets that

∂ub(x2, ξ, z)Cu(x1, x3, λ) ≤ −b(x2, λu(x1) + (1 − λ)u(x3), z) = −HCb(·,u(·),z)(x1, x3, λ).
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Since Cu(x1, x3, λ) > 0, in any case it follows that

βCu(x1, x3, λ) ≤ ∂ub(x2, ξ, z)Cu(x1, x3, λ) ≤ −HCb(·,u(·),z)(x1, x3, λ),

therefore
Cu(x1, x3, λ) ≤ −

HCb(·,u(·),z)(x1, x3, λ)
β

.

This concludes the proof of the Lemma. □

With the aid of this Lemma, we can obtain the second δ-convexity principle, that we state in the next
rows.

Theorem 2.10 (δ-Convexity Principle II). Let u ∈ C2(Ω) ∩ C(Ω̄) be a solution of (2.3) and set
M := ∥u∥C2(Ω), m = ∥u∥L∞(Ω). For some δ ≥ 0 and β > 0 we assume that condition (2.4) holds, and
furthermore, that

∂sb(x, s, z) ≥ β, for any (x, s, z) ∈ Ω × [−m,m] × B̄M ,

HCb(·,u(·),z)(x1, x3, λ) ≥ − δ, for all (x1, x3, λ) ∈ Ω × Ω × [0, 1] for which one of
conditions (2.2)holds, and all z ∈ B̄M .

Then, if Cu achieves a positive interior maximum in Ω ×Ω × [0, 1], there exists a convex function v : Ω → R
such that

∥u− v∥L∞(Ω) ≤ kn

β
δ,

where kn > 0 is the constant introduced in Proposition 2.4 only dependent on the dimension n.

Proof. The proof is a consequence of Lemma 2.9 and Proposition 2.4. □

Theorem 2.10 says that under the assumption that the function Cu achieves a positive interior maximum,
then the approximate harmonic concavity of b and the strict monotonicity of b (b needs to be strictly
increasing) yields in turn the approximate convexity of the solution u.

3. Boundary constraints

In this section, we present some results that will allow us to exclude the possibility that the maximum
of the convexity function of the solution to (2.3) is reached on the boundary. Let us mention that a general
framework for boundary constraints is given in [11, Lemma 2.1]. We focus here on some particular cases, that
will allow us to apply in a simple way our approximate convexity principles. We recall that the definition of
boundary point for the convexity function Cu is given in Definition 2.2.

Proposition 3.1. Let n ≥ 2, Ω a bounded convex domain of Rn and u ∈ C(Ω̄) such that u = 0 on ∂Ω ,
u > 0 in Ω and for every y ∈ ∂Ω and any z ∈ Ω , there holds

lim sup
t→0+

t−1/αu(y + t(z − y)) > u(z). (3.1)

Then for any α ∈ (0, 1) the function C−uα cannot achieve the positive maximum on the boundary.

Proof. Assume by contradiction that the positive maximum of the function −Cuα is achieved at a boundary
point (y, z, λ).
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Notice that if at least two of the points y, z, λy+(1−λ)z are on ∂Ω then C−uα ≤ 0, hence there is nothing
to prove. In view of the previous consideration, we can reduce to the case in which y ∈ ∂Ω and z ∈ Ω (the
fact that y, z ∈ Ω and λy + (1 − λ)z ∈ ∂Ω is excluded by the convexity of the domain).

Now, the condition (3.1) is equivalent to

lim sup
t→0+

uα(y + t(z − y))
t

> uα(z).

There exists τ ∈ (0, λ) sufficiently small that uα(τz + (1 − τ)y) > τuα(z). Then, setting

ξ := τz + (1 − τ)y ∈ Ω , µ := λ− τ

1 − τ
∈ (0, 1)

we have µz + (1 − µ)ξ = λz + (1 − λ)y and

C−uα(z, ξ, µ) = µuα(z) + (1 − µ)uα(ξ) − uα(µz + (1 − µ)ξ),
= µuα(z) + (1 − µ)uα(ξ) − uα(λz + (1 − λ)y),
> (µ+ (1 − µ)τ)uα(z) − uα(λz + (1 − λ)y)
= λuα(z) − uα(λz + (1 − λ)y) = C−uα(z, y, λ),

which yields a contradiction. □

The next result will be very useful in applications. We will denote by ∂u
∂n the normal derivative where n

stands for the outer normal vector at the boundary.

