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Abstract:We obtain new concavity results, up to a suitable transformation, for a class of quasi-linear equa-
tions in a convex domain involving the p-Laplace operator and a general nonlinearity satisfying concavity-
type assumptions. This provides an extension of results previously known in the literature only for the torsion
and the first eigenvalue equations. In the semilinear case p = 2 the results are already new since they include
new admissible nonlinearities.
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1 Introduction

1.1 Overview

Convexity properties of solutions to elliptic partial differential equations in a convex domain are a fascinat-
ing subject. One of the first results in this direction can be traced back to the work of Brascamp and Lieb in
1976 [5]. They proved that the logarithm function applied to the first eigenfunction ϕ1 of the Laplace opera-
tor −∆ with zero Dirichlet boundary conditions in a convex domain is concave. It is readily seen that ϕ1 itself
is never concave in any convex domain, thus considering a transformation of the solution is necessary. Previ-
ously, in 1971, Makar-Limanov [30] proved that if u > 0 is the solution to the torsion equation ∆u + 1 = 0 in
a convex planar domain, then √u is concave. Years later, at the beginning of the eighties, Korevaar [24, 25]
and Kennington [23] derived these results from some general convexity properties (see also [8, 9, 22] for
related seminal works in those years).

More precisely, given Ω ⊂ ℝN convex and a function u on Ω̄, these are maximum principles for

(y, z, λ) → u(λy + (1 − λ)z) − λu(y) − (1 − λ)u(z)

for y, z ∈ Ω̄ and λ ∈ [0, 1] since positivity (negativity) in Ω̄ × Ω̄ × [0, 1] corresponds to concavity (convex-
ity) of u. As a byproduct, some results about concavity of positive solutions of semilinear problems can be
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obtained. For instance, if N ≥ 2, q ∈ (0, 1), Ω is convex and u is a solution to

{{{
{{{
{

−∆u = uq in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

then u
1−q
2 is concave in Ω̄. Roughly speaking, some form of concavity on the nonlinear term forces a suitable

power of the solution to be concave. In 1987 Sakaguchi treated, via a suitable approximation argument to
handle lack of regularity of the solutions, the following problems involving the p-Laplacian operator

{{{
{{{
{

−∆pu = λ up−1 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

{{{
{{{
{

−∆pu = 1 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

where in the former, λ is (necessarily) the first eigenvalue. In [31], he indeed proved that log u and u
p−1
p are

concave, respectively.

1.2 Main results

Given the quasi-linear elliptic problem

{{{
{{{
{

−∆pu = f(u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω

(1.1)

for p > 1 and Ω convex and bounded, our focus is to find the most general reaction term f ensuring that u is
quasi-concave, i.e., its super-level sets {u > k} are convex for any k and to highlight the interplay between the
reaction f and suitable concavity properties of u.

A natural method to obtain quasi-concavity is to find an increasing function φ : ℝ+ → ℝ such that φ(u)
is concave. In this respect, by slightly modifying the proof of Sakaguchi [31], we find the following:

Theorem 1.1. Let Ω ⊂ ℝN be a bounded convex domain with C2 boundary, let f : ℝ+ → [0, +∞) be Hölder
continuous with

M = inf {t > 0 : f(t) = 0}
and let u ∈ W1,p

0 (Ω) solve (1.1). If
(1) t → f(t)

tp−1 is non-increasing,
(2) t → e(p−1)t

f(et) is convex on (−∞, logM),
then log u is concave.

Notice that, given any concave increasing h : ℝ→ ℝ, the concavity of φ(u) (called φ-concavity of u) implies
that h(φ(u)) is concave as well. Supposing both h and φ are smooth, by computing the second derivative of
h ∘ φ one sees that h ∘ φ is “more concave” than φ, so that our interest is to determine the “less concave” φ
such that φ(u) is concave, as reasonable measure of the optimal quasi-concavity of u. For example, the less
concave increasing functions φ are clearly the affine ones, and in this case φ-concavity reduces concavity.

To this end, suppose f ∈ C(ℝ+, [0, +∞)) and let

F(t) =
t

∫
0

f(u) du.

We will consider the function φ : (0, +∞)→ ℝ defined by

φ(t) :=
t

∫
1

1
F

1
p (τ)

dτ (1.2)

as detailed in the following theorem, which is the main result of the paper.
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Theorem 1.2. Let Ω ⊂ ℝN be a bounded convex domain with C2 boundary, let f : ℝ+ → [0, +∞) be Hölder
continuous with

M = inf {t > 0 : f(t) = 0}

and let u ∈ W1,p
0 (Ω) solve (1.1). If

(1) F
1
p is concave,

(2) F
f is convex on (0,M),

then φ(u) is concave, where φ is defined in (1.2).

Let us make some remarks on these two statements.

Remark 1.3 (Motivations). A conjecture of Lions [29] going back to the eighties states that any solution of
(1.1) for p = 2 is quasi-concave, i.e., has convex super-level sets, as long as Ω is convex and f ≥ 0. The
latter statement (while true in the ball thanks to the celebrated Gidas-Ni-Nirenberg symmetry result) has
been recently disproved in [16], thus revamping the question wether it is possible to select a large class of
reactions f for which Lions’ statement turns out to be true.

The subject of the optimal concavity properties of u has been the object of recent research in the restricted
framework of optimal power concavity (i.e., concavity properties of powers of u, for the highest possible
power). It is known [23, item (iii) in Theorem 6.2 ] that if f(t) ≡ 1 and p = 2, the solution of (1.1) is such
that uq is concave for q ≤ 1

2 , while for q >
1
2 there are convex domains for which uq fails to be concave. How-

ever, this phenomenon is known to happen only for convex domains having corners, while in the ball the
torsion function is actually concave (thus, the optimal concavity exponent of the ball is 1). See [17] and the
literature therein for further references on the general problem of linking the optimal concavity exponent
with the smoothness of the domain.

Remark 1.4 (Relations between Theorems 1.1 and 1.2). Condition (1) of Theorem 1.2 implies (1) of Theo-
rem 1.1, but not the opposite, see Lemma 3.3 and Remark 3.4. For p = 2 the reaction

f(u) = 1 +√u

satisfies the assumptions of Theorem1.1but not (2) of Theorem1.2.However, the concavity property asserted
in Theorem 1.2 is in general stronger than the log-concavity provided by Theorem 1.1. Indeed, if ψ denotes
the inverse of the function φ defined in (1.2), from

log u = logψ(φ(u)),

we see that, as long as t → logψ(t) is concave, φ-concavity of u implies its log concavity. Lemma 3.5 below
shows, under assumption (1) of Theorem 1.2, logψ is always concave. That φ-concavity is strictly stronger
than log concavity is readily seen considering power-concavity, see below.

