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1 Introduction

The celebrated Bourgain—Brezis—Mironescu formula, (BBM) in short, appeared for the first time in [8, 9], and
provided a new characterization for functions in the Sobolev space W'-P(Q), with p > 1 and for Q c R" being
a smooth bounded domain. To this end, the authors of [8, 9] perform a careful study of the limit properties
of the Gagliardo semi-norm defined for the fractional Sobolev spaces W*P(Q) with O < s < 1. In particular,
they considered the limit as s ~ 1. To be more precise, for any WP (Q) it holds

. lu(x) - u(y)lP B »
}91/1‘1‘11(1 - S) J J W dX dy = Qp,N J |Vu| dX, (BBM)
Q0 Q
where Qp,y is defined by
Qpv = % [ 1w hr aset-iw, (1.1)
SNfl

where $¥-1 ¢ RN denotes the unit sphere and w is an arbitrary unit vector of RY. This also allows to get the
stability of (variational) eigenvalues for the fractional p-Laplacian operator as s ./ 1, see [10]. We recall that
characterizations similar to (BBM) when s \, O were obtained in [30, 31].

In the following years, a huge effort in trying to extend the results proved in [8] has been made. One of
the first extension was achieved by Nguyen in [32], where he provided a new characterization for functions
in WLP(RY). As we already mentioned, the (BBM)-formula proved in [8] covered the case of Q c RY being
a smooth and bounded domain, therefore it was quite natural to try to relax the assumptions on the open
set QO c RY: this kind of problem was recently addressed in [25] and [26], where Leoni and Spector were able
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to provide a generalization of the (BBM)-formula to any open set Q ¢ RY . The interest resulted from [8] led
also to related new characterizations of Sobolev spaces in non-Euclidean contexts like the Heisenberg group
(see[7, 18]).

One of the most challenging problems left open in [8] was to provide similar characterizations for func-
tions of bounded variation. A positive answer to this question has been given by Davila in [20] and by Ponce
in [34]. They completed the picture by showing that

lim(1 =) | [ 000 dxay = 01 uiDul(@)
00

for every bounded Lipschitz set Q ¢ RN and every u € BV(Q). We also recall that the extension to any open

set proved in [25, 26] concerns BV-functions as well, see also [35].

In order to try to give a more complete overview of the subject, we have to mention that, parallel to the
fractional theory of Sobolev spaces, there exists a quite developed theory of fractional s-perimeters (e.g. [16]),
and also in this framework there have been several contributions concerning their analysis in the limits s ~ 1
ands \, O (seee.g.[2,17, 21, 23, 28, 29]).

Very recently the results we have mentioned have been discovered to have interesting applications in
image processing, see for instance [12-15]. One of the latest generalizations of (BBM) appeared very recently
in [37] in the context of magnetic Sobolev spaces le’z(Q). In fact, an important role in the study of par-
ticles which interact with a magnetic field B = V x 4, 4 : R?> — R3, is assumed by another extension of the
Laplacian, namely the magnetic Laplacian (V — iA)? (see [6, 27, 36]), yielding to nonlinear Schrédinger equa-
tions like

—(V-id)u+u = f(u), (1.2)

which have extensively been studied (see e.g. [5] and references therein), where (V — i4)? is defined in weak
sense as the differential of the integral functional
Wy2(Q) s u qu ~iA(0ul? dx. (1.3)
Q

If A : RN — RY is a smooth function and s € (0, 1), a nonlocal magnetic counterpart of (1.2), i.e.

u(x) — elV-ACEIy(y) &, lim c(N,s) _4NT(%)

_AS = N, 1 = )
(=A)julx) = c( 5)81{18 J [x — y|N+2s s’21 1-58 27N/2

B (x)

was introduced in [19, 24] for complex-valued functions. We point out that (-A) coincides with the usual
fractional Laplacian for A = 0. The motivations for the introduction of this operator are carefully described
in [19, 24] and fall into the framework of the general theory of Lévy processes. It is thus natural wondering
about the consistency of the norms associated with the above fractional magnetic operator in the singular
limit s .~ 1, with the energy functional (1.3).

The aim of this paper is to continue the study of the validity of a magnetic counterpart of (BBM), extending
the results of [37] to arbitrary magnetic fractional Sobolev spaces and to magnetic BV-functions. We refer the
reader to Sections 2 and 3 for the definitions. On the other hand, while for p > 1 the spaces W};’p (Q) have
a wide background, to the best of our knowledge no notion of magnetic bounded variations space containing
le’l(Q) seems to be previously available in the literature.

As already recalled, this indeed holds for the Hilbert case p = 2, as stated in the following

Theorem (M. Squassina, B. Volzone [37]). Let Q c RN be an open and bounded set with Lipschitz boundary
and let A € C2(Q, RN). Then, for every u € W}X’Z(Q), we have
_ pll=y)-A(%) 2
lim(1 - s) J J ut) - e “UWE Gy dy = Qyn j \Vu - iAGOu? dx,
SsA1 |x — y|N+2s ’
Q0 Q

where Q. y is the positive constant defined in (1.1) with p = 2.
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The goal of this paper is twofold: first we aim to extend this formula to the case of general magnetic
spaces W}l’p for p > 1, and secondly we introduce a suitable notion of magnetic bounded variation |Du|a(Q)
and we prove that a (BBM)-formula holds also in that case.

In order to state the main result we need to introduce some notation: let p > 1 be fixed and let us consider
the normed space (CV, | - |,), with

1
1zlp := (I(Rz1, ..., Rzn)IP +1(Tz1, ..., Jzn)P)?, (1.4)

where | - | is the Euclidean norm of RY and R a,Ja denote the real and imaginary parts of a € C, respectively.
Notice that |z|, = |z| whenever z € RY, which makes our next statements consistent with the case A = 0 and
u being a real-valued function [8, 11, 20, 34].