Corollary 3.2. Let n ≥ 2, Ω a bounded convex domain of Rn and u ∈ C1(Ω̄) such that

u > 0 on Ω , u = 0 on ∂Ω , ∂u

∂n
< 0 on ∂Ω .

Then for any α ∈ (0, 1) the function C−uα cannot achieve the positive maximum on the boundary.

Proof. In light of Proposition 3.1, it is enough to prove that for any y ∈ ∂Ω and z ∈ Ω , it holds

lim sup
t→0+

t−1/αu(y + t(z − y)) > u(z).

Since α ∈ (0, 1), by convexity of Ω and ∂u
∂n < 0 we have

lim sup
t→0+

t−1/αu(y + t(z − y)) = lim sup
t→0+

t(α−1)/αu(y + t(z − y)) − u(y)
t

= Du(y) · (z − y) lim
t→0+

t(α−1)/α = +∞,

which yields the assertion. □

Let us also mention that:

Lemma 3.3. Let n ≥ 2, Ω a bounded convex domain of Rn and u ∈ C1(Ω̄) such that u = 0 on ∂Ω , u > 0
in Ω and

lim inf
t→0+

t−1/αu(y + t(z − y)) = 0. (3.2)

for some y ∈ ∂Ω and z ∈ Ω . Then there exists δ > 0 such that uα is not δ-concave.
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Proof. Assume by contradiction that for every δ > 0, uα is δ-concave. Then, since u(y) = 0, we have

uα(y + t(z − y)) ≥ tuα(z) − δ.

Letting δ = tδ0 with δ0 ∈ (0, uα(z)) and dividing by t yields

t−1/αu(y + t(z − y)) ≥ (uα(z) − δ0)1/α,

which gives a contradiction as t goes to zero. □

For the next lemma we refer the reader to [8, Lemma 3.12].

Lemma 3.4. Let Ω ⊂ Rn be a bounded and strictly convex domain (i.e., if x1 ̸= x3 ∈ ∂Ω then x2 ∈ Ω)
with boundary of class C1. Let u ∈ C1(Ω̄) such that

u > 0 on Ω , u = 0 on ∂Ω , ∂u

∂n
< 0 on ∂Ω .

Let f : R+ → R be a C1 function that satisfies

f ′ < 0 and lim
u↘0

f ′(u) = −∞. (3.3)

Then Cf(u) cannot achieve a positive maximum on the boundary.

For instance f(s) = − log s satisfies conditions (3.3).

4. δ-concave solutions

In this section, we give some applications of the δ-convexity principles established in Theorems 2.5 and
2.10.

The next result is a meaningful application of our general results. It contains in particular semi-linear
eigenvalue problems.

Theorem 4.1 (f -convex Solutions). Let n ≥ 2, f ∈ C2((0,+∞)) be such that it satisfies (3.3) and in
addition, that

the function s ↦→ f ′′(f−1(s))
[f ′(f−1(s))]2 is non-decreasing and concave.

Let Ω be a C1 bounded strictly convex domain of Rn and u ∈ C2(Ω) ∩ C(Ω̄) be a solution to u = 0 and
∂u/∂n < 0 on ∂Ω , u > 0 in Ω and

n∑
i,j=1

aij(−f ′(u)Du)∂2
iju = 1

f ′(u)b(x, f(u),−f ′(u)Du) in Ω .

