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Abstract

We provide optimal solvability conditions for a nonlocal minimization problem at critical growth involv-
ing an external potential function a. Furthermore, we get an existence and uniqueness result for a related 
nonlocal equation.
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1. Introduction

1.1. Overview

Let � be a bounded domain of RN with N ≥ 3. In 1983, in the celebrated paper [5], Brezis 
and Nirenberg studied the solvability conditions for the semi-linear elliptic problem⎧⎪⎨⎪⎩

−�u − λu = u(N+2)/(N−2), in �,

u > 0, in �,

u = 0, on ∂�.

(1.1)

In particular, if λ1(�) denotes the first eigenvalue of the Dirichlet–Laplacian in �, they proved 
that, if N ≥ 4, then problem (1.1) admits a solution if 0 < λ < λ1(�) while for N = 3 there exists 
λ∗ ∈ (0, λ1) such that (1.1) admits a solution if λ∗ < λ < λ1(�) and no solution for 0 < λ ≤ λ∗. 
Due to this phenomenon, N = 3 is often referred to in the literature as critical dimension.

In general λ∗ is not given explicitly, except when � is a ball, in which case λ∗ = λ1(�)/4. In 
addition, there is no solution to (1.1) when λ ≥ λ1(�) for any domain � (see [5, Remark 1.1]) 
and also for λ ≤ 0 provided � is smooth and star-shaped (see [5, Remark 1.2]).

In the same paper the authors considered, for N ≥ 4, the non-autonomous critical elliptic 
problem ⎧⎪⎨⎪⎩

−�u + a u = u(N+2)/(N−2), in �,

u > 0, in �,

u = 0, on ∂�,

(1.2)

and obtained the existence of a solution by assuming that a ∈ L∞(�) and that there exist δ > 0
and an open subset �0 ⊂ � such that

a ≤ −δ, in �0,

∫
�

(
|∇ϕ|2 + a ϕ2

)
dx ≥ δ

∫
�

ϕ2dx, for all ϕ ∈ C∞
0 (�),

see [5, Section 4]. About the case of the critical dimension N = 3 for (1.2), no result is stated 
in [5].

After the striking achievements of [5], many works were devoted to the search of solvability 
conditions for (possibly sign-changing) solutions of the problem
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{
−�u − λu = |u|4/(N−2) u, in �,

u = 0, on ∂�.

Solution are obtained for any λ > 0 if N ≥ 5 and for all λ > 0 with λ /∈ σ(−�) if N ≥ 4. Here 
σ(−�) is the spectrum of the Dirichlet–Laplacian on �. We refer the reader e.g. to [7,13]. The 
main tool exploited is the Linking Theorem of Rabinowitz [19].

The previous results were then extended to the more general problem{
−�pu − λ |u|p−2 u = |u|p∗−2 u, in �,

u = 0, on ∂�,
(1.3)

where 1 < p < N , −�p is the p-Laplacian operator and p∗ = N p/(N − p) is the critical 
Sobolev exponent. See for example [12,14] where positive solutions were found for N ≥ p2 and 
0 < λ < λ1(�), via the Mountain Pass theorem of Ambrosetti and Rabinowitz [19]. Here λ1(�)

denotes the first eigenvalue of −�p with Dirichlet boundary conditions.
For the general case of sign-changing solutions, a first result was obtained in [1] for λ below 

the second eigenvalue λ2(�) of −�p under some restrictions on p and N . Recently, Degiovanni 
and Lancelotti in [9] proved that, if the domain is of class C1,α for some α ∈ (0, 1), then problem 
(1.3) admits a nontrivial solution for all λ > 0 provided that (N3 + p3)/(N2 + N) > p2.

Recently, in the framework of nonlocal problems, the following Brezis–Nirenberg type prob-
lem for the fractional p-Laplacian of order s was investigated{

(−�p)s u − λ |u|p−2 u = |u|p∗
s −2 u, in �,

u = 0, in R
N \ �,

(1.4)

where s ∈ (0, 1), N > s p, λ > 0 and p∗
s = N p/(N − s p) is the fractional critical Sobolev 

exponent. This kind of problems has been first considered in [20,21], in the linear case p = 2. For 
a general p, in [17] the authors proved, among other results, that problem (1.4) has a nontrivial 
weak solution for all λ > 0 provided that (N3 + s3p3)/N (N + s) > s p2 and � is of class C1,1.

1.2. Main results

In this paper we return to the investigation of nonautonomous problems like (1.2), in the 
nonlinear nonlocal setting aiming to get optimal solvability conditions for the existence of ground 
state solutions. Let us set

[u]Ds,p(RN) :=
⎛⎜⎝ ∫
R2N

|u(x) − u(y)|p
|x − y|N+s p

dx dy

⎞⎟⎠
1/p

,

and for N > s p define the two spaces

Ds,p(RN) := {u ∈ Lp∗
s (RN) : [u]Ds,p(RN) < +∞},

Ds,p

0 (�) := {u ∈Ds,p(RN) : u = 0 on R
N \ �}.
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The latter is endowed with the norm

‖u‖Ds,p
0 (�) := [u]Ds,p(RN), u ∈Ds,p

0 (�).

Precisely, for s p < N , we aim to study the solvability conditions for the following minimization 
problem

Sp,s(a) := inf
u∈Ds,p

0 (�)

⎧⎪⎨⎪⎩[u]pDs,p(RN)
+
∫
RN

a |u|p dx : ‖u‖
Lp∗

s (RN)
= 1

⎫⎪⎬⎪⎭ ,

where a ∈ LN/sp(�) is given. By Lagrange Multipliers Rule, minimizers of the previous problem 
(provided they exist) are constant sign weak solutions of{

(−�p)s u + a |u|p−2 u = μ |u|p∗
s −2 u, in �,

u = 0, in R
N \ �,

(1.5)

with μ = Sp,s(a). Namely, they satisfy∫
R2N

Jp(u(x) − u(y))
(
ϕ(x) − ϕ(y)

)
|x − y|N+s p

dx dy +
∫
RN

a |u|p−2 uϕ dx = μ

∫
RN

|u|p∗
s −2 uϕ dx,

for every ϕ ∈Ds,p
0 (�). Throughout the paper we will use the notation for 1 < p < +∞

Jp(t) = |t |p−2 t, t ∈ R.

We also introduce the sharp Sobolev constant

Sp,s := inf
u∈Ds,p(RN)\{0}

[u]pDs,p(RN)

‖u‖p

Lp∗
s (RN)

. (1.6)

Finally, we use the standard notations

a+ = max{a, 0}, a− = max{−a,0}, BR(x0) = {x ∈R
N : |x − x0| < R}.

The main result of the paper is the following

Theorem 1.1. Let � ⊂R
N be an open bounded set. The following facts hold:

1. If a ≥ 0, then Sp,s(a) does not admit a solution.
2. Let N > s p2. Assume that there exist σ > 0, R > 0 and x0 ∈ � such that

a− ≥ σ, a. e. on BR(x0) ⊂ �.

