
Advanced Nonlinear Studies 11 (2011), 525-540

On the Well-Posedness of a Class

of Vector Schrödinger Equations

Sara Barile, Marco Squassina∗

Dipartimento di Informatica
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Abstract

We investigate the local and global well-posedness for a class of nonlinear

Schrödinger systems with an external time independent electromagnetic field and

nonlocal nonlinearities. New conditions related to the growth of the nonlocal

term are detected which allow the solvability of the problem.
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1 Introduction

In a recent paper [13], Ma and Zhao obtained an important classification result for the
positive solitary solutions of the nonlinear Choquard equation

iut +∆u+ 2u|x|−1 ∗ |u|2 = 0, u ∈ H1(RN ).

This equation can be seen as a special case of the generalized nonlocal Schrödinger equation

iut +∆u+ µu|u|µ−2(|x|−Γ ∗ |u|µ) = 0, u ∈ H1(RN ),

∗Both authors were partially supported by the Italian PRIN Research Project 2007: Metodi Variazionali
e Topologici nello Studio di Fenomeni non Lineari.
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where µ ≥ 2 and Γ ∈ (0, N). These PDEs emerge in various branches of mathematical
physics such as quantum mechanics and physics of laser beams and were firstly rigorously
investigated by Lieb, Simon and Lions (see e.g. [9, 10, 12] and the references therein).
It is thus important to handle nonlocal nonlinearities in the existence results for nonlinear
Schrödinger equations. In general, we can have the simultaneous presence of local nonlin-
earities, nonlocal ones, and external potentials. The aim of this paper is to study the well
posedness for coupled nonlinear Schrödinger equations with electro-magnetic potentials, lo-
cal nonlinearities and a class of nonlocal nonlinearities containing, as a particular case, that
of the above Choquard equations. More precisely, on RN with N ≥ 3, we consider the
following system

i∂tΦj = LAΦj + V (x)Φj − gj(|x|, |Φ1|2, . . . , |Φm|2)Φj −
m∑
i=1

Wij ∗ h(|Φi|)h
′(|Φj |)
|Φj | Φj ,

Φj(0, x) = Φ0
j (x),

1 ≤ j ≤ m,

(1.1)
where, for all 1 ≤ j ≤ m, Φ0

j : RN → C is the initial datum and Φj : R+ × RN → C is

the unknown. Moreover, V : RN → R and A : RN → RN represent electric and magnetic
potentials satisfying suitable assumptions that will be stated in the following. The magnetic
operator LA is defined as

LAϕ :=

(
∇
i
−A(x)

)2

ϕ = −∆ϕ− 2

i
A(x) · ∇ϕ+ |A(x)|2ϕ− 1

i
divA(x)ϕ.

The magnetic field B is B = ∇ × A in R3 and can be thought (and identified) in general
dimension as a 2-form HB of coefficients (∂iAj − ∂jAi). Finally, h : R+ → R+ and gj :
R+ × Rm

+ → R are suitable nonlinear functions. It is possible to write (1.1) in the form{
i∂tΦ = E ′

A(Φ)

Φ(0, x) = Φ0(x)

where Φ0 = (Φ0
1, . . . ,Φ

0
m) and EA is the energy functional

EA(Φ) =
1

2

m∑
j=1

∫ ∣∣∣∣(∇
i
−A(x)

)
Φj

∣∣∣∣2 + 1

2

∫
V (x)|Φ|2 −

∫
G(|x|, |Φ1|2, . . . , |Φm|2)

− 1

2

m∑
i,j=1

∫∫
Wij(|x− y|)h(|Φi(x)|)h(|Φj(y)|) dxdy,

where Wij =Wji and G : (0,∞)× Rm
+ → R satisfy the following conditions

∂G

∂sj
= 1

2gj(|x|, s1, . . . , sm),

for every j = 1, . . . ,m. Both h and gj satisfy requirements that will be stated later on. We
point out that the general Schrödinger system (1.1) we aim to study contains, as particular
cases, physically meaningful situations (see e.g. the discussion in [18, Section 1.1]).
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The line of the proof follows a classical result due to Cazenave [1] (see also [4] and [2]),
which relies essentially on Lipschitz control for the nonlinearities on suitable Lp spaces.
Although the paper does not introduce new techniques, it detects new (also for the scalar
case m = 1) exponents related to the nonlocal nonlinearity, which to the authors’ knowledge
are not present in the current literature. Roughly speaking, thinking about the important
case where, say, for some µ,Γ > 0,

Wij(|x− y|)h(|Φi(x)|)h(|Φj(y)|) =
|Φi(x)|µ|Φj(y)|µ

|x− y|Γ
, for all x, y ∈ RN ,

the solvability conditions (for what concerns the local term) are

2 ≤ µ ≤ 4N + 4− Γ

2N
, 2 ≤ µ <

2N + 2− Γ

N
,

respectively for local (for Γ < 4) and global (Γ < 2) well posedness.