Theorem 1.1 (General magnetic Bourgain—Brezis—Mironescu limit). Let A : RY — RN be of class C2. Then,
for any bounded extension domain Q c RY,
_ pl0=y)-ACE)
lim(1 - s) I j lutx) — e T U gy gy = 0y wIDUlA(Q)
sA1 |x — y|N+s ’
QQ

forallu € BV4(Q), where Qp,y is defined in (1.1). Furthermore, for any p > 1 and any Lipschitz bounded domain
QcRY,

. lu(x) — eCIACy ()| .
131;111(1 -5) j j xS P dxdy = Qp,N j |[Vu - 1A(x)u|§ dx

QQ Q

forallu e W}l’p(Q).

We refer to Definition 3.11 for a precise explanation of extension domain. We stress that the definitions of
both the magnetic Sobolev spaces Wfll’p (Q) and of the magnetic BV-spaces BV, (Q) made in Sections 2 and 3
are consistent, in the case of zero magnetic potential A, with the classical spaces W?(Q) and BV(Q), respec-
tively. Moreover, it holds |Du|4(Q) = |Du|(Q), so that Theorem 1.1 is consistent with the classical formulas
of [8, 20, 34].

In particular, in the spirit of [11], as a byproduct of Theorem 1.1, if O ¢ RY is a smooth bounded domain,
A : RY - RN is of class C? and we have

lim(1 - s) j J [t Wlp dxdy=0, uce Wi’p(Q),
571 |x — y|N+ps
QQ
then we get
VRu = -JuA,
VIu = RuA,

namely the direction of VRu, VJu is that of the magnetic potential A. In the particular case A = 0, consistently
with the results of [11], this implies that u is a constant function.
We finally notice that for a Borel set E ¢ Q, denoting E€ = Q \ E, the quantity

1 11 _ei(X—y)'A(%)h 1 1 1 |ei(X—,V)'A(%)|1
PS(E;A) = EJJWdXdy+EIJp(——dXdy+_JIWdXdy
EE E E¢ E¢E

plays the role of a nonlocal s-perimeter of E depending on A, which reduces for A = 0 to the classical notion

of fractional s-perimeter of E in Q
1
PS(E) = J. J mdxdy.
E E¢

Then the main result, Theorem 1.1, reads as
lsi;rll(l —-S)Ps(E, A) = Q1,n|D1E|a(Q).
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The structure of the paper is as follows. In Section 2 we introduce magnetic Sobolev spaces Wj’p (Q).In
Section 3 we define the magnetic BV space BV 4(Q) and we prove that several classical results for BV-func-
tions hold also for functions belonging to BV4(Q). In particular, we prove a structure result (Lemma 3.6),
a result about the extension to RN for Lipschitz domains (Lemma 3.12), the semi-continuity of the vari-
ation (Lemma 3.7), a magnetic counterpart of the classical Anzellotti—Giaquinta Approximation Theorem
(Lemma 3.10) and, finally, a compactness result (Lemma 3.14). In Sections 4, 5 and 6 we finally prove Theo-
rem 1.1.

2 Magnetic Sobolev spaces

In order to avoid confusion with the different uses of the symbol v - w, we define
N
Zviwi ifv,we RN,
i=1

N
Z(Rvi +iIv)(Rw; +iIw;)  ifv, w e CV.
i-1

Let Q be an open set of RN, For any p > 1 we denote by LP(Q, C) the Lebesgue space of complex-valued
functions u : Q — C such that

p
lullzo ) = ( j lu(x)l} dx) < o0,

Q
where | - |, is as in (1.4). For a locally bounded function A : RN — RY, we consider the semi-norm
1

[ulyir gy = ( J |Vu - iAGOuly dx)p,

Q

and define le’p (Q) as the space of functions u € L?(Q, C) such that [u] whr(q) < 00 with norm
A
. p p 1
”u"Wi’p(Q) = (”u"Lp(Q) + [u]wf(o))p .

The space Wé:ﬁ(Q) will denote the closure of the space CX(Q) in W}q’p (Q).Forany s € (0,1) and p > 1, the
magnetic Gagliardo semi-norm is defined as

x+y

e | L )l
wyP(Q) *T )] |X_y|N+ps

dx dy)‘l’.

We denote by Wi’p (Q) the space of functions u € LP(Q, C) such that [u]W/sl,p(Q) < oo normed with
1
||u||wj{1’(g) = (”u"i,p(g) + [u]ﬁlﬁ‘p(@))p .

For A = 0 this is consistent with the usual space W*?(Q) with norm | - [ws»(q).

3 Magnetic BV-spaces

In this section we introduce a suitable notion of magnetic bounded variation functions. Let Q be an open set
of RN, We recall that a real-valued function u € L*(Q) is of bounded variation, and we shall write u € BV(Q),
if
[Dul(Q) = sup{l u(x)dive(x) dx : ¢ € CX(Q, RY), lollieq) < 1} < 00.
Q
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The space BV(Q) is endowed with the norm

lullBv() := llullziq) + 1Dul(Q).

The space of complex-valued bounded variation functions BV(Q, C) is defined as the class of Borel functions
u: Q — Csuchthat Ru, Ju € BV(Q). The C-total variation of u is defined by

[Dul(Q) := [DRu|(Q) + |[DIu|(Q).

More generally, it is possible to define a notion of variation for functions u : Q — E, where Q ¢ R" is an open
set and (E, d) is a locally compact metric space. We refer the interested reader to [1].
We are now ready to define the magnetic BV-functions.