Remark 1.5 (Applications). If f ∈ C1(ℝ+), conditions (1) and (2) of Theorem 1.2 read

F f 

f 2
≤ 1 − 1

p
, (F f



f 2
)

≤ 0

on (0,M), so that actually the assumptions are equivalent to

Ff 

f 2
non-increasing on (0,M) and lim

t→0+
F f 

f 2
≤ 1 − 1

p

The assumptions in Theorem1.2 are easily verified for f(t) = tq with q ∈ [0, p − 1), giving, for its first instance,
the concavity of u

1
p (p−q−1) (briefly called α-concavity of u for α = 1

p (p − q − 1)) of the solution u of

{{{
{{{
{

−∆pu = uq in Ω,
u > 0, in Ω,
u = 0 on ∂Ω.

However, already in the semilinear case p = 2, severalmeaningful reactions related tonatural entropymodels
can be treated. We refer to section 2 for such examples of non-power like reactions.
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Remark 1.6 (Assumptions on f ). The first assumptions of both Theorem 1.1 and Theorem 1.2 strengthen as
p decreases, meaning that if the they hold for some p, then they do for any q ≥ p as well.

The non-negativity hypothesis on the reaction f is not essential and we made it to have a cleaner state-
ment. It is possible to deal with functions obeying

f(t) ≤ 0 for all t ≥ M := inf{t : f(t) ≤ 0},

since in this case an application of the weak maximum principle shows that u ≤ M (more details on this a-
priori estimate can be found in Example 2.2 or at the beginning of Section 4). This, in turn, allows to require
the whole assumption in (1) of Theorem 1.2 to be fulfilled on the interval (0,M) only. This restriction can
sometimes be useful, as it allows to prove quasi-concavity of solutions to simple problems such as

{{{
{{{
{

−∆u + u = 1 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω

in Example 2.2.
Let us alsomention that the Hölder continuity of f can beweakened to Dini-continuity, since this suffices

to obtain C2(Ω) of solution of regular elliptic quasilinear problems with reaction f(u).

Remark 1.7 (Comparison with previous results). Theorem 1.1 is folklore and we stated it only for complete-
ness, since its proof follows the same approximation procedure of [31]. Regarding Theorem 1.2, the cases
f(t) ≡ 1 and f(t) = tp−1 have been treated in [31]. The power case f(t) = tq with 0 < q < p − 1 is essentially
contained in [19].

General reaction terms have been previously considered in [25, 29] in the semilinear case p = 2, obtain-
ing log-concavity of the positive solution of

−∆u = f(u), u = 0 on ∂Ω

for f ∈ C1([0, +∞), [0, +∞)) fulfilling

t → f(t)
t

non-increasing and f (t)t2 − f (t) t + f(t) ≤ 0. (1.3)

The second condition above fails for powers f(t) = tq and is equivalent to the concavity of g(t) = f(e
t)

et . Hypo-
thesis (2) in Theorem 1.1 (in the case p = 2) is instead equivalent to the so-called harmonic concavity of g.
It is well known that any concave function is harmonic concave, but the opposite is not true. For example,
both Theorems 1.1 and 1.2 apply in the semilinear case p = 2 with f(t) = tq with q < 1 (the latter providing,
as already remarked, a stronger conclusion than the former), but (1.3) fails.

The monograph [22] reviews most of the techniques available to prove quasi-concavity of solutions to
elliptic differential equation up to the mid-eighties. Apart from the Korevaar–Kennington approach, another
fruitful method is to consider the concave envelope, as done in the seminal work [1] in the framework of
viscosity solutions of fully nonlinear equations. This technique has been applied in [11, 12, 18, 20, 21, 27].
Other close approaches are the quasi-concave envelope method and its modifications [4, 10, 13] and the
microscopic concavity principle initiated in [8] and developed in [3, 26]. The latter has been employed in
[28] to prove that any solution in a convex domain of the plane of (1.1) for p = 2 and f(t) = tq with q > 1 is
1
2 (q − 1)-concave. Unfortunately, none of these methods easily apply to (1.1) unless additional a-priori (and
unexpected) regularity is assumed on the solution u.

1.3 Outline of the proof

The choice of the transformation (1.2) can be motivated, at least heuristically, by the following argument.
Let u be a solution to (1.1). Consider an increasing invertible function φ : ℝ+ → ℝwith inverse ψ. We set

v := φ(u)



W. Borrelli et al., Concavity properties for solutions to some p-Laplace equations | 5

and compute the equation solved by v from the one for u, to obtain

− (∆v + p − 2
|∇v|2

N
∑
i,j=1

∂iv∂jv∂2ijv) =
f(ψ(v))
ψ(v)p−1

|∇v|2−p + (p − 1)ψ
(v)
ψ(v)
|∇v|2 = 0 (1.4)

In order to simplify (1.4) we force a factorization of the dependencies on v and on ∇v by requiring

f(ψ)
(ψ)p−1

= pψ


ψ
(1.5)

(the constant p is irrelevant of course, we chose that one for convenience). This amounts, by integration, to

ψ(s) = F(ψ(s))
1
p , s > 0,

where F is the primitive of f that vanishes at ψ(0). This condition indeed gives φ given in (1.2).
By (1.5) we can rewrite (1.4) in the more tractable form

∆v + p − 2
|∇v|2

n
∑
i,j=1

∂iv∂jv∂2ijv + b(v, ∇v) = 0 (1.6)

where

b(v, ∇v) := ψ
(v)
ψ(v) (

p|∇v|2−p + (p − 1)|∇v|2),

and we can require the assumptions on [23, Theorem 3.1] to apply Kennington theorem. The latter involve
only the ratio ψ

ψ and, as it turns out, are equivalent to (1) and (2) of Theorem 1.2.
Of course, the problem is that equation (1.6) lacks sufficient smoothness of both the right- and the left-

hand side to employ directly Kennington’s theorem, and the derivation depicted above seems quite rigid. The
issue is then to find suitable regularizations of the original equation so that the previous computationsmakes
sense and the requirements on the term ψ

ψ are stable in the limit.
Luckily, the expected condition (1) in Theorem 1.2 also implies uniqueness of the solution of the origi-

nal equation (1.1). This is proved in Theorem 3.8 through a refined version of the celebrated Brezis–Oswald
theorem [7]. This preliminary result is pivotal in ensuring the effectiveness of any approximation.