The core of the paper is contained in the estimates performed in Section 3.2 where suit-
able growth assumptions onWij and h yielding the desired local existence (cf. Theorem 2.1)
are detected. It is particularly delicate to achieve these estimates for what concerns the
integral controls on the nonlocal terms. Finally, by strengthening the assumptions, the
global existence of the solutions (cf. Theorem 2.2) is obtained. To the authors knowledge,
the results are new also in the scalar case (m = 1) and in absence of the external magnetic
potential (A = 0).

1.1 Notations and framework

We shall assume that G(·, s1, . . . , sm) is measurable on [0,∞), for all s1, . . . , sm. For all
1 ≤ n ≤ m, every (m − 1) tuple of si and r in [0,∞), sn 7→ G(r, . . . , sn, . . . ) is continuous
on R+. We denote by H1

A = H1
A(RN ) = (H1

A(RN ))m, where H1
A = H1

A(RN ) is the Hilbert
space defined as the closure of C∞

c (RN ;C) under the scalar product

∀ϕ, ψ ∈ H1
A : (ϕ, ψ)H1

A
= ℜ

(∫
Dϕ ·Dψ + ϕψ

)
,

where Dϕ is the matrix (D1ϕ, . . . ,DNϕ) and Dj = i−1∂j −Aj(x), with induced norm

∥ϕ∥2H1
A
=

∫ ∣∣∣1
i
∇ϕ−A(x)ϕ

∣∣∣2 + ∫
|ϕ|2 <∞.

Recall that the Diamagnetic inequality

|∇|ϕ|| ≤
∣∣∣(∇

i
−A(x)

)
ϕ
∣∣∣ (1.2)

holds for every ϕ ∈ H1
A(RN ) (see e.g. [11]). The inequality also holds for vectors Φ ∈ H1

A.
In turn, the space H1

A is equipped with the norm

∥Φ∥2H1
A
=

∥∥∥(∇
i
−A(x)

)
Φ
∥∥∥2
L2

+ ∥Φ∥2L2 =

m∑
j=1

∥∥∥(∇
i
−A(x)

)
Φj

∥∥∥2
L2

+ ∥Φ∥2L2 ,
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where Lp = Lp(RN ) = (Lp(RN ))m and ∥Φ∥2Lp =
∑m

j=1 ∥Φj∥2Lp for every Φ ∈ Lp. We

denote by Lq
w(RN ) with q > 1 the weak Lq-space (see [11]) defined as the set of measurable

functions f equipped with the norm

∥f∥q,w = sup
D⊂RN , M(D)<∞

(M(D))−1/q′
∫
D

|f(x)| < +∞,

where M denotes the Lebesque measure on RN and q′ is the conjugate exponent to q. The
dual space of H1

A is denoted by H′
A. We denote H1 = H1(RN ) = (H1(RN ))m equipped

with the standard norm ∥Φ∥2H1 = ∥∇Φ∥2L2 + ∥Φ∥2L2 and H−1(RN ) = (H−1(RN ))m. By
means of inequality (1.2), the space H1

A is continuously embedded in Lp for all p ∈ [2, 2∗]
where 2∗ = 2N/(N − 2) for N ≥ 3 and there exists C > 0 independent on A such that

∀Φ ∈ H1
A : ∥Φ∥Lp ≤ C∥Φ∥H1

A
. (1.3)

Furthermore, (Lp)′ = Lp′ ⊂ H′
A where p′ denotes the conjugate of p.

2 The main results

We now formulate the assumptions on the Schrödinger system under investigation.

2.1 Assumptions on the magnetic potential

We suppose that A ∈ C∞(RN ,RN ) and there exist Cα > 0, α ∈ Nn with:

(A) ∀α ∈ Nn, |α| ≥ 1, supx∈RN |∂αA| ≤ Cα

(B) ∃ε > 0, ∀|α| ≥ 1, supx∈RN |∂αB| ≤ Cα (1 + |x|⟩−1−ε
.

2.2 Assumptions on the external potentials

We suppose that the external potentials V and Wij satisfy:

(V ) V ∈ Lp(RN ), for some p > N/2;

(W ) Wij : R+ → R+, Wij(|x|) ∈ Lq
w(RN ) with q > max{1, N/4} and Wij =Wji.

2.3 Assumptions on the local nonlinearities

We suppose that the local nonlinearity satisfy:

(g) For every j = 1, . . . ,m, the complex valued functions

fj(x,Φ) = gj(|x|, |Φ1|2, . . . , |Φm|2)Φj

are measurable in x ∈ RN and continuous in Φ ∈ Cm almost everywhere on RN , with
fj(x,0) = 0. There exist constant C and α ∈ [0, 4

N−2 ) such that

|fj(x,Ψ)− fj(x,Φ)| ≤ C (|Φ|α + |Ψ|α) |Ψ− Φ|, for a.e. x ∈ RN and all Φ,Ψ ∈ Cm.
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(G) There exists K > 0 such that, for all r ≥ 0 and s1, . . . , sm ≥ 0,

0 ≤ G(r, s1, . . . , sm) ≤ K
( m∑

j=1

sj +
m∑
j=1

s
lj+2

2
j

)
, 0 < lj <

4

N − 2
.

This last assumption will guarantee, via Gagliardo-Nirenberg and Diamagnetic inequalities,
that the corresponding term in the energy functional is finite.