Then Sp,s(a) admits a solution.
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3. Let s p < N ≤ s p2. For any R > 0 there exists σ = σ(R, N, s, p) > 0 such that if

a− ≥ σ, a. e. on BR(x0) ⊂ �,

then Sp,s(a) admits a solution.

The conditions on a for the existence of solutions in Theorem 1.1 are essentially optimal, see 
the discussion of Remark 4.1. In Proposition 3.4 we also prove that the solution is unique when 
Sp,s(a) ≤ 0.

The precise form of the optimizers for the best constant in the fractional Sobolev embed-
ding is still unknown (and proving it seems currently out of reach), although minimizers were 
conjectured to be of the form

cU

(
x − x0

ε

)
, where U(x) = (1 + |x|p′

)−(N−sp)/p, x ∈ R
N,

c �= 0, x0 ∈R
N and ε > 0. This would be consistent with the special case p = 2, where the form 

of optimizers is known, see [8]. In the proof of Theorem 1.1, a key tool is the use of suitable 
truncations of extremals U of the Sobolev inequality, introduced in [17] (see Section 2 below). 
In fact, the knowledge of their decay at infinity (recently proved in [3]) is enough to conclude.

Then, we also have the following result

Theorem 1.2. Let � ⊂R
N be an open bounded set. Let a ∈ LN/sp(�) be such that

Sp,s(a) < 0. (1.7)

Then problem (1.5)

i) does not admit positive solutions if μ ≥ 0;
ii) admits a unique positive solution if μ < 0.

Remark 1.3. We can rephrase condition (1.7) also in terms of the following Poincaré-type con-
stant

λ(�,a) := inf
u∈Ds,p

0 (�)

⎧⎪⎨⎪⎩[u]pDs,p(RN)
+
∫
RN

a+ |u|p dx :
∫
RN

a− |u|p dx = 1

⎫⎪⎬⎪⎭ .

Indeed, we can show that

λ(�;a) < 1 ⇐⇒ Sp,s(a) < 0,

and also

λ(�;a) = 1 ⇐⇒ Sp,s(a) = 0,

see Remark 3.5. For a discussion on sufficient conditions ensuring λ(�; a) < 1, and hence (1.7), 
we refer the reader to Remark 5.1.
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Remark 1.4 (The case of the p-Laplacian). Although we can only formally choose the limiting 
value s = 1 in the previous statements, the same proofs in the paper would provide existence and 
non-existence results for the following quasilinear local problem

Sp(a) = inf
u∈D1,p

0 (�)

⎧⎪⎨⎪⎩
∫
RN

|∇u|p dx +
∫
RN

a |u|p dx : ‖u‖LNp/(N−p)(RN) = 1

⎫⎪⎬⎪⎭ .

Finally, we stress that already in the semi-linear case p = 2, Theorem 1.1 and Theorem 1.2 cover 
situations which were previously open, such as the critical case of dimension N = 3 and also the 
case of weaker integrability assumptions on the external potential a.

2. Preliminaries

2.1. Some known results

We start with an elementary inequality, whose proof is based on Calculus and we omit it.

Lemma 2.1. If γ < 0, then we have

(1 − t)γ ≤ 1 + 2 t (2−γ − 1), for every 0 ≤ t ≤ 1

2
. (2.1)

If 0 ≤ γ ≤ 1, then we have

(1 − t)γ ≥ 1 + 2 t (2−γ − 1), for every 0 ≤ t ≤ 1

2
. (2.2)

The following is a discrete version of the celebrated Picone’s inequality. See [2, Proposi-
tion 4.2] and [11, Lemma 2.6] for a proof.

Proposition 2.2 (Discrete Picone inequality). Let 1 < p < ∞ and let a, b, c, d ∈ [0, +∞), with 
a, b > 0. Then

Jp(a − b)

[
cp

ap−1 − dp

bp−1

]
≤ |c − d|p. (2.3)

Moreover, if equality holds in (2.3), then

a

b
= c

d
.

We recall that in [3, Theorem 1.1] the following result was proved.

Theorem 2.3 (Decay of extremals). Let U ∈ Ds,p(RN) be any minimizer for (1.6). Then U ∈
L∞(RN) is a constant sign, radially symmetric and monotone function with
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lim|x|→∞ |x|N−s p
p−1 U(x) = U∞,

for some constant U∞ ∈ R \ {0}.

Let us now fix U ∈ Ds,p(RN) a positive minimizer of (1.6), such that

[U ]pDs,p(RN)
= ‖U‖p∗

s

Lp∗
s (RN)

= S
N
s p
p,s , and U(0) = 1.

Since this is a radially symmetric function, with a slight abuse of notation we write U(r) in place 
of U(x), with |x| = r . Based upon the above decay estimate, we can infer the following result 
(see [17, Lemma 2.2]).

Lemma 2.4. With the notation above, there exists θ > 1 such that for all r ≥ 1,

U(θ r)

U(r)
≤ 1

2
.

In Section 3 we will need to use some truncations of the Sobolev extremal U . To this aim, for 
ε > 0 we first set

Uε(r) := ε
s p−N

p U
( r

ε

)
, r ≥ 0,

which still solves (1.6). Then by following [17], for δ > 0 we introduce

uε,δ(r) :=

⎧⎪⎪⎨⎪⎪⎩
Uε(r), r ≤ δ

Uε(δ)
Uε(r) − Uε(θδ)

Uε(δ) − Uε(θ δ)
, δ < r ≤ θ δ

0, r > θ δ,

(2.4)

where θ is the constant appearing in Lemma 2.4. We then recall from [17, Lemma 2.7] the 
following crucial energy estimates for uε,δ .

Lemma 2.5 (Energy estimates). There exists C = C(N, p, s) > 0 such that for any ε ≤ δ/2,

[uε,δ]pDs,p(RN)
≤ (Sp,s

) N
sp + C

(ε

δ

)N−s p
p−1

,

‖uε,δ‖p

Lp∗
s (RN)

≥
[(
Sp,s

) N
sp − C

(ε

δ

)N/(p−1)
]N−s p

N

.

2.2. Levels of compactness

The next result tells us that, in order to have loss of compactness, a certain amount of energy 
is necessary.
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Lemma 2.6. Let � ⊂ R
N be an open set and let us suppose that s p < N . Let μ ∈ R \ {0}, the 

functional

K(u) := 1

p
[u]pDs,p(RN)

+ 1

p

∫
�

a |u|p dx − μ

p∗
s

∫
�

|u|p∗
s dx, u ∈ Ds,p

0 (�), (2.5)

satisfies the Palais–Smale condition:

• at every energy level c ∈R, if μ < 0;
• at every energy level c such that

c <
s

N
μ

(Sp,s

μ

) N
s p

,

if μ > 0.

Proof. We discuss the two cases separately.

Case μ < 0. Let {un}n∈N ⊂ Ds,p

0 (RN) be a Palais–Smale sequence at level c, i.e.

1

p
[un]pDs,p(RN)

+ 1

p

∫
�

a |un|p dx − μ

p∗
s

∫
�

|un|p∗
s dx = c + on(1)

and

sup
‖ϕ‖Ds,p

0 (�)
=1

∣∣∣∣∣∣∣
∫

R2N

Jp(un(x) − un(y))
(
ϕ(x) − ϕ(y)

)
|x − y|N+s p

dx dy

+
∫
�

a |un|p−2 un ϕ dx − μ

∫
�

|un|p∗
s −2 un ϕ dx

∣∣∣∣∣∣= on(1).