It turns out that a good approximation is given by the minimizers uε of the functional

Iε(u) :=
1
p ∫

Ω

(εF(u)
2
p + |∇u|2)

p
2 dx − ∫

Ω

F(u) dx,

as ε → 0. Indeed, the aforementioned uniqueness ensures that uε → u in all reasonable senses and, for suf-
ficiently small ε, we are able to prove that φ(uε) is actually concave. The claimed concavity of φ(u) then
follows.

1.4 Structure of the paper and notations

In Section 2 we provide examples and application of Theorem 1.2. Section 3 is devoted to some preliminary
material: we first recall the main tools we will use, essentially contained in [23, 25], then prove some proper-
ties of the functions f and φ, and conclude the section with the aforementioned Brezis–Oswald-type result.
In Section 4 we focus on the proof of Theorems 1.1 and 1.2, dividing it in several steps.

Notations. In the following Ω will always denote a bounded open convex domain, with interior normal usu-
ally denoted by n. The norm in Lp(Ω) of a function u : Ω → ℝ will be denoted by ‖u‖p for any p ∈ [1, +∞].
We will use the same notation also for vector valued functions. Constants may change in value from line to
line without changing symbol, as long as their dependance is clear from the context.
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2 Examples and applications
In this section we provide some examples of application of Theorem 1.2 which were not available via known
results.

Example 2.1. The following examples provide non-power-like functions F fulfilling the assumptions of Theo-
rem 1.2 for p = 2 (and thus for any p ≥ 2).

(1) The logarithmic entropy function

F(t) = (t + 1) log(t + 1) − t

arises as the potential for the Dirichlet problem

{
−∆u = log(1 + u) in Ω,
u = 0 on ∂Ω.

(2.1)

For t ∈ ℝ+, the function F verifies

(F
1
2 )(t) = − F(t)

− 32

4(t + 1) [2 t + (t + 1)(log(t + 1) − 2) log(t + 1)] =: −
F(t)− 32
4(t + 1) g(t)

and g is non-negative onℝ+, since

g(0) = 0, g(t) = log2(t + 1),

implying that F 1
2 is concave. Finally,

(
F
f )

(t) = (t + 2) log(t + 1) − 2t
(t + 1)2 log3(t + 1)

whose numerator N(t) fulfills
N(0) = N(0) = 0, N(t) = t

(t + 1)2
.

Applying Taylor’s theorem with integral remainder, we thus see that N is non-negative onℝ+. Therefore, the
unique positive solution of (2.1) has convex super-level sets. This conclusion cannot be reached through the
results in [1, 23, 25] or [29].

(2) Consider the function F : ℝ+ → ℝ given by

F(t) = t log(1 + t),

arising from the Dirichlet problem

{
{
{

−∆u = log(1 + u) + u
1 + u in Ω,

u = 0 on ∂Ω.
(2.2)

It holds

(F
1
2 )(t) = − F(t)

− 32

4(t + 1)2
[(t − log(t + 1))2 + ((t + 1)2 − 1) log2(t + 1)]

which is non-positive for t ≥ 0. Moreover,

(
F
f )

(t) = (t + 1)(t(t + 4) − 2(t + 1)) log(t + 1) − t

2(t + 2)
(t + 1)(t + (t + 1) log(t + 1))3

,

so that, in order to prove that Ff is convex, it suffices to consider the numerator N(t). Using log(t + 1) ≤ t,
we get

N(t) ≥ g(t) := (t + 1)(t(t + 4) − 2t)) log(t + 1) − t2(t + 2),



W. Borrelli et al., Concavity properties for solutions to some p-Laplace equations | 7

and the auxiliary function g obeys

g(k)(0) = 0 for k = 0, 1, 2, g(3)(0) = 6, g(4)(t) = 2 (3 t
2 + 6 t + 2)
(t + 1)3

.

Reasoning as before, we see that g ≥ 0 on [0, +∞), proving that Ff is convex. Theorem 1.2 therefore ensures
that the unique positive solution of (2.2) is quasi-concave, which again cannot be deduced from previously
known results.

(3) In general, observe that if a function F satisfies the assumptions of Theorem 1.2 for p = 2, then, given
q > 1, F

q
2 satisfies the assumptions for p = q as

(F
q
2 )

1
p = F

1
2 , F

q
2

(F
q
2 )
=
2
q
F
f
.

We conclude with an example showing what is the rôle of the restriction to the image of the conditions in
Theorem 1.2

Example 2.2. Consider the problem
{{{
{{{
{

−∆u + u = 1 in Ω,
u = 0 on ∂Ω,
u > 0 in Ω

(2.3)

for a convex Ω. A unique, non-negative solution is immediately obtained via minimization of the strictly
convex functional

J(v) = ∫
Ω

|∇v|2 + v2 − 2 v dx,

but Theorem 1.2 does not naively apply, since the reaction term fails to be non-negative. However, since
v(x) ≡ 1 solves (2.3), an application of the comparison principle implies that u ≤ 1 in Ω. Therefore, prob-
lem (2.3) can be rephrased as

{{{
{{{
{

−∆u = (1 − u)+ in Ω
u = 0 on ∂Ω
u > 0 in Ω.

Let us denote with F the primitive of (1 − t)+ vanishing at 0. A simple calculation shows that F 1
2 is concave on

ℝ+ and thanks to the a-priori bound u ≤ 1, it suffices to check the convexity of Ff only on the interval (0, 1),
where it holds

(
F
f )

(t) = 1
(1 − t)3

> 0.

So, the solution of (2.3) has convex super-level sets. Notice that, looking at the original problem (2.3), with

̃f (t) = 1 − t, F̃(t) = t − t
2

2 ,

the function F̃
̃f
turns out to be concave for t > 1.

3 Preliminaries
In this section we collect various results that will be useful in the proof of Theorem 1.2.

3.1 The convexity function

We recall here themain tools developed by Korevaar and Kennigton to deal with concavity properties of solu-
tion to (1.1). Given a continuous function v : Ω → ℝ with Ω convex, its convexity function c : Ω × Ω → ℝ is
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defined as
c(x, y) = v(x) + v(y)2 − v( x + y2 ).