Definition 3.1 (A-bounded variation functions). Let Q ¢ RN be an open set and let A : R¥Y — RY be a locally
bounded function. A function u € L1(Q, C) is said to be of A-bounded variation and we write u € BV4(Q) if

[Dula(Q) := C1,4,u(Q) + C2,4,u(Q) < 00,

where we have set

C1,4,u(Q) := sup{ Ru(x)divp(x) — A(x) - (x)Ju(x) dx : ¢ € CX(Q, IRN), lolre@) < 1},

Coau(Q) = sup{ Ju(x) divp(x) + AX) - ORu(x) dx : @ € C2(Q, RY), [l@lro(q) < 1}.

|
|

A function u € Llloc(Q, Q) is said to be of locally A-bounded variation and we write u € BV 1,.(Q), provided
that it holds
[Dul4(U) < co for every openset U € Q.

We stress that for A = 0, the previous definition is consistent with the one of BV(Q). In order to justify our
definition, we will collect in the following some properties of the space BV4(Q). These properties are the
natural generalization to the magnetic setting of the classical theory [3, 22, 38].

Lemma 3.2 (Extension of [Duls[). Let Q c RY be an open and bounded set, A : RYN — RY locally bounded and
u € BV4(Q). Let E ¢ Q be a Borel set. Then

|[Dula(E) :=inf{C1,4,4(U) : E c U, U c Q open} +inf{C; 4,4,(U) : E c U, U c Q open}

extends |Dula(-) to a Radon measure in Q. For any open set U c Q, C1,4,u(U) and Cy,4,,(U) are defined
requiring the test functions to be supported in U and |Du|4(0) := O.

Proof. We note that
V1(E) :=inf{Cy,4,4(U) : E c U, U c Q open}

is the variation measure associated with
Q- J Ru(x) divp(x) — A(X) - @(x)Tu(x) dx,
Q

and by [22, Theorem 1.38] it is a Radon measure. The same argument applies to
Vo (E) :=inf{C; 4,4(U) : E c U, U c Q open}
and the thesis follows. O

Lemma 3.3 (Local inclusion of Sobolev functions). Let Q c RN be an open set. Let A : RN — RN be locally
bounded. Then
Wy (Q) € BV A 10c(Q).
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Proof. Letu € Wl’l(Q), U e Q open and consider ¢ € C®(U, RY) with [|¢|Lo() < 1. Then

loc

J Ru(x)dive(x) — A(x) - @(x)Ju(x) dx + J Ju(x) div p(x) + A(x) - e(x)Ru(x) dx

U U
=- J(VRM(X) + A(X)Ju(x)) - p(x) dx - j(VJJu(x) - A(X)Ru(x)) - p(x)dx
U U
< J IVRU(X) + A()Tu(x)] dx + j IVIU(X) - AQO)Ru()| dx
U U

< J [VRu(x)| dx + J [VIu(x)| dx + ||A||LOO(U)< J(IRu(x)l + | Ju(x)|) dx) < 00,

U U
which, taking the supremum over ¢, concludes the proof. O

Next we prove that for W};’l(Q)-funCtions the magnetic bounded variation semi-norm [Du|4(Q) boils down
to the usual local magnetic semi-norm.

Lemma 3.4 (BV4-norm on W}l’l). Let O c RN be an open set. Let A : RN — RN be locally bounded. Assume
thatu € W}l’l(Q). Then u € BV4(Q) and it holds

IDulA(Q) = I IV — iAGOul; dx.
Q
Furthermore, if u € BV4(Q) n C®(Q), thenu € W, (Q).

Proof. Ifu e W}l’l(Q), then we have
VRu+AJu e LY(Q), VIu-ARu e L(Q).

For every ¢ € C(Q, RY) with [|¢|l1~(q) < 1, we have

J Ru(x)divp(x) — A(x) - @(x)IJu(x) dx J VRu(x) - p(x) + A(x) - (x)IJu(x) dx| < J [VRu + AJu| dx,
Q Q Q

as well as

J Ju(x)divp(x) + A(x) - p(x)Ru(x) dx J V3Iu(x) - p(x) — A(x) - p(x)Ru(x) dx
Q Q

< J |VIu - ARu| dx,
Q

which, taking the supremum over ¢, proves u € BV4(Q, C) and

[Du|a(Q) < J |[Vu —iA(x)uly dx. (3.1)
o)
Defining now f, g € L*(Q, RY) by setting
VRu(x) + A(x)Ju(x)
f0) = 1 IVRUG) + A0 Tu)|
0 otherwise,

if x € Q and VRu(x) + A(x)Ju(x) # 0O,

and
V3Iu(x) - A(X)Ru(x)

g0 =4 IVIu() - A Ru()
0 otherwise,

if x € Q and VJu(x) - A(x)Ru(x) # O,

we have [|f]lco, lIgllco < 1. By a standard approximation result, there exist two sequences {@n}nens {¥ntnen
in C°(Q, RY) such that ¢, — fand ¢, — g pointwiseasn — co, with l@nlrew@), Ynllre@) < 1foralln € N.
By the definition of C1,4,,(Q), after integration by parts, it follows that, for every n > 1,
N
Crau@=-Y J(axi Ru(0) + AD (0 Tu(0))e (x) dx.
i=1¢
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By the Dominated Convergence Theorem and the definition of f, letting n — co, we obtain

Cran(Q) > j IVRU() + A)Tu()| dx.
Q

Similarly, using the sequence {i,}nen and arguing in a similar fashion yields

Co,4,u(Q) > J [VIu(x) — A(xX)Ru(x)| dx,
Q

which, on account of (1.4), proves the opposite of inequality (3.1), concluding the proof of the first statement.
Ifu € BV4(Q) N C*®(Q), fix a compact set K ¢ Q with nonempty interior and consider

f = fintos 8 = 8Xint(k)-

Then, as above, one can find two sequences {@n }neN,{Pntnen € CX(int(K), RY) such that op— fandyp, - g
pointwise and [|@nllLeo(int(k))» 1P llLedntk)) < 1, for all n € IN. Then we have

C1,au(Q) > I Ru(x) div @, (x) — A(X) - n(x)Ju(x) dx
Q

= I Ru(x) div @, (x) — A(X) - @n(x)Tu(x) dx
K

M=

J (0x; Ru(x) + A(i)(x)llu(x))<pg)(x) dx.