2.4 Assumptions on the nonlocal nonlinearities

We suppose that the nonlocal nonlinearity satisfy:

(h) h : R+ → R+ is C1 and non-decreasing, h(0) = 0 and there exist C,D,E > 0 such that

h(s) ≤ Csµ, |h′(s)| ≤ Dsµ−1, |h′′(s)| ≤ Esµ−2,

for all s ∈ R+, where

2 ≤ µ ≤ 2− 1

2q
+

2

N
. (2.1)

Notice that this inequality is nonempty due to the condition q > N/4.

Remark 2.1 If we set H(s) = h′(s)
s for all s ∈ R+, there is a constant C > 0 such that

|H(|z|)z −H(|w|)w| ≤ C(|z|+ |w|)µ−2|z − w|, for all z, w ∈ C, (2.2)

|h(|z|)− h(|w|)| ≤ C(|z|µ−1 + |w|µ−1)|z − w|, for all z, w ∈ C. (2.3)

These follow by the growths of the maps {s 7→ h′(s)} and {s 7→ h′′(s)}. Concerning
(2.2), see for instance (2-1) of Lemma 2.1 in Damascelli, AIHPC 15 (1998), applied with
A(η) := H(|η|)η : R2 → R2. The only required condition is (1-3) in the same paper, fulfilled
by the growths of h′, h′′.

2.5 Statements of the results

We now state the main results of the paper.

First, we have the following local existence result for (1.1).

Theorem 2.1 Assume (A), (B), (V), (W), (g) and (h). Then, for every Φ0 ∈ H1
A(RN ),

there exist T∗ > 0 and T ∗ > 0 and a unique, maximal solution

Φ ∈ C((−T∗, T ∗),H1
A) ∩ C1((−T∗, T ∗),H′

A)

to system (1.1). Furthermore, charge and energy are conserved, that is

∥Φ(t)∥L2 = ∥Φ0∥L2 , EA(Φ(t)) = EA(Φ0)

for all t ∈ (−T∗, T ∗).
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Then, by strengthening the assumptions, we have the following global existence result:

Theorem 2.2 Assume (A), (B), (V ), (W ), (G) and (h) with q > N/2, V bounded from
below and

0 < lj <
4

N
, 2 ≤ µ < 2− 1

q
+

2

N
.

Then, for all Φ0 ∈ H1
A(RN ), for the maximal solution to system (1.1), we have

Φ ∈ C(R,H1
A) ∩ C1(R,H′

A),

namely Φ is global.

Remark 2.2 The bound µ < 2− 1/q+2/N (global existence) for the growth of h gives, as
natural, a more stringent condition than µ ≤ 2− 1/2q + 2/N (local existence). Thus, they
get close as q becomes large. For the important case µ = 2 the local solvability condition is
equivalent to q ≥ N/4, while the global solvability condition is equivalent to q > N/2.

Remark 2.3 If Wij is a convolution kernel of the form, say, |x|−Γ, for some Γ > 0, it
follows that Wij belongs to the space Lq

w(RN ) where q = N
Γ (cf. [11]). Then, the solvability

conditions

2 ≤ µ ≤ 2− 1

2q
+

2

N
, 2 ≤ µ < 2− 1

q
+

2

N
,

become, respectively,

2 ≤ µ ≤ µloc, µloc :=
4N + 4− Γ

2N
, 2 ≤ µ < µglo, µglo :=

2N + 2− Γ

N
.

If N = 3 and Γ = 1 (the physically relevant case of Coulomb kernels), these conditions read
as

2 ≤ µ <
15

6
, 2 ≤ µ <

7

3
,

for local and global solvability respectively.

Remark 2.4 A natural question is the following: does µglo correspond to the critical thresh-
old for the global well-posedness? does it correspond to the orbital stability threshold? In
particular, in 3D with A = 0, the Coulomb kernel, and in presence only of the nonlocal
nonlinearity, the candidate critical problem seems

iut +∆u+ 7
3u|u|

1
3 (|x|−1 ∗ |u| 73 ) = 0, u ∈ H1(R3).

3 Proofs of the results

In this section, we start with the local well posedness of the Cauchy problem (1.1). We
denote by L(X,Y ) the Banach space of linear, continuous operators from X to Y , with the
norm topology. We consider, for all j = 1, . . . ,m, problem (1.1) equivalently written asi∂tΦ− LAΦ+ g̃(Φ) = 0,

Φ(0, x) = Φ0(x),
(3.1)
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where g̃j(Φ) = −g̃1,j(Φ) + g̃2,j(Φ) + g̃3,j(Φ), with

g̃1,j(Φ) = V (x)Φj ,

g̃2,j(Φ) = gj(|x|, |Φ1|2, . . . , |Φm|2)Φj ,

g̃3,j(Φ) =

m∑
i=1

Wij ∗ h(|Φi|)
h′(|Φj |)
|Φj |

Φj ,

3.1 A property of (I + εLA)
−1

LA is a self-adjoint, positive operator on L2 and iLA generates a group of isometries
{T (t)}t∈R where T (t) = e−itLA in L2. The proof of the following statement follows the
line of Lemma 9.1.3 in [1] that covers the scalar case for the particular magnetic potential
A = (y,−x, 0).