(2.6)

The first condition implies that for n sufficiently large we have

c + 1 ≥ 1

p
[un]pDs,p(RN)

− 1

p
‖a−‖LN/sp(�)

⎛⎝∫
�

|un|p∗
s dx

⎞⎠
p

p∗
s

− μ

p∗
s

∫
�

|un|p∗
s dx

≥ 1

p
[un]pDs,p(RN)

− p∗
s − p

p p∗
s

ε
− p

p∗
s −p ‖a−‖

p∗
s

p∗
s −p

LN/sp(�)
− μ + ε

p∗
s

∫
�

|un|p∗
s dx,

where we used Hölder’s and Young’s inequalities. By choosing ε = −μ > 0, we get that the 
sequence is bounded in Ds,p

0 (�). Thus we can infer weak convergence in Ds,p

0 (�) and Lp∗
s (�)

(up to a subsequence) to a function u ∈Ds,p
(�). By weak convergence, we obtain
0
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∫
R2N

Jp(u(x) − u(y))
(
(un − u)(x) − (un − u)(y)

)
|x − y|N+s p

dx dy +
∫
RN

a |u|p−2 u (un − u)dx

− μ

∫
RN

|u|p∗
s −2 u (un − u)dx = on(1).

From (2.6) and using that {un}n∈N is bounded in Ds,p
0 (�), we obtain

∫
R2N

Jp(un(x) − un(y))
(
(un − u)(x) − (un − u)(y)

)
|x − y|N+s p

dx dy

+
∫
RN

a |un|p−2 un (un − u)dx − μ

∫
RN

|un|p∗
s −2 un (un − u)dx = on(1).

By subtracting the last two displays, we obtain

∫
R2N

(
Jp(un(x) − un(y)) − Jp(u(x) − u(y))

)(
(un − u)(x) − (un − u)(y)

)
|x − y|N+s p

dx dy

+
∫
RN

a
(
|un|p−2 un − |u|p−2 u

)
(un − u)dx

− μ

∫
RN

(
|un|p∗

s −2 un − |u|p∗
s −2 u

)
(un − u)dx = on(1).

By using that −μ > 0 and the monotonicity of t �→ |t |p∗
s −2 t , we get

∫
R2N

(
Jp(un(x) − un(y)) − Jp(u(x) − u(y))

)(
(un − u)(x) − (un − u)(y)

)
|x − y|N+s p

dx dy

+
∫
RN

a
(
|un|p−2 un − |u|p−2 u

)
(un − u)dx ≤ on(1).

(2.7)

We now observe that by Lemma 2.8 below∫
RN

a
(|un|p−2 un − |u|p−2 u

)
(un − u)dx = on(1),

and that (
Jp(un(x) − un(y)) − Jp(u(x) − u(y))

)(
(un − u)(x) − (un − u)(y)

)≥ 0,
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by monotonicity of t �→ Jp(t). Thus from (2.7) we can finally infer

∫
R2N

(
Jp(un(x) − un(y)) − Jp(u(x) − u(y))

)(
(un − u)(x) − (un − u)(y)

)
|x − y|N+s p

dx dy = on(1).

By standard monotonicity inequalities, we eventually infer the strong convergence to u.

Case μ > 0. It is an easy variant of the proof of [18, Proposition 3.1] where the compactness is 
obtained for a constant potential a ≡ −μ, for μ > 0. �
Remark 2.7. When μ = 0, in general the functional

K(u) := 1

p
[u]pDs,p(RN)

+ 1

p

∫
RN

a |u|p dx, u ∈ Ds,p

0 (�),

does not satisfy the Palais–Smale condition, unless some conditions on a are imposed. For ex-
ample, let us define the first eigenvalue of the fractional p-Laplacian of order s, i.e.

λ1(�) := inf
u∈Ds,p

0 (�)

⎧⎪⎨⎪⎩[u]pDs,p(RN)
:
∫
RN

|u|p dx = 1

⎫⎪⎬⎪⎭ . (2.8)

Then by taking

a = −λ1(�),

and φ1 a minimizer of (2.8), the sequence

un = nφ1, n ∈ N,

is a Palais–Smale sequence for K (at level 0), but the sequence is not even bounded.
It is easily seen that in this case K satisfies the Palais–Smale condition at every level, when

‖a−‖LN/sp(�) < Sp,s .

Lemma 2.8. Let 1 < p < ∞ and s ∈ (0, 1) be such that s p < N . Let � ⊂ R
N be an open 

bounded set. Let {un} ⊂Ds,p

0 (�) be such that

[un]Ds,p(RN) ≤ C, for every n ∈ N.

Then there exists u ∈Ds,p

0 (�) such that (up to a subsequence){(|un|p−2 un − |u|p−2 u
)
(un − u)

}
n∈N,

converges weakly to 0 in Lp∗
s /p(�).
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Proof. The hypothesis implies there exists u ∈ Ds,p

0 (�) such that (up to a subsequence) the 
sequence converges weakly in Ds,p

0 (�) and strongly in Lp(�) to u, by compactness of the 
embedding Ds,p

0 (�) ↪→ Lp(�). In particular, up to extracting a further subsequence, we can 
suppose that un converges almost everywhere to u.

We now observe that

∣∣∣(|un|p−2 un − |u|p−2 u
)
(un − u)

∣∣∣≤ C

⎧⎨⎩
|un − u|p, if 1 < p ≤ 2,(|un|p−2 + |u|p−2

) |un − u|2, if p > 2,

for some C = C(p) > 0. By using Sobolev and Hölder inequalities, this implies that the se-
quence

vn := (|un|p−2 un − |u|p−2 u
)
(un − u),

is bounded in Lp∗
s /p(�). Moreover, vn converges almost everywhere to 0 by the first part of the 

proof. Then the conclusion follows from [15, Lemme 4.8]. �
3. Analysis of the ground state level

Throughout this section, � will be an open bounded set and we will assume s p < N . For a 
given potential a ∈ LN/sp(�), we want to study some properties of the ground state level

Sp,s(a) := inf
u∈Ds,p

0 (�)

⎧⎪⎨⎪⎩[u]pDs,p(RN)
+
∫
RN

a |u|p dx : ‖u‖
Lp∗

s (RN)
= 1

⎫⎪⎬⎪⎭ .

We first observe that Sp,s(a) > −∞, indeed for every admissible function u we have

[u]pDs,p(RN)
+
∫
RN

a |u|p dx ≥ [u]pDs,p(RN)
− ‖a‖LN/sp(�) ≥ Sp,s − ‖a‖LN/sp(�),

by Hölder’s and Sobolev inequalities. We observe that when a ≡ 0, the problem above coincides 
with the determination of the best constant in the inequality

[u]pDs,p(RN)
≥ c ‖u‖p

Lp∗
s (�)

, for u ∈ Ds,p

0 (�).

As in the local case, such a constant does not depend on � and is never attained on proper subsets 
of RN . This is the content of the next result.