Clearly, v is concave inΩ if and only if c ≤ 0 in its domain. Themain result of Kennington, generalized in [15],
is the following; that assumptions (1) and (2) belowcanbe checkedonly on the image of v, while not explicitly
stated, follows from inspecting the proof of [15].

Proposition 3.1 ([15]). Let Ω be bounded and convex inℝN , N ≥ 2, and assume that v ∈ C2(Ω) ∩ C0(Ω) solves

N
∑
i,j=1

ai,j(Dv)∂ijv + b(v, Dv) = 0

for aij ∈ C0(ℝN) such that (aij) is uniformly elliptic and b ∈ C0(ℝ ×ℝN ;ℝ+). If
(1) t → b(t, z) is non-increasing on v(Ω) for all z ∈ ℝN ,
(2) t → b(t, z) harmonic concave on v(Ω) for all z ∈ ℝN ,
then the convexity function of v cannot attain a positive maximum in Ω × Ω.

We refer to [15] for a general definition of harmonic concavity. For our purposes, the function bwill be positive
on v(Ω) and in this case harmonic concavity coincides with the convexity of t → 1

b(t,z) .
Korevaar singled out a class of transformations allowing to exclude that the maximum of the convexity

function is attained at the boundary ∂(Ω × Ω). The following proposition has been obtained in [25, Lem-
mas 2.1 and 2.4] for u ∈ C2(Ω). Recall that a strongly convex set is a smooth convex set such that the principal
curvatures of ∂Ω are positive. Given such an Ω we set

Sδ = {x ∈ Ω : δ2 ≤ dist(x, ∂Ω) ≤ 2 δ}, Ωδ = {x ∈ Ω : δ < dist(x, ∂Ω)}.

Proposition 3.2 ([25, Lemmas 2.1 and 2.4]). Suppose that Ω is smooth, bounded and strongly convex, N is
a neighborhood of ∂Ω and let u ∈ C1(Ω) ∩ C2(N) be such that

u > 0 in Ω, u = 0 on ∂Ω, ∂u
∂n
> 0 on ∂Ω. (3.1)

If φ ∈ C2(ℝ+;ℝ) fulfils

lim
t→0+

φ(t) = +∞, φ < 0 < φ near 0, lim
t→0+

φ(t)
φ(t)
= lim
t→0+

φ(t)
φ(t)
= 0, (3.2)

and v := φ(u), then, for any sufficiently small δ, it holds

D2v(x) < 0 in Sδ , (3.3)

and
∀x̄ ∈ ∂Ωδ v(x) < Lv,x̄(x) in Ωδ \ {x̄}, (3.4)

where Lv,x̄(x) = v(x̄) + ∇v(x̄)(x − x̄) is the tangent plane to the graph of v at x̄.
Moreover, if (3.3) and (3.4) hold for some given v ∈ C2(Ωδ/2), its convexity function cannot attain a positive

maximum on ∂(Ωδ × Ωδ).

3.2 The transformation φ

Since we are interested in positive solutions of (1.1), we will assume henceforth that f is extended to ℝ as
an even function, so that F is odd. First observe that being F

1
p concave on [0, +∞), it has sublinear growth,

implying the estimate
F(t) ≤ C (1 + tp), t ≥ 0. (3.5)

Applying again the concavity assumption, we also infer

f(t) ≤ C (1 + tp−1), t ≥ 0, (3.6)
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therefore solutions of (1.1) are critical points of the C1 functional onW1,p
0 (Ω) defined by

J(u) = ∫
Ω

1
p
|∇u|p − F(u) dx. (3.7)

A more refined and useful estimate than (3.6) is contained in the following lemma.

Lemma 3.3. Let F : [0, +∞)→ [0, +∞) be differentiable and such that F(0) = 0. If F
1
p is concave for some

p ≥ 1, then t → F(t)
tp−1 is non-increasing.

Proof. Let G(t) = F
1
p (t), and observe that G ≥ 0 on [0, +∞), since G(t0) < 0 implies by concavity

G(t) ≤ G(t0) + G(t0)(t − t0)→ −∞,

contradicting G ≥ 0. If
H(s) = Gp(s

1
p ),

we claim that H is concave. Indeed,

H(s) = Gp−1(s
1
p )G(s

1
p )s

1−p
p = (

G(s
1
p )

s
1
p
)
p−1
G(s

1
p )

and s → H(s) is non-increasing onℝ+ if and only if so is t → H(tp), i.e., if and only if

t → (G(t)t )
p−1
G(t) (3.8)

is non-increasing. Since both

t → G(t) and t → G(t)
t
=
G(t) − G(0)

t − 0

are non-negative, and non-increasing by the concavity of G, so is (3.8), being the product of non-negative,
non-increasing functions. It follows thatH(s) = F(s

1
p ) is concave, so that its derivative is non-increasing. Since

H(s) = 1
p
F(s

1
p )s

1−p
p ,

gives the claim by the monotone increasing change of variable t = s
1
p .

Remark 3.4. The opposite implication in the previous assertion fails to be true. When p = 2, the function

F(t) = √1 + t + t2, t ≥ 0,

is such that F
(t)
t is non-increasing onℝ+, but F

1
2 is convex for t ≥ 0.

We next provide the elementary proof of a property, mentioned in the introduction, of the inverse ψ = φ−1 of
the function φ given (1.2). In that framework, we apply the lemma with G = F

1
p .

Lemma 3.5. Suppose that G ∈ C0([0, +∞);ℝ+) is concave with G(0) = 0 and let

φ(t) =
t

∫
1

1
G(τ)

dτ, ψ(s) = φ−1(s).

Then s → logψ(s) is concave.

Proof. We compute

(logψ) = ψ


ψ
=
G(ψ)
ψ

and, since ψ is increasing, the claim is equivalent to the fact that t → G(t)
t is non-increasing. But this follows

from the assumed concavity of G together with G(0) = 0.
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In order to apply Proposition 3.2, we point out the following.

Lemma 3.6. Let f ∈ C0(ℝ+, [0, +∞)) with

M = inf{t > 0 : f(t) = 0} > 0.

If the corresponding F is such that F
1
p is concave and F

f is convex in (0,M), the function

φ(t) =
t

∫
1

F(s)−
1
p ds, where F(s) =

s

∫
0

f(τ) dτ, t, s > 0,

fulfils (3.2) on (0,M).