We suppose furthermore that denoting M = ∥u∥C2(Ω), m = ∥u∥L∞(Ω), there exist β > 0, δ ≥ 0 such that

∂sb(x, s, z) ≥ β for any (x, s, z) ∈ Ω × [f(m), lim
x↘0

f(x)) × Rn,

sup
(x1,x3,λ)∈Ω×Ω×[0,1]

C−b(·,f(u(·)),z)(x1, x3, λ) ≤ δ, for all z ∈ Rn.

Then there exist a convex function v : Ω → R and kn > 0 such that

∥f(u) − v∥L∞(Ω) ≤ knδ

β
.
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Proof. Setting w = f(u), a standard computation shows that w satisfies the problem
n∑

i,j=1
aij(−Dw)∂2

ijw = b(x,w,−Dw) + f ′′(f−1(w))
[f ′(f−1(w))]2

n∑
i,j=1

aij(−Dw)∂iw∂jw.

Notice that, by assumption on f , we have that the function

b1(x,w,−Dw) := b(x,w,−Dw) + f ′′(f−1(w))
[f ′(f−1(w))]2

n∑
i,j=1

aij(−Dw)∂iw∂jw

is monotonically increasing in w, and its derivative is greater than or equal to β. The function

b2(w,−Dw) := f ′′(f−1(w))
[f ′(f−1(w))]2

n∑
i,j=1

aij(−Dw)∂iw∂jw

is concave in w, thus C−b2 ≤ 0. This yields that

sup
(x1,x3,λ)∈Ω×Ω×[0,1]

C−b1(·,w(·),Dw)(x1, x3, λ) ≤ sup
(x1,x3,λ)∈Ω×Ω×[0,1]

C−b2(w(·),Dw)(x1, x3, λ)

+ sup
(x1,x3,λ)∈Ω×Ω×[0,1]

C−b(·,w(·),Dw)(x1, x3, λ)

≤ δ

for any Dw, by hypothesis. Notice also that according to Lemma 3.4 the convexity function Cw cannot
achieve a positive maximum on the boundary. Thus the maximum is reached in the interior of the domain.
It follows from Theorem 2.5 that there exists a convex function v : Ω → R such that

∥f(u) − v∥L∞(Ω) ≤ kn

β
δ,

where kn > 0 is the constant introduced in Proposition 2.4 only dependent on the dimension n. This
concludes the proof of the Theorem. □

Corollary 4.2. Let Ω be a C1 bounded strictly convex domain of Rn and u ∈ C2(Ω) ∩ C(Ω̄) be a solution
to u = 0 on ∂Ω , u > 0 in Ω and

∆u+ λu− ug(u) = 0 in Ω .

Let λ, δ, c > 0, m = ∥u∥L∞(Ω) and g ∈ C1((0,m],R) with

g ≤ λ, g′(t)t ≥ c,

and
Ch(u(·))(x1, x3, λ̄) ≤ δ, with h(s) = g(e−s), for any (x1, x3, λ̄) ∈ Ω × Ω × [0, 1].

Then there exist a concave function v : Ω → R and C := C(n, c, ∥u∥L∞(Ω)) > 0 such that

∥ log u− v∥L∞(Ω) ≤ Cδ.

Proof. By Hopf’s Lemma, we get first of all that ∂u/∂n < 0 on ∂Ω . With the choice

f(s) = − log s, aij = δij , b(x, s) = λ− g(e−s)

we find ourselves with the problem in Theorem 4.1. We have that b : Ω × [− logm,+∞) → R,

∂sb(x, s) = g′(e−s)e−s ≥ c

and that for any (x1, x3, λ̄)
C−b(x1, x3, λ̄) ≤ Ch(x1, x3, λ̄) ≤ δ.

The assertion follows from Theorem 4.1. □
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Remark 4.3. We give an explicit example of functions g : (0, 1] → R. Let c, δ > 0 with δ ≤ 4λ

g(x) = c log x+ δ

[(
x− 1

2

)3
+ 1

8

]
.

Notice that g is neither convex, nor concave. We have that

g(x) ≤ δ

4 ≤ λ, xg′(x) ≥ c.