Lemma 3.1. For every open set E ⊂R
N we have

Sp,s(0) = Sp,s,

and Sp,s(0) is not attained in Ds,p
(E), whenever |RN \ E| > 0.
0
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Proof. Let ε > 0, then there exists ϕε ∈ C∞
0 (RN) such that

‖ϕε‖Lp∗
s (RN)

= 1 and [ϕε]pDs,p(RN)
≤ Sp,s + ε.

Let λ > 1, by taking

ϕλ,ε(x) = λ
N−s p

p ϕε(λx),

we still have that

‖ϕλ,ε‖Lp∗
s (RN)

= 1 and [ϕλ,ε]pDs,p(RN)
≤ Sp,s + ε.

Moreover, by taking λ large enough and up to translations, we have ϕλ,ε ∈ C∞
0 (E). Thus we can 

use it as a test function in the problem defining Sp,s(0) and obtain

Sp,s(0) ≤ [ϕλ,ε]pDs,p(RN)
≤ Sp,s + ε.

By arbitrariness of ε, this gives Sp,s(0) ≤ Sp,s . The reverse inequality is straightforward, thanks 
to the continuous embedding Ds,p

0 (E) ↪→ Ds,p(RN).
We now suppose that Sp,s(0) is attained by u ∈Ds,p

0 (E) \ {0}. By extending it to 0 outside E, 
we have u ∈ Ds,p(RN) and thus u is an extremal for the Sobolev inequality on the whole RN , 
thanks to the first part of the proof. Observe that u can be taken to be non-negative, due to 
Proposition 3.2 below. By optimality, we get that u is a constant sign supersolution of (−�p)s , 
i.e. (−�p)su ≥ 0, in RN . Thus by the minimum principle of [2, Proposition A.1], we should 
have u > 0 almost everywhere. But this contradicts the fact that u ≡ 0 in RN \ E. �
Proposition 3.2. Let us assume that the variational problem defining Sp,s(a) admits a solution 
u ∈ Ds,p

0 (�). Then u has constant sign and u �= 0 almost everywhere in �.

Proof. We observe that the function |u| is still admissible for the variational problem and[|u|]Ds,p(RN)
≤ [u]Ds,p(RN),

with inequality being strict if both u+ and u− are nontrivial. By minimality of u, this implies that 
u must have constant sign. Let us assume for example that u ≥ 0 almost everywhere in �, then 
by a simple application of the Lagrange Multipliers Rule we get that u is a non negative solution 
of (1.5), where μ = Sp,s(a). By appealing to the minimum principle of [4, Proposition B.3] we 
get that u > 0 almost everywhere. �
Proposition 3.3. Let μ ≤ 0, then the problem⎧⎪⎨⎪⎩

(−�p)s u + a up−1 = μup∗
s −1, in �,

u > 0, in �,

u = 0, in R
N \ �,

admits at most
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• one solution, if μ < 0;
• one solution with unit Lp∗

s norm, if μ = 0.

Proof. We use an idea due to Brezis and Oswald, based on Picone’s inequality (see [6]). We 
assume that the problem above admits two solutions u1, u2 ∈ Ds,p

0 (�). We fix ε > 0 and define 
ui,ε = min{ui, 1/ε} for i = 1, 2. We have∫

R2N

Jp(u1(x) − u1(y))
(
ϕ(x) − ϕ(y)

)
|x − y|N+s p

dx dy +
∫
RN

a u
p−1
1 ϕ dx = μ

∫
RN

u
p∗

s −1
1 ϕ dx,

∫
R2N

Jp(u2(x) − u2(y))
(
ϕ(x) − ϕ(y)

)
|x − y|N+s p

dx dy +
∫
RN

a u
p−1
2 ϕ dx = μ

∫
RN

u
p∗

s −1
2 ϕ dx.

We test these equations respectively with

ϕ1 := u
p
2,ε

(u1 + ε)p−1 − u1,ε, ϕ2 := u
p
1,ε

(u2 + ε)p−1 − u2,ε.

By adding the two resulting identities, we obtain

∫
R2N

Jp(u1(x) − u1(y))

(
u

p
2,ε

(u1 + ε)p−1 (x) − u
p
2,ε

(u1 + ε)p−1 (y)

)
|x − y|N+s p

dx dy

−
∫

R2N

Jp(u1(x) − u1(y))
(
u1,ε(x) − u1,ε(y)

)
|x − y|N+s p

dx dy

+
∫

R2N

Jp(u2(x) − u2(y))

(
u

p
1,ε

(u2 + ε)p−1 (x) − u
p
1,ε

(u2 + ε)p−1 (y)

)
|x − y|N+s p

dx dy

−
∫

R2N

Jp(u2(x) − u2(y))
(
u2,ε(x) − u2,ε(y)

)
|x − y|N+s p

dx dy

+
∫
RN

a u
p−1
1

(
u

p

2,ε

(u1 + ε)p−1 − u1,ε

)
dx +

∫
RN

a u
p−1
2

(
u

p

1,ε

(u2 + ε)p−1 − u2,ε

)
dx

= μ

∫
RN

u
p∗

s −1
1

(
u

p

2,ε

(u1 + ε)p−1 − u1,ε

)
dx + μ

∫
RN

u
p∗

s −1
2

(
u

p

1,ε

(u2 + ε)p−1 − u2,ε

)
dx.

(3.1)

We now observe that

Jp(ui(x) − ui(y)) = Jp((ui + ε)(x) − (ui + ε)(y)), for i = 1,2,
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thus by Picone’s inequality Proposition 2.2 we have

Jp(u1(x) − u1(y))

(
u

p

2,ε

(u1 + ε)p−1 (x) − u
p

2,ε

(u1 + ε)p−1 (y)

)
≤ |u2(x) − u2(y)|p,

where we also used that t �→ min{|t |, 1/ε} is 1-Lipschitz. Similarly, we get

Jp(u2(x) − u2(y))

(
u

p

1,ε

(u2 + ε)p−1 (x) − u
p

1,ε

(u2 + ε)p−1 (y)

)
≤ |u1(x) − u1(y)|p.

We then pass to the limit in (3.1), by using Fatou’s Lemma in the first and third terms and the 
Dominated Convergence Theorem in all the others. This yields

∫
R2N

Jp(u1(x) − u1(y))

(
u

p

2

u
p−1
1

(x) − u
p

2

u
p−1
1

(y)

)
|x − y|N+s p

dx dy −
∫

R2N

|u1(x) − u1(y)|p
|x − y|N+s p

dx dy

+
∫

R2N

Jp(u2(x) − u2(y))

(
u

p

1

u
p−1
2

(x) − u
p

1

u
p−1
2

(y)

)
|x − y|N+s p

dx dy −
∫

R2N

|u2(x) − u2(y)|p
|x − y|N+s p

dx dy

≥ μ

∫
RN

u
p∗

s −p

1 u
p
2 dx − μ

∫
RN

u
p∗

s

1 dx + μ

∫
RN

u
p∗

s −p

2 u
p
1 dx − μ

∫
RN

u
p∗

s

2 dx.