Proof. By the definition of M, for any t ∈ (0,M) it holds

φ(t) = − f(t)

pF(t)1+
1
p
< 0,

and from φ(t) = F(t)−
1
p and F ≥ 0we readily have φ(t)→ +∞ for t → 0+. By construction F(t) ≤ Ct in (0,M)

and from the concavity of F
1
p we infer F

1
p (t) ≥ ct for t ∈ (0,M), c > 0. Therefore, for t ∈ (0,M),

0 ≤ φ(t)
φ(t)
= F

1
p (t)

1

∫
t

1
F

1
p (t)

dt ≤ C
1
p

c
t
1
p log t → 0.

It remains to prove that

lim
t→0+

φ(t)
φ(t)
= lim
t→0+

p F(t)
f(t)
= 0.

By the convexity of Ff the limit exists, as does, by monotonicity, the limit

l = lim
t→0+

φ(t) ≤ 0.

Hence the claim follows from the previous limit by de l’Hôpital rule, either applied to φ
φ if l = −∞ or to φ−l

φ if
l is finite.

3.3 A Brezis–Oswald-type result

It is known that the functional J in (3.7) is convex in the variable w = up and this implies the monotonicity
of the operator

w →
−∆pw

1
p

w
p−1
p

as first remarked for p = 2 by Benguria, Brezis and Lieb [2], see also [6].
An useful consequence (see e.g. [14]) of this convexity property is the following:

Lemma 3.7. For i = 1, 2 let wi ∈ L∞(Ω) ∩W1,p(Ω) be such that

wi > 0, ∆pwi ∈ L∞(Ω), w1 − w2 ∈ W
1,p
0 (Ω),

w2
w1

, w1
w2
∈ L∞(Ω).

Then there holds
∫
Ω

(
−∆pw1

wp−11
−
−∆pw2

wp−12
)(wp1 − w

p
2) dx ≥ 0. (3.9)

We also recall the definition of the first eigenvalue of the p-Laplacian

λ1,p := inf {∫
Ω

|∇v|p dx : v ∈ W1,p
0 (Ω), ∫

Ω

|v|p dx = 1}.
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The next proposition is a Brezis–Oswald-type of result [7]. The proof follows Díaz and Saá [14] but here
we deal with the case when f(t)

tp−1 is only monotone and not (as assumed in [14]) strictly monotone. Notice that
it holds, more generally, when Ω is connected but not necessarily convex.

Proposition 3.8. Let Ω ⊆ ℝN be connected with C2 boundary, and let f ∈ C0(ℝ+,ℝ) be such that t → f(t)
tp−1 is

non-increasing on (0, +∞). If u ∈ W1,p
0 (Ω) ∩ C1,α(Ω) solves (1.1), then either u is a λ1,p-eigenfunction or

lim
t→+∞

f(t)
tp−1
< λ1,p < lim

t→0+
f(t)
tp−1

(3.10)

and u is the unique solution of (1.1), which also minimizes J onW1,p
0 (Ω) where, in the definition of J, f is evenly

extended onℝ.

Proof. Suppose that u is not a λ1,p-eigenfunction. Then, being positive in Ω, it is not an eigenfunction at all,
so that we may assume that

f is not of the form k tp−1 on [0, ‖u‖∞], (3.11)

By [14, Theorem 2] the solvability of (1.1) implies that

lim
t→+∞

f(t)
tp−1
=: μ∞ ≤ λ1,p . (3.12)

Indeed, observe that by the monotonicity assumption on t → f(t)
tp−1 , it holds

f(u)
up−1
≥
f(‖u‖∞)
‖u‖p−1∞

≥ μ∞. (3.13)

Let φ ∈ C1,α(Ω) be a positive λ1,p-eigenfunction. Any positive multiple of φ is still an eigenfunction so that,
using the Hopf Lemma and C1,α(Ω) of both u and φ, we can choose k > 0 such that k φ > u on Ω. Notice that
all the assumption of Lemma 3.7 hold for w1 = k φ and w2 = u on Ω, so that by (3.9) and (3.13), we obtain

0 ≤ ∫
Ω

(
−∆p(k φ)
(k φ)p−1

−
−∆pu
up−1
)((kφ)p − up) dx

= ∫
Ω

(λ1,p −
f(u)
up−1
)(kpφp − up) dx

≤ (λ1,p − μ∞) ∫
Ω

(kpφp − up) dx

giving (3.12) by the positivity of the integral. By the previous chain of inequalities, μ∞ = λ1,p implies that
f(u) = λ1,pup on Ω, contradicting (3.11), so that the inequality in (3.13) is strict. Consider now

μ0 := lim
t→0+

f(t)
tp−1

.

By the properties of the first eigenvalue and the monotonicity of t → f(t)
tp−1 , there holds

λ1,p ∫
Ω

up dx ≤ ∫
Ω

|∇u|p dx ≤ ∫
Ω

f(u) u dx = ∫
Ω

f(u)
up−1

up dx ≤ μ0 ∫
Ω

up dx.

The latter chain of inequalities ensures that λ1,p ≤ μ0 and that equality holds if and only if f(u) = μ0 up, again
contradicting (3.11) and proving that λ1,p < μ0.

To prove the assertion on J, observe that the first inequality in (3.10) ensures by standard methods that
J is coercive onW1,p

0 (Ω) and possesses a minimum ū ∈ W1,p
0 (Ω) ∩ C1,α(Ω). Being F odd, it holds J(|v|) ≤ J(v)

for any v ∈ W1,p
0 (Ω), so that we can assume that ū ≥ 0. Moreover, again by standard methods, the second

inequality in (3.10) implies
inf

W1,p
0 (Ω)

J < 0.

We conclude that ū is nontrivial, and therefore strictly positive by the strong minimum principle.
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It remains to show that u = ū. Applying again Lemma 3.7 we have

0 ≤ ∫
Ω

(
f(u)
up−1
−
f(u)
up−1
)(up − up) dx.

By the monotonicity assumption, the two factors in the integrand have opposite sign, so that we infer
f(u)
up−1
=
f(ū)
ūp−1

in Ω (3.14)

Next recall that the pointwise Picone inequality [6]

|∇v|p−2∇v ⋅ ∇ w
p

vp−1
≤ |∇w|p , v, w > 0, (3.15)

becomes an equality in a connected set if and only if v = k w. Applying the latter for v = ū and w = u and
integrating, we get

∫
Ω

f(ū)
ūp−1

up dx = ∫
Ω

|∇ū|p−2∇ū ⋅ ∇ u
p

ūp−1
≤ ∫

Ω

|∇u|p ≤ ∫
Ω

f(u) u dx = ∫
Ω

f(u)
up−1

up dx.