11K

Since u € C*®(Q), we have VRu + AJu € L1(K). Thus, by the Dominated Convergence Theorem,

Cran(Q) > j IVRU() + AC)Tu()| dx.
K

The conclusion follows using an exhaustive sequence of compacts via monotone convergence. O

We endow the space BV4(Q, C) with the following norm:
lullgv, () = lulriq) + [Dula(Q).

Lemma 3.5 (Norm equivalence). Let Q c RN be anopen and bounded set. Let A : RN — RY be locally bounded.
Then u € BV4(Q) if and only if u € BV(Q). Moreover, for every u € BV (Q), there exists a positive constant
K = K(A, Q) such that

K Yullsva) < lullav, o) < Klulpv)-

Proof. Denoting by sup,, the supremum over functions ¢ € C°(Q, RN) with |@|lL=(q) < 1, we get

[Dul(Q) = |Ru|(Q) + |Tu|(Q) = sup J Ru(x) div ¢(x) dx + sup j Ju(x) div ¢ (x) dx
¢ @
Q Q
= sup J Ru(x)divep(x) — Ax) - @(x)IJu(x) + A(x) - (x)IJu dx
®
Q

+ sgp J Ju(x) divp(x) + A(X) - p(xX)Ru(x) — A(x) - p(x)Ru(x) dx
Q
< sgp J Ru(x)divep(x) — A(x) - @(x)TJu(x) dx + sgp J Ax) - (x)TJu(x) dx
Q Q
+ sgp J Ju(x) divp(x) + A(x) - p(x)Ru(x) dx + Slql)p J A(X) - (—p)(xX)Ru(x) dx
< C1,a,u(Q) + C2,4,u(Q) + | AllLeo ) lullLr(q)- i
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Therefore, we have that
llullsvi) < (1 + AL @) lullBv,(Q)-

For the second inequality, we have

C1,4,u(Q) <sup J Ru(x) div ¢(x) dx + sup J AX) - (—9)(x)Tu(x) dx
@ ®
Q Q

< IDRu|(Q) + |4l =) j |3u| dx,
Q

and similarly for C; 4,,(Q). Therefore, we conclude

lullgv, @) < (1 + |AllLo@)lulBv)-
Calling K := (1 + ||AllL=~(q)) concludes the proof. O

Lemma 3.6 (Structure theorem for BV4-functions). Let Q ¢ RN be an open and bounded set, A : RN — RN
locally bounded and u € BV 4(Q). There exists a unique R?N -valued finite Radon measure Hau = (M1,4,u> M2,4,u)
such that

j () div p(x) +1A(X) - POOUX) dx = I Ru(x) div p(0) - AKX) - 900 Tu(x) dx
Q Q

+1i J Ju(x) div p(x) + A(x) - e(x)Ru(x) dx
Q

= J‘P(X) ~d(uy,a,u +ip2,4,0)(X)
Q

for every ¢ € C(Q, RN) and
[Dula(Q) = |u1,4,ul(Q) + |p2,4,ul(Q).

Proof. Of course, we have

< Ciau(Ql@lio@ forall p e C(Q,RN).

J Ru(x)divep(x) - A(x) - @(x)TJu(x) dx
Q

Then a standard application of the Hahn-Banach Theorem yields the existence of a linear and continuous
extension L of the functional ¥ : C°(Q, RY) —» R

(¥, p) = J Ru(x) div p(x) = A(x) - (x)Ju(x) dx
Q

to the normed space (C.(Q, RM), | - L~ (q)) such that
LI = ¥l = C1,4,u(Q).

On the other hand, by the Riesz Representation Theorem (cf. [3, Corollary 1.55]) there exists a unique RN-
valued finite Radon measure 1 4, with

L) = [ 900 duraul) forallg e CQ, RY),
Q

and such that [p1,4,,1(Q) = [L|l. Thus |p1,4,u1(Q) = C1,4,4(Q). The same argument can be repeated verbatim
for the functional
0 j Tu() div p(x) + AX) - (ORU(0) dx,
Q
which concludes the proof. O
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Lemma 3.7 (Lower semicontinuity of |[Du|4(Q)). LetA : RN — RN be locally bounded. Let Q c RY be an open
set and {u}xen € BV4(Q) a sequence converging locally in LY (Q) to a function u. Then

liminf [Dug|a(Q) > [Dula(Q).
k—o0
Proof. Fix ¢ € C2(Q, RN) with @]z« (q) < 1. By the definitions of C; 4,,, (), we have

C1,4,,(Q) = | Rur(x)dive(x) — A(x) - p(x)Ju(x) dx,

C2,4,u,(Q) = | Jur(x) dive(x) + A(X) - p(x)Rug(x) dx.

o e T )

1

By the convergence of {uy}ren in L;

(Q, C) to u, we get

lilgn inf Cq,4,,(Q) > j Ru(x) divp(x) — A(X) - @(x)TJu(x) dx,

lilzn inf Cy, 4,4, (Q) = | Julx)dive(x) + A(X) - @(X)Ru(x) dx.
—00

Ot ©

The assertion follows by the definition of |Du|4(Q) and the arbitrariness of such functions ¢. O
Lemma 3.8. The space (BVa(Q), || - lgv,(q)) is a real Banach space.