For the sake of completeness we include the argument of the proof for the general case.

Proposition 3.1 Let ε > 0 and 1 ≤ p <∞. Then the operator

(I + εLA)
−1 : Lp → Lp,

is continuous and
∥(I + εLA)

−1∥L (Lp,Lp) ≤ 1.

Proof. Let ε > 0, Φε ∈ H1
A and g ∈ H′

A verify

(I + εLA)Φε = g. (3.2)

For g ∈ H′
A with g ∈ Lp, Φε = JA

ε g ∈ H1
A with JA

ε = (I + εLA)
−1 denotes the unique

solution of equation (3.2). We aim to prove that Φε ∈ Lp and ∥Φε∥Lp ≤ ∥g∥Lp , yielding the
desired assertions. Without loss of generality, we can consider the proof for the case p ≥ 2.
In fact, the case 1 ≤ p ≤ 2 can be easily recovered by virtue of a duality argument. Let
θ ∈ C1(R+) be positive and bounded, with θ′ positive, the map {s 7→ θ′(s)s} bounded and
θ(0) = 0. By multiplying (LA + I

ε )Φε = 1
εg in L2 by the test function ϕ(Φε) = Φεθ(|Φε|2),

we reach

⟨LAΦε, ϕ(Φε)⟩L2 +
1

ε
⟨Φε, ϕ(Φε)⟩L2 =

1

ε
⟨g, ϕ(Φε)⟩L2 .

Observe that
⟨LAΦε, ϕ(Φε)⟩L2 ≥ 0. (3.3)

Indeed (following the proof of [1, Lemma 9.1.3]) we can write

⟨LAΦε, ϕ(Φε)⟩L2 = lim
m→∞

⟨LAΦε, ρmϕ(Φε)⟩L2

where, for m ≥ 1, ρm(x) = ρ( x
m ) with ρ ∈ C∞

c (RN ), 0 ≤ ρ ≤ 1, ρ(x) = 1 for |x| ≤ 1 and
ρ(x) = 0 for |x| ≥ 2. Furthermore, we have

⟨LAΦε, ρmϕ(Φε)⟩L2 = Im(Φε)−ℜ
∫
RN

1

i
divA|Φε|2ρmθ(|Φε|2)
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where the second term is zero and

Im(Φε) =
m∑
j=1

ℜ
(∫

∇Φε,j · ∇(ρmθ(|Φε|2)Φε,j)
)
− 2

m∑
j=1

ℑ
(∫

(ρmθ(|Φε|2)Φε,jA · ∇Φε,j

)
+

∫
ρm|A|2θ(|Φε|2)|Φε|2.

Since by Cauchy Schwarz inequality

2ℑ
m∑
j=1

(∫
(ρmθ(|Φε|2)Φε,j)A · ∇Φε,j

)
≤

∫
ρm|A|2θ(|Φε|2)|Φε|2 +

∫
ρmθ(|Φε|2)|∇Φε|2,

we have

⟨LAΦε, ρmϕ(Φε)⟩L2 ≥
m∑
j=1

ℜ
(∫

∇Φε,j · ∇(ρmθ(|Φε|2)Φε,j)
)
−
∫
ρmθ(|Φε|2)|∇Φε|2

≥ −1

2

∫
Θ(|Φε|2)∆ρm,

where Θ(s) =
∫ s

0
θ(σ) dσ. In the last inequality we used the fact that ρm, θ

′ are positive and

m∑
j=1

ℜ
(
∇Φε,j · ∇(ρmθ(|Φε|2)Φε,j)

)
−ρmθ(|Φε|2)|∇Φε|2 =

1

2
ρmθ

′(|Φε|2)
∣∣∇|Φε|2

∣∣2 + 1

2
∇ρm · ∇(Θ(|Φε|2)).

Taking into account the boundedness of θ, the remaining integral vanishes, as m → ∞,
yielding (3.3). Hence, ∫

|Φε|2θ(|Φε|2) ≤
∫

|g||Φε|θ(|Φε|2).

For δ > 0 we can choose, for instance, the function θ(s) =
(

s
1+δs

) p
2−1

, which satisfies the
requirements mentioned at the beginning of the proof. In turn, we obtain∫

|Φε|p

(1 + δ|Φε|2)
p
2−1

≤
∫

|g|p.

Letting δ go to zero, by Fatou’s Lemma, we obtain the desired assertion.

3.2 Integral Lipschitz estimates

In this section we prove the following result concerning the Lp Lipschitz estimates fulfilled
by the nonlinearities involved in the Schrödinger system, local and nonlocal.