Since u is positive, (3.14) implies that equality is attained in (3.15) for v = ū and w = u everywhere in Ω.
Hence

u = kū for some k > 0. (3.16)

Let g(t) := f(t)
tp−1 and assume that k > 1 in (3.16). By continuity, for any n ∈ ℕ there exists xn ∈ Ω such that

u(xn) =
‖u‖∞
kn

and thus (3.14) and (3.16) give

g(‖u‖∞) = g(u(x0)) = g(ū(x0)) = g(
u(x0)
k )
= g(u(x1)) = ⋅ ⋅ ⋅ = g(

‖u‖∞
kn )

for any n ≥ 1. Therefore g, being non-increasing, is constant on (0, ‖u‖∞), contradicting (3.11). Similarly,
if 0 < k < 1, we infer that g is constant on

(0, ‖ū‖∞) = (0,
‖u‖∞
k )
⊇ (0, ‖u‖∞),

again contrary to (3.11). Therefore k = 1 and u = ū, as claimed.

4 Proof of the main result
Our proof consists in a two-step approximation. Following [31], we first show that it suffices to deal with
strictly convex domains. Then, under such an assumption, we introduce a regularized problem for which we
can prove the claim of Theorem 1.2. The solutions of the regularized problem converge uniformly to that of
the original problem, thus proving Theorem 1.2.

In light of the result of [31], wewill suppose henceforth that u is not a λ1,p-eigenfunction, so that inequal-
ities (3.10) are in place, ensuring that the functional J in (3.7) has a unique positive minimizer on W1,p

0 (Ω)
by Proposition 3.8 and Lemma 3.3. Notice that this holds for any smooth Ω, justifying some of the following
arguments.

4.1 Restricting to strictly convex domains

We start by showing that there is no loss of generality considering strictly convex domains. To this aim,
consider a sequence of strongly convex smooth domains (Ωk)k∈ℕ such that

Ωk ⊆ Ωk+1 for all k ∈ ℕ, Ωk → Ω,
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where the last convergence is meant in the Hausdorff sense. Let uk ∈ W1,p
0 (Ωk) be the unique solution to (1.1)

in Ωk, which can be extended to Ω setting uk = 0 on Ω \ Ωk. Observe that uk is the unique positive minimizer
of

Jk(v) = ∫
Ωk

1
p
|∇v|p − F(v) dx,

and by minimality
J(uk+1) = Jk+1(uk+1) ≤ Jk+1(uk) = J(uk),

and then the coercivity of J ensures that (uk)k∈ℕ is bounded in W1,p
0 (Ω). Thus, up to subsequences, we can

assume that
uk ⇀ ũ weakly inW1,p

0 (Ω)
uk → ũ strongly in Ls(Ω), for all s ∈ [1, p]
uk → ũ a.e.

for some ũ ∈ W1,p
0 (Ω). The continuity of the Nemitski operator associated to F gives

lim
n→∞
∫
Ω

F(uk) dx = ∫
Ω

F(ũ) dx

and by the semicontinuity of v → ‖∇v‖pp, it holds

J(ũ) ≤ lim
k→+∞

J(uk) = lim
k→+∞

Jk(uk). (4.1)

Set
εk = 2 sup

Ω\Ωk
u.

Since u ∈ C0(Ω), u > 0 inΩ andΩk → Ω inHausdorffdistance, it holds εk ↓ 0.Moreover, (u − εk)+ ∈ W1,p
0 (Ωk)

and there holds (u − εk)+ → u inW1,p
0 (Ω), so that

lim
k→+∞

Jk((u − εk)+) = J(u).

Observe that we have used again the fact that

Jk((u − εk)+) = J((u − εk)+) for all k ∈ ℕ

as (u − εk)+ vanishes on Ω \ Ωk. By the minimality of uk and (4.1), we infer

J(ũ) ≤ lim
k→+∞

Jk(uk) ≤ lim
k→+∞

Jk((u − εk)+) = J(u),

ensuring that ũ = u by Proposition 3.8. Then assume that we proved the claim of Theorem 1.2 for uk, for
all k ∈ ℕ, that is, φ(uk) is concave on Ωk. The convexity functions ck of φ(uk) are therefore non-positive
on Ωk × Ωk × [0, 1] and converge pointwise a.e. on Ω × Ω × [0, 1] to the convexity function c of φ(u). By the
continuity of u, we thus infer that c ≤ 0 on Ωk0 × Ωk0 × [0, 1] for any k0 ∈ ℕ, thus φ(u) is concave on Ω.
Therefore we will suppose in the following that Ω is strictly convex.

4.2 A regularized problem

Let us now turn to the approximation procedure. We introduce a regularized problem for which we can prove
the claim of Theorem 1.2. In the following we can assume that u is not a λ1,p-eigenfunction, so that (3.10)
holds true.

Given ε > 0, consider the variational problem

inf
v∈W1,p

0 (Ω)
Iε(v) =: λε , (4.2)
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where
Iε(v) :=

1
p ∫

Ω

(ε(G(v)2)
1
p + |∇v|2)

p
2 dx − ∫

Ω

F(v) dx

for some odd G ∈ C1(ℝ) that will later be chosen. In the following we will let g := G.

Lemma 4.1. Suppose that f ∈ C0(ℝ) is even, obeys (3.10) and t → f(t)
tp−1 is non-increasing on ℝ+. Then, for any

sufficiently small ε > 0, problem (4.2) admits a non-negative, nontrivial solution uε ∈ W
1,p
0 (Ω) such that, for

a fixed α > 0, uε → u in C1,α(Ω) as ε → 0, where u is the unique positive solution to (1.1).