(3.2)

We now use Picone’s inequality in the left-hand side of (3.2). This gives

0 ≥ −μ

∫
RN

(u
p
1 − u

p
2 ) (u

p∗
s −p

1 − u
p∗

s −p

2 ) dx.

If μ < 0, from the previous inequality we directly get that u1 = u2.
If μ = 0, we go back to (3.2) and observe that this and Picone’s inequality imply

∫
R2N

Jp(u1(x) − u1(y))

(
u

p
2

u
p−1
1

(x) − u
p
2

u
p−1
1

(y)

)
|x − y|N+s p

dx dy =
∫

R2N

|u2(x) − u2(y)|p
|x − y|N+s p

dx dy.

By appealing to equality cases in Picone’s inequality, we get the conclusion

u1(x)

u1(y)
= u2(x)

u2(y)
, for a. e. x, y ∈ �.

This implies that u1 = c u2 for some positive constant c. �
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In the local case, formally corresponding to s = 1, the assertion below was proved in [16].

Proposition 3.4. Let us suppose that Sp,s(a) < Sp,s . Then the problem defining Sp,s(a) has a 
solution. Moreover, if Sp,s(a) ≤ 0, then such a solution is unique, up to the choice of the sign.

Proof. We first observe that if Sp,s(a) ≤ 0, then the uniqueness follows by combining Proposi-
tions 3.2 and 3.3, since every minimizer is a constant sign solution of (1.5), with μ = Sp,s(a).

We now come to the existence part and divide the proof in two cases.

Case Sp,s(a) �= 0. Let {un}n∈N ⊂ Ds,p

0 (�) be a sequence such that ‖un‖Lp∗
s (RN)

= 1 and

lim
n→∞

⎛⎜⎝[un]pDs,p(RN)
+
∫
RN

a |un|p dx

⎞⎟⎠= Sp,s(a).

By the constrained version of Ekeland’s variational principle (see [10, Theorem 3.1]) applied to 
the following functionals on Ds,p

0 (�)

J (u) := 1

p
[u]pDs,p(RN)

+ 1

p

∫
RN

a |u|p dx and G(u) := 1

p∗
s

∫
RN

|u|p∗
s dx,

there exist {λn}n∈N ⊂R and {̃un}n∈N ⊂Ds,p

0 (�) such that

J (̃un) ≤ J (un) and G(̃un) = G(un) = 1

p∗
s

,

and

lim
n→∞

⎛⎝ sup
‖ϕ‖Ds,p

0 (�)
=1

∣∣〈J ′(̃un) − λn G′(̃un), ϕ〉∣∣
⎞⎠= 0.

Since the sequence {̃un}n∈N is bounded in Ds,p

0 (�), we have

〈J ′(̃un), ũn〉 − λn 〈G′(̃un), ũn〉 = on(1),

which yields λn = Sp,s(a) + on(1). Therefore, a direct computation shows that {̃un}n∈N ⊂
Ds,p

0 (�) is a Palais–Smale sequence for the functional (2.5) with μ = Sp,s(a) �= 0, at the en-
ergy level

c := s

N
Sp,s(a) <

s

N
Sp,s(a)

( Ss,p

Sp,s(a)

) N
s p

.

By Lemma 2.6, we can infer strong convergence of the minimizing sequence {̃un}n∈N in Ds,p
0 (�)

and thus existence of a solution u to the problem defining Sp,s(a).
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Case Sp,s(a) = 0. We first observe that if a ≥ 0 on �, then

Sp,s(a) ≥ Sp,s > 0.

Thus Sp,s(a) = 0 implies that a− �≡ 0. By definition of Sp,s(a) and the fact that Sp,s(a) = 0, this 
implies that we have the Poincaré-type inequality

[u]pDs,p(RN)
+
∫
RN

a+ |u|p dx ≥
∫
RN

a− |u|p dx, (3.3)

for every u ∈Ds,p

0 (�). Let us consider the sharp constant in the previous Poincaré-type inequal-
ity, i.e.

λ(�,a) := inf

⎧⎪⎨⎪⎩[u]pDs,p(RN)
+
∫
RN

a+ |u|p dx :
∫
RN

a− |u|p dx = 1

⎫⎪⎬⎪⎭ . (3.4)

It is standard routine to see that the infimum above is achieved, by a constant-sign function. Let 
us call φ1 the positive solution. Observe that by (3.3), we have λ(�, a) ≥ 1. On the other hand, 
since Sp,s(a) = 0 there exists a sequence {un}n∈N ⊂Ds,p

0 (�) such that

‖un‖Lp∗
s (RN)

= 1 and [un]pDs,p(RN)
+
∫
RN

a+ |un|p dx −
∫
RN

a− |un|p dx = on(1). (3.5)

We now observe that by Sobolev inequality we have∫
RN

a− |un|p dx = [un]pDs,p(RN)
+
∫
RN

a+ |un|p dx + on(1) ≥ Sp,s + on(1),

where we used that every un has unit norm in Lp∗
s . We can thus divide the second equation in 

(3.5) by 
∫
RN a− |un|p dx and obtain

λ(�,a) ≤ lim
n→∞

[un]pDs,p(RN)
+
∫
RN

a+ |un|p dx

∫
RN

a− |un|p dx

= 1.

This finally implies that λ(�, a) = 1 and thus the function

v0 := φ1

‖φ1‖Lp∗
s (RN)

,

is such that
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[v0]pDs,p(RN)
+
∫
RN

a |v0|p−2 v0 dx = 0 and ‖v0‖Lp∗
s (RN)

= 1,

i.e. v0 is a solution of the problem defining Sp,s(a). �
Remark 3.5. The quantity λ(�, a) defined by (3.4) is the first eigenvalue of the following eigen-
value problem {

(−�p)s u + a+ |u|p−2 u = λa− |u|p−2 u, in �,

u = 0, in R
N \ �.

It is not difficult to see that

Sp,s(a) = 0 ⇐⇒ λ(�,a) = 1.

Indeed, the implication =⇒ has been proven above. The converse implication goes as follows: 
we suppose λ(�, a) = 1 and take φ1 a solution of problem (3.4). From inequality (3.3), we have

[u]pDs,p(RN)
+
∫
RN

a |u|p dx ≥ 0,

for every u ∈Ds,p
0 (�) with unit Lp∗

s norm. This implies that Sp,s(a) ≥ 0. On the other hand, the 
function φ1 gives equality in the previous inequality, thus

Sp,s(a) ≤
[φ1]pDs,p(RN)

+
∫
RN

a |φ1|p dx

⎛⎜⎝ ∫
RN

|φ1|p∗
s dx

⎞⎟⎠
p

p∗
s

= 0,

as well.
Actually, we can also show that

Sp,s(a) < 0 ⇐⇒ λ(�;a) < 1. (3.6)

If Sp,s(a) < 0, by the previous result there exists a minimizer φ for the problem defining Sp,s(a). 
Thus in particular we get

[φ]pDs,p(RN)
+
∫
RN

a+ |φ|p dx −
∫
RN

a− |φ|p dx = Sp,s(a) < 0,

which immediately implies λ(�; a) < 1. On the other hand, if we assume λ(�; a) < 1, the min-
imizer φ1 of problem (3.4) now verifies
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[φ1]pDs,p(RN)
+
∫
RN

a+ |φ1|p dx = λ(�;a)

∫
RN

a− |φ1|p dx <

∫
RN

a− |φ1|p dx.