Theorem 3.1 Assume that conditions (V ), (W ), (g) and (h) hold. Then, for all k = 1, 2, 3,
we have



Well-posedness for Schrödinger systems with nonlocal nonlinearities 533

1. g̃k ∈ C(H1
A,H′

A) and G̃k ∈ C1(H1
A,R) with g̃k = G̃′

k;

2. there exists ρk ∈ [2, 2N
N−2 ) such that

g̃k : H1
A → Lρ′

k ↪→ H′
A; (3.4)

3. there exists rk ∈ [2, 2N
N−2 ) such that for every M > 0, there is C(M) > 0 with

∥g̃k(Ψ)− g̃k(Φ)∥Lρ′
k
≤ C(M)∥Ψ− Φ∥Lrk , (3.5)

for every Ψ, Φ ∈ H1
A such that ∥Ψ∥H1

A
+ ∥Φ∥H1

A
≤M ;

4. for every Φ ∈ H1
A and any j = 1, . . . ,m,

ℑ(g̃k,j(Φ)Φj) = 0 a.e. on RN . (3.6)

Proof. For any k = 1, 2, 3 the first assertion is satisfied by the definition of g̃k and with

G̃1(Φ) =
1

2

∫
V (x)|Φ|2, G̃2(Φ) =

∫
G(|x|, |Φ1|2, . . . , |Φm|2),

and

G̃3(Φ) =
1

2

m∑
i,j=1

∫∫
Wij(|x− y|)h(|Φi(x)|)h(|Φj(y)|).

The continuity of g̃k from H1
A to H′

A is a consequence of inequality (3.5). Let now k = 1.
Concerning conditions (3.4) and (3.5), for all j = 1, . . . ,m, we obtain

∥g̃1,j(Ψ)− g̃1,j(Φ)∥
ρ′
1

Lρ′1
≤

∫
|V (x)|ρ

′
1 |Ψj − Φj |ρ

′
1

≤ C
(∫

|V (x)|p
) ρ′1

p
(∫

|Ψj − Φj |
pρ′1

p−ρ′1

) p−ρ′1
p

≤ C∥V ∥ρ
′
1

Lp∥Ψj − Φj∥
ρ′
1

Lr1

for ρ1 ∈ [2, 2∗) and for r1 which satisfies

2 ≤ r1 =
pρ′1
p− ρ′1

< 2∗.

The choice of ρ1 = 2p
p−1 then leads to r1 = ρ1 ∈ [2, 2∗) since p > N

2 . Finally, condition (3.6)
follows since V is real-valued.

Let now k = 2. Concerning (3.4) and (3.5), they follow from assumption (g) and from
the Diamagnetic and Sobolev inequality, with the choice r2 = ρ2 = α + 2. Indeed, by
assumption (g),

∥g̃2,j(Ψ)− g̃2,j(Φ)∥
ρ′
2

Lρ′2
=

∫ ∣∣gj(|x|, |Ψ1|2, . . . , |Ψm|2)Ψj − gj(|x|, |Φ1|2, . . . , |Φm|2)Φj

∣∣ρ′
2

≤ C
(
∥Ψ∥αρ

′
2

Lϑ + ∥Φ∥αρ
′
2

Lϑ

)
∥Ψ− Φ∥ρ

′
2

Lr2

≤ C(M) ∥Ψ− Φ∥ρ
′
2

Lr2
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where r2 = ρ2 = α+ 2 (recall that 2 ≤ α+ 2 < 2∗), so that

2 ≤ ϑ =
αρ′2r2
r2 − ρ′2

= α+ 2 < 2∗.

Condition (3.6) is obvious by the definition of g2,j is real valued.

Finally let k = 3. Recall the Hardy-Littlewood inequality ([11, formula (9), pp.107])

∥g ∗ f∥Lr(RN ) ≤ C∥g∥Lq
w(RN )∥f∥Ls(RN ), ∀f ∈ Ls(RN ),

1

s
+

1

q
= 1 +

1

r
. (3.7)

Concerning condition (3.4), by assumption (h), (3.7) and Hölder inequality, for all j, we
have

∥g̃3,j(Φ)∥
ρ′
3

Lρ′3
≤ C

m∑
i=1

∫
|Wij ∗ h(|Φi|)|ρ

′
3

∣∣∣∣h′(|Φj |)
|Φj |

Φj

∣∣∣∣ρ′
3

≤ C

m∑
i=1

∫
|Wij ∗ h(|Φi|)|ρ

′
3 |h′(|Φj |)|

ρ′
3

≤ C

m∑
i=1

(∫
|Wij ∗ h(|Φi|)|

ρ′3ρ3
ρ3−ρ′3

) ρ3−ρ′3
ρ3

(∫
|h′(|Φj |)|

ρ3

) ρ′3
ρ3

≤ C
m∑
i=1

(∫
|Wij ∗ h(|Φi|)|

ρ3
ρ3−2

) ρ3−ρ′3
ρ3

(∫
|Φj |ρ3(µ−1)

) ρ′3
ρ3

≤ C
m∑
i=1

∥Wij ∗ h(|Φi|)∥
ρ3

ρ3−1

L
ρ3

ρ3−2
∥Φj∥

ρ′
3(µ−1)

Lρ3(µ−1)

≤ C
m∑
i=1

∥Wi,j∥
ρ′
3

Lq
w
∥Φi∥

ρ′
3µ

Lµp0 ∥Φj∥
ρ′
3(µ−1)

Lρ3(µ−1)

where p0 = ρ3q
2ρ3q−2q−ρ3

for ρ3 ∈ [2, 2∗) which satisfies

{
2 ≤ ρ3(µ− 1) ≤ 2∗

2
µ ≤ p0 = ρ3q

2ρ3q−2q−ρ3
≤ 2∗

µ .