Proof. The equi-coercivity of Iε follows from the one of J and the obvious inequality Iε ≥ J. Furthermore, if u
is as in the statement, we have by (3.10)

J(u) = inf
W1,p

0 (Ω)
J < 0,

so that by continuity Iε(u) < 0 for sufficiently small ε > 0. Thus (4.2) has a nontrivial solution, which is
non-negative by Iε(|v|) ≤ Iε(v). In order to prove the convergence of uε to u, first observe that by dominated
convergence it is readily checked that for any w ∈ W1,p

0 (Ω).

lim
ε→0+

Iε(w) = J(w). (4.3)

Since
J(u) ≤ J(uε) ≤ Iε(uε) = λε ≤ Iε(0) = 0,

it follows that uε is bounded in W1,p
0 (Ω), uniformly for 0 < ε < 1. Hence there exists v ∈ W1,p

0 (Ω) such that,
up to subsequences, uεk ⇀ v weakly inW1,p

0 (Ω), as k →∞.
From the weak lower semicontinuity of J, the minimality of uεk and (4.3), we get

J(v) ≤ lim
k
J(uεk ) ≤ lim

k
Iεk (uεk ) ≤ lim

k
Iεk (u) = J(u)

so that v is a minimizer for J as well, forcing u = v by the uniqueness proved in Proposition 3.8. The previous
display forces J(uεk )→ J(u) but, as already noted,

∫
Ω

F(uεk ) dx → ∫
Ω

F(u) dx

so that we infer that ‖∇uεk‖
p
p → ‖∇u‖

p
p, giving the strong convergence uεk → u in W1,p

0 (Ω) by uniform con-
vexity. A standard sub-subsequence argument allow to conclude that uε → u in W1,p

0 (Ω). Arguing as in
[31, Proposition 6.2], we infer from (3.5) and the uniform bound on ‖∇uε‖p a uniform bound on ‖uε‖∞ for
ε ∈ (0, 1). Standard regularity theory then ensures that (uε) is uniformly bounded in C1,β(Ω), β > 0 and thus
converges to u in C1,

β
2 (Ω) by the Ascoli–Arzelá theorem.

We collect next some regularity properties of the minimizers uε just constructed.

Lemma 4.2. Let uε be the solutions constructed in Lemma 4.1 under its assumptions, and suppose that G > 0
onℝ+.
(1) Each uε satisfies in Ω the Euler–Lagrange equation

− div((εG(uε)
2
p + |∇uε|2)

p−2
2 ∇uε) = f(uε) −

ε
p (
ε G(uε)

2
p + |∇uε|2)

p−2
2 G(uε)

2−p
p g(uε). (4.4)

(2) For sufficiently small ε, we have

uε > 0 in Ω, ∂uε
∂n
> 0 on ∂Ω

where n is the interior normal to ∂Ω.
(3) If f and g are α-Hölder continuous, then uε ∈ C2,α(Ω) and there exists η0 > 0 such that uε is uniformly

bounded in C2,α(Sη0 ), where
Sη := {x ∈ Ω : η2 ≤ dist(x, ∂Ω) ≤ 2η}.
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Proof. The first assertion is a simple calculation. Recall that u itself satisfies

u > 0 in Ω, ∂u
∂n
> 0 on ∂Ω

by the Hopf lemma, so that the second assertion follows from the convergence uε → u in C1,α(Ω). Regarding
the last regularity property, it suffice to observe that the operator on the left-hand side of (4.4) is uniformly
elliptic with Hölder continuous coefficients since, from the previous point, there exists c0 > 0 such that
either |∇uε| ≥ c0 near ∂Ω, or F(u) ≥ c0 away from ∂Ω. The right-hand side of (4.4) is Hölder continuous away
from ∂Ω, so that the nonlinear Schauder estimates give the claims in (3).

Theorems 1.2 and 1.1 will now follow from the next statement, through a simple approximation argument
on the concavity function.

Proposition 4.3. Under the assumptions of Theorem 1.2, let φ be defined in (1.2). For any sufficiently small
δ > 0, there exist εδ such that if ε < εδ, then v = φ(uε) is concave on

Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}.

The same statement holds for v = log u.

4.3 Non-positivity at the boundary

From the arguments given in the proof of Lemma 4.2 we can fix δ0 so that the solution u of (1.1) belongs
to C2(Ω \ Ωδ0 ). Moreover, (3.1) hold true for u and, thanks to Lemma 3.6 (and a direct computation in the
case of log t), Proposition 3.2 applies for both the transformations φ defined in (1.2) an φ̃(t) = log t. In the
next argument,with vwedenote for simplicity bothφ(u) and φ̃(u), and vε will stand for bothφ(uε) and φ̃(uε).
It follows that (3.3) and (3.4) both hold for v and for any δ ≤ δ1 ≤ δ0.

If η0 is given in (3) of Lemma 4.2, we next choose δ < 1
2 min{η0, δ1} so that vε is uniformly bounded

in C2,α(Sδ), and therefore converges to u in C2(Sδ). Since uε is uniformly bounded from below by a positive
constant and both φ and φ̃ are C2(ℝ+), we infer that vε → v in C2(Sδ). Therefore (3.3) continues to hold for
any sufficiently small ε, so that vε is locally strictly concave on Sδ.

We claim that (3.4) holds as well for any (possibly smaller) ε. Suppose not, so that there are

εn → 0, x̄n ∈ ∂Ωδ , xn ∈ Ωδ \ {x̄n}

such that
Lvεn ,x̄n (xn) ≥ vεn (xn). (4.5)

By compactness we can assume that x̄n → x̄, xn → x ∈ Ωδ. By eventually lowering δ0, we see by the smooth-
ness and strong convexity of Ω that there is a constant c = c(δ, Ω) > 0 such that

Bc δ(x̄) ⊆ Sδ for all x̄ ∈ ∂Ωδ .

Since vεn is strictly concave on Bc δ(x̄n), the points xn fulfilling (4.5) must be at least cδ away from x̄n. There-
fore the limit point x must be at least cδ away from x̄. By taking the limit in (4.5), we find that

Lv,x̄(x) ≥ v(x), x ̸= x̄,

contradicting the establishedvalidity of (3.3) for v. Therefore both (3.3) and (3.4) hold for vε, if ε is sufficiently
small, and the last statement of Proposition 3.1 ensures that the convexity function of vε cannot assume
positive values on ∂(Ωδ × Ωδ).

We next show that, for any δ found in the previous point and any correspondingly small ε, the convexity
function of φ(uε) (or log uε, in the proof of Theorem 1.1) cannot have a positive interior maximum on Ω × Ω.
In order to do so, we will choose accordingly the function G in the approximation procedure given in (4.2)
(which, so far, played no rôle).
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4.4 The transformed equation

We first consider the number
M = inf {t > 0 : f(t) = 0}.