Furthermore

h(x) = −cx+ δ

[(
e−x − 1

2

)3
+ 1

8

]
= −cx+ δφ(x),

with sup(0,1] |φ| ≤ C. Then Ch ≤ Cδ, which readily yields the assertion.

In this example, we take as the nonlinearity a perturbation of a concave function and prove that
an appropriate power of the solution is approximately concave, hence it can be written as a bounded
perturbation of a concave function.

Theorem 4.4 (Power Concave Solutions). Let n ≥ 2, γ ∈ [0, 1), Ω a bounded convex domain of Rn that
satisfies an interior ball condition. Let u ∈ C2(Ω) ∩ C(Ω̄) be a solution to

∆u+ uγ − u
1+γ

2 g(u) = 0, u = 0 on ∂Ω , u > 0 in Ω .

Denoting ∥u∥L∞(Ω) = m, we take here g ∈ C1((0,m],R) is such that it holds that

g(s) ≤ s
γ−1

2 , g′(s) ≥ 0 (4.1)

and for some δ ≥ 0

HCh(s1, s3, λ) ≤ δ, for any s1, s3 ∈ (0,m
1−γ

2 ], with h(s) = g(s
2

1−γ ).

Then there exist a concave function v and a positive constant C := C(n,m, γ) such that

∥u(1−γ)/2 − v∥L∞(Ω) ≤ Cδ.

Proof. Notice that by (4.1)
uγ ≥ u

1+γ
2 g(u),

so applying Hopf’s Lemma, we deduce that ∂u/∂n < 0 on ∂Ω . Consider now the transformation of u given
by

w := −u(1−γ)/2.

By applying Corollary 3.2 with α := (1 − γ)/2 ∈ (0, 1) we have that the convexity function Cw cannot
achieve the maximum on the boundary. Thus, the maximum is achieved in the interior of the domain. If
such a maximum is non-positive, there is nothing to prove, since this yields that w is convex. So we assume
that the maximum is positive. Observe that standard computations yield that w satisfies

∆w − b̃(w,Dw) + g̃(w) = 0,

where we have set b̃ : [−m
1−γ

2 , 0) × Rn → R, g̃ : [−m
1−γ

2 , 0) → R, with

b̃(s, z) :=
(

1 + γ

1 − γ
|z|2 + 1 − γ

2

)
1

(−s) , g̃(s) := 1 − γ

2 g
(
(−s)

2
1−γ
)
.
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Thanks to (4.1) we have that

∂s(b̃(s, z) − g̃(s)) ≥ 1 − γ

2m1−γ
> 0 and that b̃(s, z) ≥ 1 − γ

2
1

(−s) ≥ g̃(s).

In view of (A.2) (remark that the harmonic concavity function is well defined, since all functions involved
are non-negative) it follows that for any (s1, s3, λ)

HC b̃−g̃(s1, s3, λ) ≥ HC b̃(s1, s3, λ) − HCg̃(s1, s3, λ).

Given that b̃ > 1−γ

2m(1−γ)/2 and that the map

s ↦→ 1
b̃(s, z)

is convex, it follows that b̃ is harmonic concave, thus HC b̃ ≥ 0. Therefore

HC b̃−g̃(s1, s3, λ) ≥ −HC g̃ ≥ −1 − γ

2 δ,

and by Theorem 2.10, w is m1−γδ convex. The conclusion immediately follows. □

Theorem 4.5. Let n ≥ 2, Ω be a bounded convex domain of Rn, that satisfies the interior ball condition.
Let u ∈ C(Ω̄) ∩ C2(Ω) be a solution to

∆u+ f(x) − u
1+γ

1+2γ g(x) = 0, u = 0 on ∂Ω , u > 0 in Ω . (4.2)

Here, f, g ∈ C(Ω̄ ,R+) are such that there exist γ ≥ 1, c > 0 and δ ≥ 0 such that

fγ is concave, f(x) ≥ c in Ω ,

denoting m = ∥u∥L∞(Ω)

f(x) ≥ m
1+γ

1+2γ g(x) in Ω

and
HCg(x1, x3, λ) ≤ δ for any (x1, x3, λ) in the interior of Ω .