Observe that the choice of ρ3 = 4q
2q−1 ∈ [2, 2∗) in the above inequalities leads to p0 = 2q

2q−1
and to the restriction

2 ≤ µ < 1 +
2∗(2q − 1)

4q
,
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which is compatible with the range of µ in condition (h). Condition (3.5) is also satisfied
since, for each j = 1, . . . ,m, we have

∥g̃3,j(Ψ)− g̃3,j(Φ)∥
ρ′
3

Lρ′3

≤ C
m∑
i=1

∫ ∣∣∣Wij ∗ h(|Ψi|)
h′(|Ψj |)
|Ψj |

Ψj −Wij ∗ h(|Φi|)
h′(|Φj |)
|Φj |

Φj

∣∣∣ρ′
3

≤ C
m∑
i=1

(Ii + Ji),

where, for i = 1, . . . ,m we have set

Ii :=
∫ ∣∣∣Wij ∗ h(|Ψi|)

∣∣∣ρ′
3
∣∣∣h′(|Ψj |)

|Ψj |
Ψj −

h′(|Φj |)
|Φj |

Φj

∣∣∣ρ′
3

Ji :=
∫ ∣∣∣Wij ∗ (h(|Ψi|)− h(|Φi|))

∣∣∣ρ′
3
∣∣∣h′(|Φj |)

∣∣∣ρ′
3

.

In light of inequality (2.2), by Hölder inequality, the Hardy-Littlewood inequality (3.7) and
Sobolev and Diamagnetic inequalities, we have that

Ii =
∫ ∣∣∣Wij ∗ h(|Ψi|)

∣∣∣ρ′
3
∣∣∣H(|Ψj |)Ψj −H(|Φj |)Φj

∣∣∣ρ′
3

≤
(∫ ∣∣∣Wij ∗ h(|Ψi|)

∣∣∣ ρ3
ρ3−2

) ρ3−2
ρ3−1

(∫ ∣∣∣H(|Ψj |)Ψj −H(|Φj |)Φj

∣∣∣ρ3
) ρ′3

ρ3

≤ C∥Wi,j∥
ρ′
3

Lq
w
∥Ψi∥

ρ′
3µ

Lµp0

(∫
(|Ψj |+ |Φj |)ρ3(µ−2)|Ψj − Φj |ρ3

) ρ′3
ρ3
.

Then, if µ = 2, we have

Ii ≤ C∥Wi,j∥
ρ′
3

Lq
w
∥Ψi∥

2ρ′
3

L2p0
∥Ψj − Φj∥

ρ′
3

Lr3 ,

with ρ3 = r3 = 4q
2q−1 = 2p0. If instead µ > 2, then we get

Ii ≤ C∥Wi,j∥
ρ′
3

Lq
w
∥Ψi∥

ρ′
3µ

Lµp0 ∥|Ψj |+ |Φj |∥
ρ′
3(µ−2)

L
(µ−2)r3ρ3

r3−ρ3

∥Ψj − Φj∥
ρ′
3

Lr3

≤ C(M)∥Ψj − Φj∥
ρ′
3

Lr3 ,

where ρ3 ∈ [2, 2∗) and r3 ∈ [2, 2∗) must satisfy the following conditions{
2 ≤ µp0 ≤ 2∗

2 ≤ (µ−2)r3ρ3

r3−ρ3
≤ 2∗.

(3.8)

Observe that, by the choice of ρ3 = 4q
2q−1 ∈ [2, 2∗), the above inequalities are satisfied by

4q2∗

2∗(2q − 1)− 4q(µ− 2)
≤ r3 ≤ 4q

6q − 1− 2qµ
. (3.9)
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The range of µ in assumption (h) ensures that r3 ∈ [2, 2∗). Dealing with the second term
in the above sum, by means of inequality (2.3), we have

Ji =
∫ ∣∣∣Wij ∗ (h(|Ψi|)− h(|Φi|))

∣∣∣ρ′
3
∣∣∣h′(|Φj |)

∣∣∣ρ′
3

≤
(∫ ∣∣∣Wij ∗ (h(|Ψi|)− h(|Φi|))

∣∣∣ ρ3
ρ3−2

) ρ3−2
ρ3−1

(∫ ∣∣∣h′(|Φj |)
∣∣∣ρ3

) ρ′3
ρ3

≤ ∥Wij ∗ (h(|Ψi|)− h(|Φi|)∥
ρ′
3

L
ρ3

ρ3−2
∥h′(|Φj |)∥

ρ′
3

Lρ3

≤ C∥Wij∥
ρ′
3

Lq
w
∥(h(|Ψi|)− h(|Φi|)∥

ρ′
3

Lp0∥Φj∥
ρ′
3(µ−1)

Lρ3(µ−1)

≤ C∥Wij∥
ρ′
3

Lq
w

(
∥Φi∥

ρ′
3(µ−1)

L
(µ−1)p0r3

r3−p0

+ ∥Ψi∥
ρ′
3(µ−1)

L
(µ−1)p0r3

r3−p0

)
×

× ∥Ψi − Φi∥
ρ′
3

Lr3∥Φj∥
ρ′
3(µ−1)

Lρ3(µ−1) ≤ C(M)∥Ψi − Φi∥
ρ′
3

Lr3 ,

where again p0 = ρ3q
2ρ3q−2q−ρ3

. Taking once again ρ3 = 4q
2q−1 ∈ [2, 2∗), we have p0 = 2q

2q−1

and r3 ∈ [2, 2∗) must satisfy this time the system{
2 ≤ ρ3(µ− 1) ≤ 2∗

2 ≤ (µ−1)p0r3
(r3−p0)

≤ 2∗.