Proof. Itisreadily seen that || - gy, (q) is @ norm (to this end, it is enough to check that the map u — |Du|4(Q)
defines a semi-norm over BV,4(Q), which is left to the reader). Let us prove that the space is complete. Let
{untnenw € BV4(Q) be a Cauchy sequence, namely for every € > O there exists ny € IN such that

J |up — uglr dx + |D(up — up)|a(Q) < e forall n, k > ng.
Q

In particular, {un}nen is a Cauchy sequence in the Banach space (L1(Q), || - l1(q)), which implies that there
exists u € L1(Q) with |Juy, - ullpiq) — 0, as n — oo. Therefore, in light of Lemma 3.7, we get

|D(u — u)|a(Q) < limnianD(un —up)la(Q) <e forall k > ng,

namely |D(u, — u)[4(Q) — 0, as n — oo, which concludes the proof. O

Lemma 3.9 (Multiplication by Lipschitz functions). Let Q c RN be an open set. Let A : RN — RN be locally
bounded and u € BV 4 1oc(Q). Then, for every locally Lipschitz  : Q — R, the function uyp € BV 1oc(Q) and

Hi,apu = Y140 — Ru- VLN,
M, apu = YH2,a0 — Ju - VHLY,

where LN denotes the N-dimensional Lebesgue measure.

Proof. Consider U € Q open and let ¢ € C°(U, RY) be such that lollL~w) < 1. By Rademacher’s Theorem we
have  div ¢ = div(@) — ¢ - Vi a.e. in U. Therefore, up to smoothing 1, we get

[ R0 div e - 4w - o3I dx
U

= j PORu(x) div p(x) - A(x) - () (x)Ju(x) dx

U
- | Ruo divipe)(0 - 400 - @0OPCOTU0) dx - [ RuGAP() - Vi) dx
U U

< CLau(OIYl ooy + Lip)lIull @) -
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10 —— A.Pinamonti et al., Magnetic BV-functions and the Bourgain—Brezis—Mironescu formula DE GRUYTER

A similar estimate holds for the second term, proving uy € BV 4 joc(Q). By Lemma 3.6, we have

[ 900 dpr.aan = [ wooRUGY div o0 - 400 - 9LOWEOTUCD) dx

Q Q
- | Rut0 divppI0 - 400 - PLOYEOTU) dx - [ RUEIPCO - V() dx
Q Q
- j PP 4w - j RuU()P() - VP(x) dx
Q Q
and the assertion follows. A similar argument holds also for y> 4,4y, and this concludes the proof. O

Letn € C8°(1RN ) be a radial nonnegative function with f]RN n(x) dx = 1 and supp(n) ¢ B1(0). Given € > 0 and
u € L1(Q; C), extended to zero out of Q, we define the usual regularization

ww = o [ (2 Jumay= 5 [ a2 Juwray (3.2)

RN B(x,¢)

Next we have the magnetic counterpart of the classic Anzellotti-Giaquinta Theorem [4].

Lemma 3.10 (Approximation with smooth functions). Suppose that A : RN — RN is locally Lipschitz. Let
Q c RN be an open and bounded set and let u € BV4(Q). Then there exists a sequence {u}xen € C®(Q, C)
such that

lim J lux —ulydx=0 and lim |Dula(Q) = |Duls(Q).

k—o00 k—o00

Q

Proof. We follow closely the proof of [22, Theorem 5.3]. In light of the semicontinuity property (Lemma 3.7),
it is enough to prove that, for every € > 0, there exists a function v, € C*(Q) such that

Jlu —Velrdx <e and |Dve|a(Q) < |Dula(Q) + €. (3.3)
Q

Let {Qj}jen be a sequence of domains defined, for m € NN, as follows:

1
Q= {er;dist(x,aQ)> _}nB(o,k+m), jeN,
m+j

where B(0, k + m) denotes the open ball of center 0 and radius k + m. Since |Du|, is a Radon measure, given
£ > 0 we can choose m € IN so large that

[Duja(Q\ Qo) < €. (3.4)

We want to stress that the sequence of open domains {{;} is built in such a way that

QjcQjycQ foranyjeN, and [ JQj=0q.
j=0

We now define another sequence of open domains {Uj}jcn, by setting
Uo := Qo, Uj:=0Qj41 \51;1 forj>1.

By standard results, there exists a partition of unity related to the covering {Uj};en, which means that there
exists {fj}jen € C2°(Uj) suchthatO < fj < 1foreveryj > Oand Z}fo fj = 1on Q. We stress that the last property,
in particular, implies that
o0
Y Vfi=0 onQ. (3.5)
j=0
Recalling the definition of the norm | - |; given by (1.4), and the classical properties of the convolution, we
easily get that for every j > 0 there exists O < €; < € such that

supp((fju)g,) < Uj, J |(fiw)e; — fjuly dx < €270+, j |V fj)e, — uV fjl1 dx < €270+, (3.6)
Q Q
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DE GRUYTER A. Pinamonti et al., Magnetic BV-functions and the Bourgain-Brezis—Mironescu formula =— 11

We can now define v, := Z}fo(ufj)g,.. Since the sum is locally finite, we have that v, € C*(Q, C), and that
u= Z,('fo uf; pointwise. Let us start considering the real part of the linear functional

CX(Q)>¢— ng(x) div @(x) +1A(x) - p(x) ve(x) dx.
Q

We have

J Rve(x) div @(x) — A(x) - (x)Tve(x) dx
Q

=) [(®uf) + ne)0divpeo de- Y [ 400+ @O * 1500 dx =T33
Q

j=0 0 j=0

—.

Now

) div ¢ (x) dy dx
€j

=y I Ru(y)fj(y) div(e * n¢)(y) dy
]:OQ

-y I Ru(y) div(fj(@ = ne))(y) dy - Y J Ru()Vfi(y) - (¢ = ne)(y) dy
j=04 =0q

-y I Ru(y) div(fj(@ * ne)W) dy - ). J (RuV fj) * ne,)(y) - RUMV ()] - 9(y) dy
j=04 7=0q

= j’ _ jll,

where in the last equality we used (3.5). For JJ, we have
) dy] dx

)dxdy

7 - sz(x ()L [ vumon(*;
Ja

&; &j

o

—.