Then there exist a concave function and C := C(n, c,m, γ) such that v : Ω → R

∥u
γ

1+2γ − v∥L∞(Ω) ≤ Cδ.

Proof. Let
w = −u

γ
1+2γ .

By Hopf’s Lemma (notice that f(x) − u
1+γ

1+2γ g(x) ≥ 0 by hypothesis), we have that ∂u
∂n < 0 on ∂Ω , hence by

Corollary 3.2, Cw cannot achieve the maximum at a boundary point. It follows that the maximum of Cw is
achieved at an interior point. The function w satisfies the equation

∆w − b(x,w,Dw) = 0

with b : Ω × [−m
γ

1+2γ , 0) × Rn → R,

b(x, s, z) := (1 + γ)|z|2

γ
(−s)−1 + γ

1 + 2γ (−s)− 1
γ −1f(x) − γ

1 + 2γ g(x) := b̃z(x, s) − γ

1 + 2γ g(x).
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We have that
∂sb(x, s, z) = (1 + γ)|z|2

γ
(−s)−2 + 1 + γ

1 + 2γ f(x)(−s)− 1
γ −2 ≥ c(1 + γ)

m(1 + 2γ) .

We claim that b̃z is harmonic concave in the two variables (x, s). Indeed, denoting

b̃z(x, s) = (−s)−2

(
(1 + γ)|z|2

γ
(−s) + γ

1 + 2γ (−s)− 1
γ +1f(x)

)
=: (−s)−2hz(x, s)

we follow the next line of thought. Since fγ and (−s) =
(
(−s)− 1

γ +1) γ
γ−1 are concave, from [9, Property 8]

we have that f(x)(−s)− 1
γ +1 is concave (basically, [9, Property 8] says that if fα and gβ are positive jointly

concave functions, that fg is 1/α + 1/β jointly concave). Thus hz(x, s) is concave, as sum of two concave
functions. Then using Proposition A.3, we have that b̃z(x, s)−1 is convex. Employing Proposition A.4, we
get the claim that b̃z is harmonic concave. Thus HC b̃ ≥ 0. We use (A.2) to obtain that

HCb ≥ HC b̃ − γ

1 + 2γHCg ≥ − γδ

1 + 2γ .

It follows from Theorem 2.10 that w is δγm
c(1+γ) convex, thus u

γ
1+2γ is δγm

c(1+γ) -concave. This concludes the proof
of the Theorem. □

Remark 4.6. As an example of g working in Theorems 4.4 and 4.5 it is enough to consider a sufficiently
small positive constant.

Remark 4.7 (Quasilinear Equations). Assume that a : R → R is a function of class C1 such that there
exists ν > 0 with a(s) ≥ ν for all s ∈ R. Let φ : R → R be the unique solution to

φ′ = 1
√
a ◦ φ

, φ(0) = 0,

which is smooth and strictly increasing. Consider the quasilinear problem{
div(a(u)Du) − a′(u)

2 |Du|2 + uγ − u
1+γ

2 g(u) = 0 in Ω ,
u = 0 on ∂Ω , u > 0 in Ω ,

(4.3)

Then, it is possible to associate to (4.3) the semilinear problem{
∆v + vγ − v

1+γ
2 h(v) = 0 in Ω ,

v = 0 on ∂Ω , v > 0 in Ω ,
(4.4)

where

h(s) = η(s) − sγ

s(1+γ)/2 , η(s) = φ(s)γ − φ(s)
1+γ

2 g(φ(s))√
a(φ(s))

.

In fact, a direct computation shows that if v ∈ C2(Ω) is a classical solution to problem (4.4), then u = φ(v)
is a classical solution to problem (4.3) and vice versa. In particular, one can apply Theorem 4.4 and get
information about the approximate concavity of φ−1(u)(1−γ)/2 from the harmonic concavity of h. Of course
the concavity of the solution depends also upon a.