In both Theorems 1.1 and 1.2, the function t → f(t)
tp−1 is non-increasing (by Lemma 3.3 in the second case),

hence f vanishes identically on [M, +∞). Clearly we may assume that M > 0, for otherwise problem (1.1)
have no solutions at all. We thus assume that

G(t) = G(M) for all t ≥ M (4.6)

and claim that, under this assumption,
sup
Ω
uε ≤ M. (4.7)

Indeed, if this is not the case, the function wε = uε −M is non-negative on the open set {uε > M}, vanishes on
its boundary, and attains a positive maximum inside. By (4.6) and f(t) = 0 for all t ≥ M, we infer from (4.4)
that wε solves

−div((εG(M)
2
p + |∇wε|2)

p−2
2 ∇wε) = 0.

The operator on the left-hand side is monotone, therefore by comparison we obtain wε ≡ 0 and thus a con-
tradiction, proving (4.7). Notice that the truncation prescribed in (4.6), despite lowering the regularity of G,
does not affect the validity of (3) of Lemma 4.2, due to (4.7).

For a, still to be determined, increasing diffeomorphism φ ∈ C1(ℝ+,ℝ) with inverse ψ, set

G(t) = (ψ(φ(t)))p , t ∈ (0,M), (4.8)

so that the oddness condition togetherwith (4.6) definesG on thewholeℝ. For the corresponding solutions uε
of (4.4) we set

vε := φ(uε),

and compute the equation solved by vε. By construction, ψ satisfies

G(ψ(s)) = ψ(s)p , g(ψ(s)) = pψ(s)p−2ψ(s) (4.9)

for s ∈ vε(Ω) and moreover ∇uε = ψ(vε)∇vε. It follows that

εG(uε)
2
p + |∇uε|2 = ψ(vε)2(ε + |∇vε|2)

so that
ε
p (
εG(uε)

2
p + |∇uε|2)

p−2
2 G(uε)

2−p
p g(uε) = ε(ε + |∇vε|2)

p−2
2 ψ(v(ε)p−2ψ(vε). (4.10)

Regarding the left-hand side of (4.4), from

D2uε = ψ(vε)∇vε ⊗ ∇vε + ψ(vε)D2vε

we compute

div((εG(uε)
2
p + |∇uε|2)

p−2
2 ∇uε) = ψ(vε)p−1 div((ε + |∇vε|2)

p−2
2 ∇vε)

+ (p − 1)ψ(vε)p−2ψ(vε)(ε + |∇vε|2)
p−2
2 |∇vε|2. (4.11)

Putting (4.10) and (4.11) into (4.4), we obtain

− div((ε + |∇vε|2)
p−2
2 ∇vε) =

f(ψ(vε))
(ψ(vε))p−1

+
ψ(vε)
ψ(vε)
(ε + |∇vε|2)

p−2
2 ((p − 1)|∇vε|2 − ε). (4.12)

Now we split the proof into two cases, choosing ψ (or, equivalently, G) accordingly.
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4.5 Non-positivity in the interior

We finally choose the transformation. For the first statement of Proposition 4.3, let φ defined by (1.2), which
then fulfils (4.8) on [0,M] for G = F, i.e.,

ψ(s) = F
1
p (ψ(s)). (4.13)

Differentiating this relation we obtain
f(ψ(s))
(ψ(s))p−1

= pψ
(s)
ψ(s)

,

which, inserted into (4.12) gives

−div((ε + |∇vε|2)
p−2
2 ∇vε) =

ψ(vε)
ψ(vε)

b(∇vε),

where
b(∇vε) := p + ((p − 1)|∇vε|2 − ε)(ε + |∇vε|2)

p−2
2 . (4.14)

Consider the function
h(t) = p + ((p − 1)t − ε)(ε + t)

p−2
2 , t ≥ 0

An elementary computation shows that h is increasing, so that its minimum is h(0) = p − ε
p
2 . It follows that

the function b defined in (4.14) is positive whenever ε < p
2
p , which we will assume henceforth.

In order to apply Proposition 3.1, we have to check that

ψ

ψ
is non-increasing and harmonic concave on vε(Ω) . (4.15)

From (4.7) we infer supΩ vε ≤ φ(M) and clearly ψ(s) > 0 for all s ∈ vε(Ω), since 0 < uε = ψ(vε). Therefore

ψ(vε(Ω)) ⊆ [0,M]. (4.16)

For the first assertion in (4.15), recall from (4.13) that

ψ

ψ
=
(F

1
p ∘ ψ)

ψ
= (F

1
p ) ∘ ψ.

Since F
1
p is assumed to be concave on (0,M) and (4.16) holds true, this expression is non-increasing being

the composition of a non-increasing function with an increasing one.
Finally, we claim that ψ

ψ is convex. We first compute

ψ(s)
ψ(s)
= p F(ψ(s))

f(ψ(s))
F(ψ(s))−

1
p .

The function F
f is assumed to be convex on (0,M) and then it is differentiable, except at most at countable set

A ⊆ [0,M]. If B = φ(A) and s ∈ vε(Ω) \ B, then ψ(s) ∈ [0,M] \ A due to (4.16). Thus Ff is differentiable at ψ(s)
and it holds

(
ψ(s)
ψ(s))


= p(F(ψ(s))f(ψ(s)) )


F−

1
p (ψ(s)) − F(ψ(s))

f(ψ(s))
F−1−

1
p (ψ(s))f(ψ(s))ψ(s)

= p(F(ψ(s))f(ψ(s)) )
 1
ψ(s)
− 1,

where we used (4.13) in the last step. Therefore

(
ψ

ψ )

= p(Ff )


∘ ψ − 1 on vε(Ω) \ B,

which is non-decreasing as composition of non-decreasing functions. Since B is at most countable, the con-
vexity of ψ

ψ follows by well-known characterizations of convex function of the real line.
Hence Proposition 3.1 applies, and the convexity function of φ(uε) cannot attain a positive maximum

on Ω × Ω and a fortiori on Ωδ × Ωδ.
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Regarding the second statement of Proposition 4.3, we choose in (4.12) the function G(t) = tp, which
corresponds to ψ(s) = es, φ(t) = log t. In this case (4.12) reads

div((ε + |∇vε|2)
p−2
2 ∇vε) =

f(evε )
e(p−1)vε

+ (ε + |∇vε|2)
p−2
2 ((p − 1)|∇vε|2 − ε)

and the condition required in Theorem 1.2 allow to apply Proposition 3.1 to exclude the positivity of the
convexity function of vε in Ω × Ω.
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