= i iN J jA(y) gD(x)JJu(y)f;()’)’I<
i aa

v 1
+;§”(A(x) AW - pIfiom(* T ) dray

-

) Mg

jA(y) Gito + ne 3 dy + 3 - [ 4w - 400 - pwmesom(*Y ) axay.
€j
09

IOIQQ

Denoting fj(@ = n¢,) == (fj(@1 * Ne;), - - ., fj(@n * Ng;)), We note that |fj(@ = ng)| < 1 for any j > 0, whenever
l@llLeq) < 1. We also stress that |7 | < &, because of (3.6). Therefore,

I R (0) div @ (x) — ACX) - () TV (x) dx
Q

<y J Ru(y) div(fj(@ * ne;))(y) = AWY) - (fi(@ * 1)) (¥) Iuly) dy’

(3.7)
jZOQ

(9]

+ Y | | [aco- a0 ecorupsmm( < ) axay

=0'% 5 a

+ E.

Now,
(o)

y J Ru(y) div(fj(@ * ne))(y) — AY) - (fi(@ * 1)) () Ju(y) dy‘
j:OQ

can be treated as in [22, Theorem 2, Section 5.2.2.]. Indeed, recalling that by construction every point x € Q
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12 — A. Pinamonti et al., Magnetic BV-functions and the Bourgain—Brezis—Mironescu formula DE GRUYTER

belongs to at most three of the sets Uj, we have

Z j Ru(y) div(fj(@ = ne))(y) — A(Y) - (Fi(@ * ng))(y)Iuly) dy
j:OQ

(] ‘

JRu(y) div(fo(@ * ne)(Y) = AWY) - (fol@ * Ne,))(¥)Iu(y) dy
Q

+y I Ru(y) div(fj(@ = ne))(y) — Ay) - (fj(@ * ng))(y) Iuly) dyl
jzlg

< C1au(Q) + Z C1,4,u(Uj) < C1,4,u(Q) + 3C1,4,u(Q\ Qo)
j=1

< C1,4,u(Q) + 3¢,

where the last inequality follows from (3.4). It remains to estimate

(o8] (e8]

= | Jaw - a0y - peomumpm(* ) ax dy’ SN
=015 90 J j=0

Recalling that A is locally Lipschitz, [|¢|lr~q) < 1 and that supp(n) c B1(0), we have

Y 19931 < Lip(4, Q)e j n() dzj Y fi13uy)l dy = e Lip(4, Q)31 @) =: Ce.
j=0 RN Q j=0

Going back to (3.7), taking the supremum over ¢ and by the arbitrariness of € > 0, we get precisely (3.3)
for the real part. An analogous argument provides (3.3) also for the imaginary part and this concludes the
proof. O

Definition 3.11 (Extension domains). LetA : R¥ — RY bealocally bounded function. Let @ ¢ RN bean open
set. We say that Q is an extension domain if its boundary 0Q is bounded and for any open set W > Q, there
exists a linear and continuous extension operator E : BV4(Q) — BV4(RN) such that

Eu =0 foralmost every x € RV\ W, and |DEu|s(0Q)=0
for every u € BV4(Q).

Lemma 3.12 (Lipschitz extension domains). Let Q ¢ RY be an open bounded set with Lipschitz boundary and
A : RN — RN locally Lipschitz. Then Q is an extension domain.

Proof. Given an arbitrary open set W > Q, by virtue of [3, Proposition 3.21] there exists a linear and con-
tinuous extension operator Ey : BV(Q, R) — BV(RY, R) such that Eou = O for almost every x € RN \ W, and
IDEou|(0Q) = 0 for all u € BV(Q). Given u € BV4(Q), we have from Lemma 3.5 that u € BV(Q), which means
that both Ru and Ju are elements of BV(Q, R). Let us define

Eu := EgRu +iEgJu, u € BV4(Q).
Then [DEoRu|(0Q) = [DEoJu|(0Q) = 0 and there exists a positive constant Cy depending on W and Q with
lEoRullgymyy < CwlRulgva)y, IEoJullgymwyy < CwllIulsviq)-
Taking into account Lemma 3.5, we have that
IEullpy ) = Cr,a,5u(RY) + Co,a,5u(RY) + | EoRull1 ) + 1 Eo utl: vy
< [DEoRul(RY) + | Allgeow) | Eo Jullpr movy + |EoRull 1wy + 1 Eo Iull gy
+ |[DEoJu|(RY) + || Allzeow) | EoRull 1 )
< (1 + [|Allzoowy) (IEo Rullgy(ryy + | Eo Jullgy(mry)
< (1 + [|Allzeo ) Cw (IR ullgv(q) + 1 Tullsv(Q))
= (1 + Al w)) CwlluliBy (@)
< (1 + Al Lo ) CwKllullBy (0 -
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DE GRUYTER A. Pinamonti et al., Magnetic BV-functions and the Bourgain—Brezis—Mironescu formula = 13

Therefore, there exists C = C(4, Q, W) > 0 such that
|Eullgy,ryy < Clullgv,@) forall u e BV4(Q).
We have to prove that [DEul4(0Q) = 0. We have
IDEu|4(0Q) :=inf{C1 4,pu(U) : 0Q c U, U open} +inf{C;, 4, (U) : 0Q c U open}.
Then, for arbitrary U, U', U" open with 0Q c U c U’ c U" ¢ W, we have
IDEu|a(0Q) < |DEu|4(U) < |DEoRu|(U) + |DEoJul(U) + |AlliLewllEullL: )
< IDEoRu|(U) + |DEoIul(U") + I|All o) | Eull L1 ().
Taking the infimum over U and recalling that [DEyRu|(0Q) = 0 yields
IDEu|a(0Q) < |DEoIul(U") + |Allzeocwy | EullLr ).
Taking the infimum over U’ and recalling that |DEoJu|(0Q) = O yields
IDEu|4(0Q) < |AllLeow) I EullLr -