By using the function φ1/‖φ1‖Lp∗
s

as a competitor for the problem defining Sp,s(a) and appeal-
ing to the previous estimate, we then get Sp,s(a) < 0.

Remark 3.6. It is not difficult to see that

‖a−‖LN/sp(�) < Sp,s =⇒ Sp,s(a) > 0.

Indeed, by Hölder’s and Sobolev inequalities

[u]pDs,p(RN)
+
∫
RN

a |u|p dx ≥ [u]pDs,p(RN)
−
∫
RN

a− |u|p dx

≥ Sp,s ‖u‖p

Lp∗
s

− ‖a−‖LN/sp(�) ‖u‖p

Lp∗
s

= Sp,s − ‖a−‖LN/sp(�) > 0,

for every function with unit Lp∗
s norm.

4. Proof of Theorem 1.1

We proceed to prove each point separately.

1. Case a ≥ 0. Let us prove that for a ≥ 0 the problem does not admit any solution. By 
Lemma 3.1, we already know that this is true if a ≡ 0, thus let us assume that a is non-negative 
and

‖a‖LN/sp(�) > 0.

It is sufficient to show that in this case Sp,s(a) ≤ Sp,s . Indeed, let us assume the latter to be true. 
If u ∈ Ds,p

0 (�) is a solution for the problem defining Sp,s(a), we would get

Sp,s ≥ Sp,s(a) = [u]pDs,p(RN)
+
∫
RN

a |u|p dx ≥ [u]pDs,p(RN)
≥ Sp,s .

Then we have equalities everywhere and in particular∫
RN

a |u|p dx = 0,

which implies that u = 0 almost everywhere on the support of a. This contradicts the properties 
of u contained in Proposition 3.2.
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In order to prove Sp,s(a) ≤ Sp,s , we consider the functions uε,δ ∈ Ds,p

0 (RN) as defined in 
(2.4). We fix δ > 0 small enough so that, up to translations, uε,δ has support contained in �. 
Then accordingly we take ε ≤ δ/2. We have

Sp,s(a) ≤
[uε,δ]pDs,p(RN)

+
∫
RN

a |uε,δ|pdx

‖uε,δ‖p

Lp∗
s (RN)

. (4.1)

By the estimates of Lemma 2.5 and1

lim
ε→0

∫
RN

a |uε,δ|pdx = 0,

when we let ε go to 0 in (4.1), we get Sp,s(a) ≤ Sp,s .

2. Case N > s p2. We want to prove that in this case Sp,s(a) < Sp,s and then apply Proposi-
tion 3.4. By assumption, there exist σ > 0, R > 0 and x0 ∈ � such that

a(x) ≤ −σ for a. e. x ∈ BR(x0) ⊂ �.

Without loss of generality, we can assume that x0 = 0. Let θ > 1 be the same constant appearing 
in Lemma 2.3, we choose δ = R/θ . Then we consider again the functions uε,δ ∈ Ds,p

0 (�) as 
defined in (2.4), with ε

ε ≤ ε0 := δ min

⎧⎪⎨⎪⎩1

2
,

(
1

2

(
Sp,s

)N/sp

C

) p−1
N

⎫⎪⎬⎪⎭ , (4.2)

that will be chosen in a while. The constant C is the same as in Lemma 2.5. We fix α such that

s p < α <
N − s p

p − 1
,

a choice which is feasible thanks to the assumption N > s p2. We now set

aε(x) := −εα u
p∗

s −p

ε,δ (x) ∈ LN/sp(�),

and we enforce condition (4.2), by requiring that ε > 0 satisfies

ε ≤ ε1 := min
{
ε0, σ

1
α−s p

}
.

1 The family {|uε,δ |p}ε>0 is bounded in Lp∗
s /p(�) and converges to 0 almost everywhere in �, by construction. Then 

we can apply [15, Lemme 4.8] again and infer vanishing of the term 
∫

N a |uε,δ |pdx.

R
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Observe that with such a choice, we have (recall that we are taking U(0) = 1)

aε(x) = −εα u
p∗

s −p

ε,δ (x) ≥ −εα u
p∗

s −p

ε,δ (0) = −εα U
p∗

s −p
ε (0) ≥ −σ, in BR(0).

Thanks to the hypothesis on a, this yields

a(x) ≤ aε(x), for a. e. x ∈ BR(0).

Then by using the test function uε,δ (which is supported in the ball BR(0) ⊂ �) we get

Sp,s(a) ≤
[uε,δ]pDs,p(RN)

+
∫
RN

a |uε,δ|p dx

‖uε,δ‖p

Lp∗
s (RN)

=
[uε,δ]pDs,p(RN)

+
∫

BR(0)

a |uε,δ|p dx

‖uε,δ‖p

Lp∗
s (RN)

≤
[uε,δ]pDs,p(RN)

+
∫

BR(0)

aε |uε,δ|p dx

‖uε,δ‖p

Lp∗
s (RN)

=:R(ε, δ).

We need to estimate the last Rayleight-type quotient. Thanks to the definition of aε and 
Lemma 2.5 we can infer

R(ε, δ) =
[uε,δ]pDs,p(RN)

‖uε,δ‖p

Lp∗
s (RN)

− εα ‖uε,δ‖p∗
s −p

Lp∗
s (RN)

≤
(
Sp,s

) N
sp + C

(ε

δ

)N−s p
p−1

[(
Sp,s

) N
sp − C

(ε

δ

) N
p−1
]N−s p

N

− εα

[(
Sp,s

) N
sp − C

(ε

δ

) N
p−1
] s p

N

.

We now apply (2.1) with

γ = −N − s p

N
, t = C(

Sp,s

) N
sp

(ε

δ

) N
p−1

and (2.2) with

γ = s p

N
, t = C(

S
) N

sp

(ε

δ

) N
p−1

.

p,s
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This gives

R(ε, δ) ≤ Sp,s

⎡⎣1 + C(
Sp,s

) N
sp

(ε

δ

)N−s p
p−1

⎤⎦ ⎡⎣1 + 2C(
Sp,s

) N
sp

(ε

δ

) N
p−1

(2
N−s p

N − 1)

⎤⎦
− εα Sp,s

⎡⎣1 + 2C(
Sp,s

) N
sp

(ε

δ

) N
p−1

(2− s p
N − 1)

⎤⎦
= Sp,s + εα

⎡⎣−Sp,s + C(
Sp,s

) N
sp

−1

(ε

δ

)N−s p
p−1 −α + 2C(

Sp,s

) N
sp

−1
(2

N−s p
N − 1)

(ε

δ

) N
p−1 −α

− 2C(
Sp,s

) N
sp

−1

(ε

δ

) N
p−1

(2− s p
N − 1) + 2Sp,s

⎛⎝ C(
Sp,s

) N
sp

⎞⎠2 (ε

δ

) 2 N−s p
p−1 −α

⎤⎥⎦ .