Observe that, these inequalities can be fulfilled by the same r3 found for inequalities of the
set (3.8) (just compare with the extrema of the interval in formula (3.9)). Therefore, we
conclude that

∥g̃3(Ψ)− g̃3(Φ)∥Lρ′3
≤ C(M)∥Ψ− Φ∥Lr3 .

Finally, condition (3.6) is obvious since Wij , h and h′ are real-valued functions.

3.3 A priori uniqueness property

We say that we have (local) uniqueness for problem (3.1) if, for every interval J containing
0 of sufficiently small size, and for every Φ0 ∈ H1

A, any two solutions of (3.1)

Φ,Ψ ∈ L∞(J,H1
A) ∩W 1,∞(J,H′

A),

coincide. For all j = 1, . . . ,m, writing the j-th equation of (3.1)

i∂tΦj − LAΦj + g̃j(Φ) = 0. (3.10)

It follows that

Ψj(t)− Φj(t) = i

∫ t

0

T (t− s)(g̃(Ψ(s))− g̃(Φ(s))j ds,

for all t ∈ I, where T (t) is the propagator e−itLA . For the Strichartz type estimates for
the magnetic operator LA, we refer the reader to the paper by Yajima [20] (see also [5]).
By assumptions (A) and (B) on the potentials, adapting the result in Yajima [20] proved
for such T (t) in the scalar case, we have the following Lp-Lq estimates that we take from a
work of Michael [14]:



Well-posedness for Schrödinger systems with nonlocal nonlinearities 537

Lemma 3.1 Let I = [−T, T ], (q, r) and (γk, ρk) (k = 1, 2, 3) pairs such that

r, ρk ∈ [2, 2∗), q, γk ∈ (2,∞],
2

q
= N

(1
2
− 1

r

)
,

2

γk
= N

(1
2
− 1

ρk

)
.

Let g̃k,j ∈ Lγ′
k(I, Lρ′

k), where γ′k and ρ′k denote, respectively, the conjugate exponents of γk
and ρk. Then, the solution of (3.10) with g̃j = −g̃1,j + g̃2,j + g̃3,j with zero initial datum,
satisfies

∥Φj∥Lq(I,Lr) ≤ C
3∑

k=1

∥g̃k,j∥Lγ′
k (I,Lρ′

k )
, (3.11)

where the constant C depends only on the length of I and on A,B.

This, finally, allows to show the following

Theorem 3.2 Problem (3.1) enjoys a priori uniqueness over time intervals of sufficiently
small length.

Proof. Let I be an interval containing 0. Let Ψ,Φ ∈ L∞(I,H1
A) ∩ W 1,∞(I,H′

A) be two
solutions of (3.1). Let rk and ρk the exponents for which the nonlinearity g̃k verifies Theo-
rem 3.1. Therefore, if 2

qk
= N( 12 −

1
rk
) and 2

γk
= N( 12 −

1
ρk
), in light of Lemma 3.1, one can

find δ > 0 such that, for j = 1, . . . ,m and ℓ = 1, 2, 3, it holds

∥(Ψ− Φ)j∥Lqℓ (I,Lrℓ ) ≤ C

3∑
k=1

∥(g̃(Ψ)− g̃(Φ))k,j∥Lγ′
k (I,Lρ′

k )

≤ C(|I|+ |I|δ)
3∑

k=1

∥Ψ− Φ∥Lqk (I,Lrk ).

Therefore, switching to the vector norm on the left hand side, adding the resulting in-
equalities over ℓ and, finally, choosing the size of I such that C(|I| + |I|δ) < 1, we get the
inequality

(1− C(|I|+ |I|δ))
3∑

k=1

∥Ψ− Φ∥Lqk (I,Lrk ) ≤ 0,

which yields the desired conclusion.

3.4 Proof of Theorem 2.1 concluded

We recall that LA is a self-adjoint and positive operator on L2. Taking into account Propo-
sition 3.1 of Section 3.1, Theorem 3.1 of Section 3.2, Theorem 3.2 of Section 3.3 the assertion
follows by [1, Theorem 4.6.1] (see also [1, Remarks 4.6.3 and 4.3.4 on systems]).
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3.5 Global well-posedness

In the previous section, we have established the local solvability of the Cauchy problem
(3.1) in H1

A. In order to show Theorem 2.2 namely that the solution Φ is global, one needs
to establish a priori estimates on ∥Φ(t)∥H1

A
by using the conservation laws under some

appropriate assumptions on the nonlinearities.