Finally, taking as U" a sequence {U;'}jen of open sets such that 0Q c U}’ ¢ W and with LN (U") - 0 as
j — oo, we conclude that [DEu|4(0Q) = 0. D

Lemma 3.13 (Convolution). Assumethat A : RN — RY is locally Lipschitz. Suppose that U c RN is an open set
with U e Q and let u € BV4(Q). Then, for every sufficiently small € > 0, there holds

|Duela(U) < [Dul4(Q) + e Lip(A, Q)[ullL(q)-

Proof. Fix ¢ € CL(U, RN) with ||¢]lL(m) < 1.Choose § > O such that {x € RN : d(x, U) < 8} ¢ Q. Then we have
lellLeo(a) < 1 and supp(@e) ¢ {x € RN : d(x, U) < 6} for all small & > 0. Then

j Rug(x) divp(x) = A(X) - (0 Tueg(x) dx = [ (Ru)e(x) div p(x) — A(x) - 9(x)(Ju)e(x) dx

U

Ru(x)(div @) (x) = (A(X) - 9(x))eJu(x) dx

Ru(x) div g (x) — A(x) - () Tu(x) dx

Il
O, O, O—y

-| = [ n(*22)am - 400)- 9 dyuco dx
Q RN

< j Ru(x) div e (x) = A(x) - @ (x)TJu(x) dx
Q

v » [ (X2 ) - a1 ayisucolx

€
Q0 B
< C1,4,u(Q) + e Lip(4, Q)llullL: ().

Similarly, for every ¢ € CL(U, RY) with [|¢|lLo(uy < 1, we get

j Jue(x) div p(x) + A(x) - (X)Rug(x) dx < € 4,4(Q) + eLip(4, Q)lullrr(q)-
U

By the definition of [Du|4(Q) and taking the supremum over all ¢, we get the assertion. O

Lemma 3.14 (Compactness for BV4(Q)-functions). Assume that Q c RYN is a bounded domain with Lipschitz
boundary and that A : RN — RY is locally bounded. Let {uy}xen be a bounded sequence in BV 4(Q). Then, up
to a subsequence, it converges strongly in L(Q) to some function u € BV4(Q).
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14 — A.Pinamonti et al., Magnetic BV-functions and the Bourgain—Brezis—Mironescu formula DE GRUYTER

Proof. By the approximation Lemma 3.10, for any k € IN there is vy € BV4(Q) n C*°(Q) such that

1
[ = vidi dx < 4. supipvila(@ - c, (3.8
o keN

for some C > 0. In particular, we have

j vkl dx < J lug — vl dx + J luglidx < C'+1, C':=supllullzi)-
a o o kelN
Now, Lemma 3.4 yields vy € W}l’l(Q) and

j IVvi — iAvely dx = [Dvila(Q).
Q
Therefore, we obtain

j [Vvili dx < J Vv —iAvg|1 dx + Cq I |Avg|1 dx
Q Q Q
< IDVila(Q) + Cull Al e IVl oy < €

for some C" > 0. Hence we infer that {vx}ren is a bounded sequence in W1(Q). Since 0Q is smooth, from
the Rellich Compact Embedding Theorem there exists a subsequence {v;}jew of {vi}kenw and w € L1(Q) such
that vy, —» win L'(Q). Then from (3.8) we get u K — win L1(Q). By the semi-continuity Lemma 3.7 we obtain

[Dw[4(Q) < 1in}(inf|ka].|A(Q) <C,
i

which shows that w € BV4(Q) and concludes the proof. O

4 Proof of the main result

We now state two results that will be proven in the next section. In the following Q, y is as in definition (1.1).

Theorem 4.1 (BV4-case). Let Q c RN be an open bounded set with Lipschitz boundary and A : RN — RY of
class C%. Let u € BV 4(Q) and consider a sequence {p,;;}men 0f nonnegative radial functions with

(o]

lim me(r)rN‘1 dr=1 (4.1)
m—00
0
and such that, for every 6 > 0,
lim me(r)rN‘l dr =0. (4.2)
5

Then we have

. ux —ei(x_y).A(%)u
g ”| & s (x ~ y) dx dy = Q1 yIDulA(Q).

[x -yl

m—o0

QQ

Theorem 4.2 (W}l’p(Q)-case). Let Q c RY be an open bounded set with Lipschitz boundary and assume that
AeC’(RN,RY). Letp>1,ue le’p(Q) and {pm}men as in Theorem 4.1. Then we have

lu(x) - e Ay (y)) b
JJ TEYE pm(x-y) dxdy:pr,NJIVu—lAulp dx.

QQ Q

lim
m—-oo

Remark 4.3. In the notation of Theorem 4.1, assuming (4.1) and (4.2) automatically implies that

8
n}gr(l)o me(r)rN‘“ﬂ dr =0 foreveryf > 0and for every § > 0.
0

Brought to you by | University of Sussex Library
Authenticated
Download Date | 7/9/17 2:43 AM



DE GRUYTER A. Pinamonti et al., Magnetic BV-functions and the Bourgain—-Brezis—Mironescu formula =—— 15

In fact, fixed § > 0, taking an arbitrary O < 7 < §, we have

)

me(r)rN‘“ﬁ dr =

5
PN dr + me(r)rN‘“ﬁ dr
0 T

Ot~

T 0 .
<t jpm(r)rN_l dr+ 6 me(r)rN‘1 dr< Cth + 6F me(r)r’\"1 dr,
0 T

T
from which the assertion follows by letting m — oo first, using (4.2), and finally letting 7 \, 0.