By recalling the choice of α, we have that there exists ε2 = ε2(N, s, p, δ) > 0 such that for every 
0 < ε ≤ ε2 the term above into square brackets is negative.2 Thus in particular

Sp,s(a) ≤R(ε, δ) < Sp,s, for every 0 < ε ≤ min{ε1, ε2}.

Then the existence of a solution follows from Proposition 3.4.

3. Case s p < N ≤ s p2. Let us prove the second assertion. We fix x0 ∈ � and R > 0 such that 
BR(x0) ⊂ �. As before, we assume for simplicity that x0 = 0. Then we choose

0 ≤ α <
N − s p

p − 1
.

Observe that now we automatically get α < s p as well. We set again δ = R/θ and

aε(x) := −εα u
p∗

s −p

ε,δ (x).

By arguing as in the estimate above for the term R(ε, δ), we gain the existence of an explicit 
ε2 > 0 such that

2 The constant ε2 is easily seen to have the following form

ε2 =
(Sp,s

C

) 1
N−s p
p−1 −α R

θ
,

with C = C(N, p, s) > 0 that can be computed explicitly.
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[uε2,δ]pDs,p(RN)
+
∫
RN

aε2 |uε2,δ|p dx

‖uε2,δ‖p

Lp∗
s (RN)

< Sp,s .

Observe that ε2 can be taken so that ε2 ≤ δ/2. By construction, we have

‖aε2‖L∞(Bδ(0)) = U(0)p
∗
s −p ε

α−s p

2 = ε
α−s p

2 ,

and observe that α − s p < 0. If we assume that

a− ≥ σ := ε
α−s p
2 , a. e. in BR(0),

we have

a ≤ −σ ≤ aε2 a. e. in BR(0).

We use uε2,δ as a test function. By using the previous estimate and the fact that uε2,δ is supported 
on BR(0), we get as before Sp,s(a) < Sp,s . By appealing again to Proposition 3.4, we can infer 
that Sp,s(a) has a solution. �
Remark 4.1 (About the condition on a). In order to understand optimality of the conditions on a, 
let us consider the case s = 1, p = 2 and a = −λ for some constant λ > 0. In this case, solutions 
φ of

S2,1(−λ) := inf
u∈D1,2

0 (�)

⎧⎨⎩
∫
�

|∇u|2 dx − λ

∫
�

|u|2 dx : ‖u‖
L

2 N
N−2 (�)

= 1

⎫⎬⎭ , (4.3)

verify in weak sense

−�φ − λφ = μφ
N+2
N−2 in �, φ > 0 in �, φ = 0 on ∂�,

for μ = S2,1(−λ). Observe that the sign of the Lagrange multiplier μ depends on whether λ <
λ1(�) (in this case μ > 0) or λ > λ1(�) (in this case μ < 0). Here λ1(�) is the first eigenvalue 
of the Dirichlet–Laplacian on �. In the first case, by setting

ψ = μ
N−2

4 φ,

we would get a nontrivial solution of

−�ψ − λψ = ψ
N+2
N−2 in �, ψ ≥ 0 in �, ψ = 0 on ∂�.

We already recalled in the Introduction that a necessary condition for this to be possible is that

λ > λ∗ > 0 if N = 3, λ > 0 if N ≥ 4,



2264 L. Brasco, M. Squassina / J. Differential Equations 264 (2018) 2242–2269
for a suitable λ∗ < λ1(�). In other words, by observing that in this case we (formally) have 
s p = 2 and s p2 = 4, problem (4.3) can not have a solution for s p < N < s p2 if λ > 0 is 
arbitrarily small, while for N ≥ s p2 the parameter λ > 0 can be taken as small as desired. This 
exactly fits into the statement of Theorem 1.1 when a is a negative constant.

For completeness, we also record the following results.

Lemma 4.2. The map T : LN/sp(�) → R defined by

T (a) = Sp,s(a), for a ∈ LN/sp(�),

is 1-Lipschitz. In other words, for every a, a′ ∈ LN/sp(�) we have∣∣Sp,s(a) − Sp,s(a
′)
∣∣≤ ‖a − a′‖LN/sp(�). (4.4)

Proof. We pick u ∈Ds,p

0 (�) with ‖u‖
Lp∗

s (�)
= 1. Then, Hölder’s inequality yields

Sp,s(a) ≤ [u]pDs,p(RN)
+
∫
RN

a |u|p dx ≤ [u]pDs,p(RN)
+
∫
RN

a′ |u|p dx + ‖a − a′‖LN/sp(�).

Thus Sp,s(a) ≤ Sp,s(a
′) + ‖a′ − a‖LN/sp(�). Switching the role of a and a′, we get (4.4). �

Proposition 4.3. Consider {ak}k∈N ⊂ LN/sp(�) converging to a in LN/sp(�). Let us assume 
that Sp,s(a) < Sp,s . If uk is a solution to Sp,s(ak), then there exists a solution u to Sp,s(a) such 
that (up to a subsequence)

lim
k→∞[uk − u]Ds,p(RN) = 0.

Proof. Let a ∈ LN/sp(�) and consider a sequence {ak}k∈N converging to a in LN/sp(�). From 
(4.4) we already know that Sp,s(ak) converges to Sp,s(a). For k large enough, we thus have 
Sp,s(ak) < Sp,s as well. Then by Proposition 3.4, the problem defining Sp,s(ak) does admit a 
solution uk . Still by (4.4), we know that

lim
k→∞

⎛⎜⎝[uk]pDs,p(RN)
+
∫
RN

ak |uk|p dx

⎞⎟⎠= Sp,s(a), (4.5)

thus, without loss of generality, we can assume

[uk]pDs,p(RN)
+
∫
RN

ak |uk|p dx ≤ Sp,s(a) + 1.

Moreover, by hypothesis we have

‖ak‖LN/sp(�) ≤ M,
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thus by Hölder’s inequality we get

Sp,s(a) + 1 ≥ [uk]pDs,p(RN)
+
∫
RN

ak |uk|p dx ≥ [uk]pDs,p(RN)
− M.

This implies that the sequence {uk}k∈N is equi-bounded in Ds,p
0 (�) and thus we can infer strong 

convergence (up to a subsequence) in Lq(�), for q < p∗
s , to some limit function u ∈ Ds,p

0 (�). 
We need to show that

‖u‖
Lp∗

s (RN)
= 1 and Sp,s(a) ≥ [u]pDs,p(RN)

+
∫
RN

a |u|p dx. (4.6)

The second fact easily follows from (4.5), the lower semicontinuity of the Gagliardo seminorm 
and the weak convergence of {|uk|p}k∈N in Lp∗

s /p(�) to |u|p . Observe that the conditions (4.6)
automatically give that u is a minimizer for Sp,s(a).

In order to conclude, we need to prove that {uk}k∈N converges strongly in Lp∗
s (�). Observe 

that by minimality of uk , we get

∫
R2N

|uk(x) − uk(y)|p−2 (uk(x) − uk(y)) (ϕ(x) − ϕ(y))

|x − y|N+s p
dx dy +

∫
RN

ak |uk|p−2 uk ϕ dx

= Sp,s(ak)

∫
RN

|uk|p∗
s −2 uk ϕ dx,

(4.7)

for every ϕ ∈Ds,p
0 (�). We now distinguish two cases.