Appendix

In this section, we give some properties related to δ-harmonic concavity. In the first lemma, we establish
a sub-additivity property of the harmonic concavity function.
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Lemma A.1. Let f, g : Ω → R. Then at all points ((y1, s1), (y3, s3), λ) for which one of the conditions (2.2)
holds for f, g, f + g

HCf+g((y1, s1), (y3, s3), λ) ≤ HCf ((y1, s1), (y3, s3), λ) + HCg((y1, s1), (y3, s3), λ). (A.1)

Furthermore, at all points ((y1, s1), (y3, s3), λ) for which one of the conditions (2.2) holds for f, g, f − g, then

HCf−g((y1, s1), (y3, s3), λ) ≥ HCf ((y1, s1), (y3, s3), λ) − HCg((y1, s1), (y3, s3), λ). (A.2)

Proof. Recalling that y2 = λy1 + (1 − λ)y3 (and s2 is th convex combination of s1, s3), for simplicity, we
write

gi = g(yi, si), fi = f(yi, si) for i = 1, 2, 3.
When for y1, y3, s1, s3, λ we have g1 = g3 = 0 or f1 = f3 = 0 or all g1 = g3 = f1 = f3 = 0 or
f1 = −g1 ̸= 0, f3 = −g3 ̸= 0 then

HCf+g((y1, s1), (y3, s3), λ) − HCf ((y1, s1), (y3, s3), λ) = HCg((y1, s1), (y3, s3), λ).

Otherwise, for λg3 + (1 − λ)g1 > 0 and λf3 + (1 − λ)f1 > 0 we compute

HCf+g((y1, s1), (y3, s3), λ) − HCf ((y1, s1), (y3, s3), λ)

= g2 − (f1 + g1)(f3 + g3)
λ(f3 + g3) + (1 − λ)(f1 + g1) + f1f3

λf3 + (1 − λ)f1
= g2 − ψ(1) + ψ(0),

considering the function
ψ(δ) := (f1 + δg1)(f3 + δg3)

λ(f3 + δg3) + (1 − λ)(f1 + δg1) .

Denoting hi = (f + ξg)(xi, si) for i = 1, 2, 3 we have that

ψ′(ξ) = λg1h
2
3 + (1 − λ)g3h

2
1(

λh3 + (1 − λ)h1
)2 .

We apply the Lagrange mean value theorem: for ξ ∈ (0, 1),

ψ(1) = ψ(0) + ψ′(ξ)

so we obtain
f1f3

λf3 + (1 − λ)f1
− (f1 + g1)(f3 + g3)
λ(f3 + g3) + (1 − λ)(f1 + g1) = −λg1h

2
3 + (1 − λ)g3h

2
1(

λh3 + (1 − λ)h1
)2 .

Hence, we get
HCf+g((y1, s1), (y3, s3), λ) − HCf ((y1, s1), (y3, s3), λ)

= g2 − λg1h
2
3 + (1 − λ)g3h

2
1(

λh3 + (1 − λ)h1
)2

= HCg((y1, s1), (y3, s3), λ) + g1g3

λg3 + (1 − λ)g1
− λg1h

2
3 + (1 − λ)g3h

2
1(

λh3 + (1 − λ)h1
)2

= HCg((y1, s1), (y3, s3), λ) − λ(1 − λ)
(
g3h1 − g1h3

)2(
λg3 + (1 − λ)g1

)(
λh3 + (1 − λ)h1

)2

≤ HCg((y1, s1), (y3, s3), λ),

(A.3)

which concludes the proof of (A.1).
To prove (A.2), we use (A.1) for f − g and g and we obtain that

HCf = HCf−g+g ≤ HCf−g + HCg,

hence the result. This concludes the proof of the Lemma. □
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As an outcome of the previous lemma, we obtain also the following estimates.