Proof. Let I0 = (−T∗, T ∗). In light of Theorem 2.1, we have the conservation of energy and
charge, that is ∥Φ(t)∥L2 = ∥Φ0∥L2 = M0 and EA(Φ(t)) = EA(Φ0), for all t ∈ I0. In the
following C will denote a generic positive constant, that may change from line to line and
which depends only on the problem and on the initial datum. We have

EA(Φ(t)) =
1

2

m∑
j=1

∫ ∣∣∣∣(∇
i
−A(x)

)
Φj(t)

∣∣∣∣2 + 1

2

∫
V (x)|Φ(t)|2

−
∫
G(|x|, |Φ1(t)|2, . . . , |Φm(t)|2)

− 1

2

m∑
i,j=1

∫∫
Wij(|x− y|)h(|Φi(t)|)h(|Φj(t)|) = EA(Φ0) = C.

Since V is bounded from below, and view of the conservation of the charge, we have that

∥Φ(t)∥2H1
A
≤

∥∥∥∥(∇
i
−A(x)

)
Φ(t)

∥∥∥∥2
L2

+

∫
V (x)|Φ(t)|2 + C

≤ C + C

∫
G(|x|, |Φ1(t)|2, . . . , |Φm(t)|2)

+ C

m∑
i,j=1

∫∫
Wij(|x− y|)h(|Φi(t)|)h(|Φj(t)|).

By applying the Gagliardo-Nirenberg (σj is equal to Nlj/(2(lj + 2)) in the following), the
Young and Diamagnetic inequalities, we obtain

∥Φj(t)∥
lj+2
lj+2 ≤ C∥Φj(t)∥

(1−σj)(lj+2)

L2 ∥∇|Φj(t)|∥
σj(lj+2)

L2 ≤ Cε + εC∥∇|Φj(t)|∥2L2

≤ Cε + εC

∥∥∥∥(∇
i
−A(x)

)
Φj(t)

∥∥∥∥2
L2

≤ Cε + εC ∥Φ(t)∥2H1
A
.

Consequently, by the growth assumptions on G, we have∫
G(|x|, |Φ1(t)|2, . . . , |Φm(t)|2) ≤ Cε + εC ∥Φ(t)∥2H1

A

Now, since assumptions (h) and (W ) hold true, by the Hardy-Littlewood-Sobolev inequal-
ity for weak Lq kernels (cf. [11, formula (7), p.107]), by the Gagliardo-Nirenberg and the
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Diamagnetic inequality (1.2), we have for all i, j = 1, . . . ,m,∫∫
Wij(|x− y|)h(|Φi(x)|)h(|Φj(y)|) dxdy ≤ C∥Wij∥Lq

w
∥Φi∥µ

L
2qµ
2q−1

∥Φj∥µ
L

2qµ
2q−1

≤ C∥∇|Φi|∥
Nµ( 1

2−
2q−1
2qµ )

L2 ∥Φi∥
µ[1−N( 1

2−
(2q−1)
2qµ )]

L2 ∥∇|Φj |∥
Nµ( 1

2−
2q−1
2qµ )

L2 ∥Φj∥
µ[1−N( 1

2−
2q−1
2qµ )]

L2

≤ C

∥∥∥∥(∇
i
−A(x)

)
Φi

∥∥∥∥Nµ( 1
2−

2q−1
2qµ )

L2

∥Φi∥
µ[1−N( 1

2−
2q−1
2qµ )]

L2

×
∥∥∥∥(∇

i
−A(x)

)
Φj

∥∥∥∥Nµ( 1
2−

2q−1
2qµ )

L2

∥Φj∥
µ[1−N( 1

2−
2q−1
2qµ )]

L2

≤ C

∥∥∥∥(∇
i
−A(x)

)
Φ

∥∥∥∥2Nµ( 1
2−

2q−1
2qµ )

L2

,

where we exploited ∥Φi(t)∥L2 ≤ ∥Φ0∥L2 = C for all i = 1, . . . ,m. Observe that, in order to
perform the above inequality, we need to make sure that

2 ≤ 2qµ

2q − 1
≤ 2∗.

This is true provided that the number µ belongs to the range 2 ≤ µ ≤ 2∗(2q− 1)/2q, which
is, in fact, compatible with the one assumed in (h) (and it is a fortiori compatible with the
range of values assumed for this theorem), which is smaller. Now, taking into account that,
by assumption, it holds

2Nµ

(
1

2
− 2q − 1

2qµ

)
< 2,

it follows that

m∑
i,j=1

∫∫
Wij(|x− y|)h(|Φi(t)|)h(|Φj(t)|) dxdy ≤ C ∥Φ(t)∥2Nµ( 1

2−
2q−1
2qµ )

H1
A

≤ Cε + εC ∥Φ(t)∥2H1
A
.

Fixing now ε0 sufficiently small, for all t > 0, we have

(1− Cε0)∥Φ(t)∥2H1
A
≤ Cε0 .

Hence, in light of this apriori estimate, the global existence follows by standard arguments.
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