Case Sp,s(a) �= 0. If we consider the functional K introduced in (2.5) with μ = Sp,s(a), recalling 

that uk has unit norm in Lp∗
s (�), by (4.7) we obtain

|〈K′(uk), ϕ〉| =

∣∣∣∣∣∣∣
∫

R2N

|uk(x) − uk(y)|p−2 (uk(x) − uk(y)) (ϕ(x) − ϕ(y))

|x − y|N+s p
dx dy

+
∫
RN

a |uk|p−2 uk ϕ dx − Sp,s(a)

∫
RN

|uk|p∗
s −2 uk ϕ dx

∣∣∣∣∣∣∣
≤
∫
RN

|ak − a| |uk|p−1 |ϕ|dx + |Sp,s(a) − Sp,s(ak)|
∫
RN

|uk|p∗
s −1 |ϕ|dx

≤
(
‖ak − a‖LN/sp(�) + |Sp,s(a) − Sp,s(ak)|

)
‖ϕ‖

Lp∗
s (RN)

.

This shows that {uk}k∈N is a Palais–Smale sequence for K at the level s/N Sp,s(a). By recalling 
that Sp,s(a) < Sp,s , we obtain strong convergence in Ds,p

(�) by Lemma 2.6.
0
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Case Sp,s(a) = 0. From (4.5), we get

[uk]pDs,p(RN)
+
∫
RN

ak |uk|p dx = ok(1),

thus by using the weak convergence of {|uk|p}k∈N and the strong convergence of {ak}k∈N, we 
obtain

[uk]pDs,p(RN)
= −

∫
RN

a |u|p dx + ok(1).

On the other hand, by testing (4.7) with u and then taking the limit as k goes to ∞, we obtain

[u]pDs,p(RN)
= −

∫
RN

a |u|p dx.

The last two displays imply that

lim
k→∞[uk]pDs,p(RN)

= [u]pDs,p(RN)
.

By uniform convexity of the space Ds,p
0 (�), we obtain the strong convergence in this case as 

well. �
5. Proof of Theorem 1.2

We consider the two cases separately.

Case μ ≥ 0. We proceed by contradiction. Let us assume that for a μ ≥ 0 there exists a positive 
solution u0 ∈Ds,p

0 (�) \ {0}. Thus u0 satisfies

∫
R2N

Jp(u0(x) − u0(y))
(
ϕ(x) − ϕ(y)

)
|x − y|N+s p

dx dy +
∫
RN

a u
p−1
0 ϕ dx = μ

∫
RN

u
p∗

s −1
0 ϕ dx,

for every ϕ ∈Ds,p
0 (�). We use the test function3 ϕ = φ

p
1 /u

p−1
0 , where φ1 is the positive solution 

of (3.4). This gives

μ

∫
RN

u
p∗

s −p

0 φ
p
1 dx =

∫
R2N

Jp(u0(x) − u0(y))

(
φ

p

1

u
p−1
0

(x) − φ
p

1

u
p−1
0

(y)

)
|x − y|N+s p

dx dy +
∫
RN

a φ
p
1 dx

3 This test function is not admissible in principle, but it is sufficient to proceed as in the proof of Proposition 3.3. We 
prefer to avoid these technicalities here.
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We can then apply Picone’s inequality (2.3) and obtain

μ

∫
RN

u
p∗

s −p

0 φ
p

1 dx ≤ [φ1]pDs,p(RN)
+
∫
RN

a+ φ
p

1 dx −
∫
RN

a− φ
p

1 dx = λ(�;a) − 1.

The right-hand side is strictly negative by (1.7) and (3.6), thus we get a contradiction.

Case μ < 0. Since we are assuming Sp,s(a) < 0, by Proposition 3.4, we can infer that the varia-
tional problem defining Sp,s(a) has a positive solution u ∈ Ds,p

0 (�) \ {0}. As already observed, 
we have that u solves⎧⎪⎨⎪⎩

(−�p)s u + a up−1 = Sp,s(a)up∗
s −1, in �,

u > 0, in �,

u = 0, in R
N \ �.

We fix μ < 0, it is now sufficient to notice that

v = t u, with t =
(

μ

Sp,s(a)

) 1
p−p∗

s
> 0,

is the desired solution. Finally, we use Proposition 3.3 to infer its uniqueness.

Remark 5.1 (Negative potentials). For 1 ≤ q < p, let us define the sharp Poincaré constant for 
the embedding Ds,p

0 (�) ↪→ Lq(�), i.e.

λp,q(�) = inf
u∈Ds,p

0 (�)

⎧⎪⎨⎪⎩[u]pDs,p(RN)
:
∫
RN

|u|q dx = 1

⎫⎪⎬⎪⎭ .

When the potential a is negative, i.e. when a+ ≡ 0, then the condition Sp,s(a) < 0 (and thus 
λ(�; a) < 1 by (3.6)) is verified if

⎛⎝∫
�

a
− q

p−q

− dx

⎞⎠
p−q

q

<
1

λp,q(�)
. (5.1)

Indeed, observe that by Hölder’s inequality

∫
RN

|u|q dx ≤
⎛⎜⎝ ∫
RN

a− |u|p dx

⎞⎟⎠
q
p ⎛⎝∫

�

a
− q

p−q

− dx

⎞⎠
p−q

p

,

where we used that p/q > 1. Thus by using this we get
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λ(�;a) = inf
u∈Ds,p

0 (�)\{0}

[u]pDs,p(RN)∫
RN

a− |u|p dx

≤
⎛⎝∫

�

a
− q

p−q

− dx

⎞⎠
p−q

q

inf
u∈Ds,p

0 (�)\{0}

[u]pDs,p(RN)⎛⎜⎝ ∫
RN

|u|q dx

⎞⎟⎠
p
q

=
⎛⎝∫

�

a
− q

p−q

− dx

⎞⎠
p−q

q

λp,q(�) < 1,

where the last estimate follows from (5.1). In the limit case q = p, we recall the definition of the 
first eigenvalue of the fractional p-Laplacian of order s

λ1(�) = inf
u∈Ds,p

0 (�)

⎧⎪⎨⎪⎩[u]pDs,p(RN)
:
∫
RN

|u|p dx = 1

⎫⎪⎬⎪⎭ .

Then a sufficient condition for λ(�; a) < 1 to hold is

inf
�

a− > λ1(�).

The proof is as above.
Finally, if the potential a is a negative constant, i.e. a ≡ −λ with λ > 0, we observe that

λ(�,a) := inf
u∈Ds,p

0 (�)

⎧⎪⎨⎪⎩[u]pDs,p(RN)
:
∫
RN

|u|p dx = 1

λ

⎫⎪⎬⎪⎭
= inf

u∈Ds,p
0 (�)

⎧⎪⎨⎪⎩1

λ
[u]pDs,p(RN)

:
∫
RN

|u|p dx = 1

⎫⎪⎬⎪⎭= λ1(�)

λ
,

and condition (1.7) is equivalent to λ > λ1(�).
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