Corollary A.2. Let f, g : Ω → R. If g ∈ L∞(Ω) then at all points ((y1, s1), (y3, s3), λ) for which one of the
conditions (2.2) holds for f, f + g

HCf+g((y1, s1), (y3, s3), λ) − HCf ((y1, s1), (y3, s3), λ) ≤ ∥g∥∞.

If furthermore there exist α,C,M > 0 such that α ≤ f ≤ C, 0 ≤ g ≤ M , then

HCf+g((y1, s1), (y3, s3), λ) − HCf ((y1, s1), (y3, s3), λ) ≥ −MC

α2 .

Proof. The proof follows immediately by estimating λg1h
2
3 + (1 − λ)g3h

2
1
(
λh3 + (1 − λ)h1

)−2 in line two
of formula (A.3). □

The next proposition is the approximate concavity adaptation of [9, Lemma A.2].

Proposition A.3.

(1) Let c, C,m, δ > 0 be constants and let g : Ω × [−m,m] → R+ be δ-concave and 2δ ≤ c < g ≤ C.
Then the map (s, x) ∈ R × Ω ↦→ s2g(x, s)−1 is δ-convex jointly in the two variables (x, s).

(2) Let g : Ω × [−m,m] → R+ be concave. Then the map (s, x) ∈ R × Ω ↦→ s2g(x, s)−1 is convex jointly
in the two variables (x, s).

Proof. We take any (x1, s1), (x3, s3) and denote as usual x2 = λx1 + (1 − λ)x3 and s2 = λs1 + (1 − λ)s3

and gi = g(yi, si) for i = 1, 2, 3. Then, given that

g2 ≥ λg1 + (1 − λ)g3 − δ

(notice that the right hand side term is strictly positive) we obtain

s2
2
g2

− λ
s2

1
g1

− (1 − λ)s
2
3
g3

≤ s2
2

λg1 + (1 − λ)g3 − δ
− λ

s2
1
g1

− (1 − λ)s
2
3
g3

=
−λ(1 − λ)

(
s1g3 − s3g1

)2
+ δ
(
λs2

1g3 + (1 − λ)s3
2g1

)
(λg1 + (1 − λ)g3 − δ)g1g3

≤ δ
λs2

1g3 + (1 − λ)s2
3g1

(λg3 + (1 − λ)g3 − δ)g1g3
.

We have that

λs2
1g3 + (1 − λ)s2

3g1 ≤ m2C and (λg1 + (1 − λ)g3 − δ)g1g3 ≥ c3

2 .

It follows that
s2

2
g2

− λ
s2

1
g1

− (1 − λ)s
2
3
g3

≤ C1δ,

for C1 = 2m2Cc−3, hence the conclusion. The second point is obvious if one takes δ = 0. □

It is a known result that if for a positive function g we have that g−1 is convex, then g itself results
harmonic concave. We can establish an approximate concavity analogue if we take g bounded from above.
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Proposition A.4.

(1) Let C, δ > 0 be constants. Let g : Ω × R → R+ be such that 0 < g < C. Then if g−1 is jointly δ-convex,
then g is δ-harmonic concave.

(2) Let g : Ω × R → R+ be such that g−1 is jointly convex (g−1 is jointly concave), then g is harmonic
concave (g is harmonic convex).

Proof. Consider any (x1, s1), (x3, s3) and take x2 = λx1 + (1 − λ)x3 and s2 = λs1 + (1 − λ)s3, as usual
and gi = g(yi, si) for i = 1, 2, 3. Then putting

p := λ

g1
+ 1 − λ

g3
, p ≥ 1

C
,

we have by definition

C 1
g
((x1, s1), (x3, s3), λ) = 1

g2
− p and HCg((x1, s1), (x3, s3), λ) = g2 − 1

p
.

Then
C 1

g
((x1, s1), (x3, s3), λ) ≤ δ

implies that
HCg((x1, s1), (x3, s3), λ) ≥ − δ

p(δ + p) ≥ −C2δ.

This concludes the proof of the proposition, as the second point corresponds to δ = 0 and it is easily seen. □
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