Proof of the main result (Theorem 1.1) completed. Let rq denote the diameter of Q. Then we consider a func-
tion ¥ € CX(RY), P(x) = Yo(|x|) with o(t) = 1 for t < rq and Po(t) = 0 for ¢ > 2rg. Then Po(lx —y|) = 1
for every x,y € Q. Let {Spm}men € (0, 1) with s, ~ 1. For a p > 1 consider the sequence of radial functions
in L1 (RN)

p(1-sm)

X|VPonp ST ho(|x]), xeRN, meN. (4.3)

Pm(x]) :=

Notice that both conditions (4.1) and (4.2) hold, since

ro

ro
: N-1 3, _ 1; _ —pSm+p-1 3, _ 1: (1-sm) _
n}l_rgojpm(r)r dr = n}l_r}gop(l Sm) j r dr = n}l_{réorg =1
0

0
and
2rq 2rq
Jim I pm(rN"tdr = Jim p(1 - sm) j pl/: -El)—p dr<C lim 1 sy =0.
ra Ta
In a similar fashion, for any 6 > 0, there holds
00 2rg
lim_ J PPV dr < C lim p(1 - sp) j tmm%_p dt=0
B 8
Then Theorem 1.1 follows directly from Theorems 4.1 and 4.2 using p,, as in (4.3). O
We first need the following:
Lemma 4.4. Let p > 1. Then, forevery v € CV, it holds
Jim, (|- ol ot ah = vt (4.4)
N

Proof. First of all we observe that, due to symmetry reasons, Q,,y is independent of the choice of the direc-
tion w € SY1. We prove that (4.4) easily follows assuming (4.4) withv e RN. Let v = (v1,...,vy) € CY and
h=(hi,...,hy) € RY. Then

h] P N hi ) N hj p
v Ihll | ZRV’W“;]V’WP
3 R wlv. B (4.5)
RV - ve—I|, .
}Z; l Ihll ' Id
where we denoted by Rv = (Rvy, ..., Rvy)and Jv = (Jvq, ..., Jvy). Using (4.5), we get
. h P .
n!gr(lmHv-Wlppm(h)dh:rggréO”Rv —| pm(h) dh + hm ”JIV |h|| pm(h) dh

]RN
= pQpN(IRVP + [IV[P) = pQp nlVvp.
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In order to prove (4.4) with v € RY, we apply the co-area formula, a change of variable and (4.1), getting

(o)
p p
lim ”v%l pm(h)dhzr’}il%oj J |v%| pm(h) 31 (h) dR

m—oo
RN 0 {|h|=R}

(o)
Jp (R)RN"' dR j v hiP AV ()
SNfl

= v | h] d3c¥1()

]
]

L

=P | lw-hP dFN"1(h) = pQpnIvIP

$ 1
for an arbitrarily fixed w € $¥~1. This concludes the proof. O
Let now {p;}men be as in Theorem 4.1. The following is the main result for smooth functions.

Proposition 4.5 (Smooth case). Let Q ¢ RN be a bounded set and A € C2(RN, RN). Then

. lu(x) — eNACT) Yy B '
i JJ Ix—ylP ppm(X_Y)dXd)’=pr,NJ|Vu—1Au|§ dx

QQ Q

m—oo
for every u € C2(Q, C) and for every p > 1. In particular, if p = 1, then

lim

m—oo

pm(x —y) dx dy = Q1,n|Dula(Q). (4.6)

J J |u(x) - VAT Yy

|x =yl
QQ

Proof. Let p > 1. If we set @(y) := X VACT)y(y), since

Vo) = € vu() —ia( X2 Juw) + Supr-y)-va(X2Y)),

ifx,y € Q, since u, A € C*(Q), by Taylor’s formula we get (for y € B(x, p) c Q)

u(x) i(x-y)-A(

%) - -
uy) _ 0 =00 _ vy - idouto) - XY

+ O(lx =yl).
|x—y| x—yl x—yl Y

Then, taking into account (ii) of Lemma 5.1 below, applied with T(x) := Vu(x) — iA(x)u(x) we get

Iu(X) el Ay (y)p
Ix -yl

For x € Q, if we set R = dist(x, 0Q), then we get for some positive constant C,

|<Vu(x) AGUX)) - —] +O(x - yl).

[ Iu00) - eV AED () — |(Vux) - iAu() - (x - )
¥, (x) _y P m(x—y)ldy
_ u(x) - eV A y(y)
- j | - ] - |70 - iacouco)- - I| pmx —y)dy
B(x,Ry)
u(x) — AT y(y)
o | S - o - iacouen - X gty
Q\B(x,Ry)
<C J X —=ylom(x-y)dy + C J pPm(x —y)dy
B(x,Ry) Q\B(x,Ry)
Ry )
<C J PN dr+C J pm(r)rN-tdr,
0 Ry
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where to handle the second integral we used that

_ pilx-y)-A(SY) 14
|u(x) e 2 u()’)| <C forallx,y e Q.

—|(Vu(x) AGOU()) - —|
|x =yl p

Letting m — oo and recalling (4.2) and Remark 4.3, we get ¥,,,(x) — O for every x € Q. Since

W0l < Cme(x—y) dy < CmemrN-1 dr<c,
Q 0

the Dominated Convergence Theorem yields ¥,, — 0 in L1(Q) as m — oo. Then, to get the assertion, it is
sufficient to prove that

_. . _— p
lim JJI(Vu(X) IAMuX)) - (x = y)lp

m—oo |x — y|P

pm(x —y)dy dx = pQp.n J [Vu - iAulp dx.
Q0 Q

Fixed x € Q, by virtue of formula (4.4), we can write

PQpnIVu(x) 1A U, = Jim ”(VU(X) AM)ux)) - |h|| pm(h)d

IRN
= Jim[|ovuco - 140oucn) —| pm(x—y)dy
Q
e im [ ut0 - 1400000 - £ -y

RN\Q
To conclude the proof, it suffices to prove that
lim I J l(Vu(x) —iA(X)u(x)) - u|ppm(x -y)dydx =0.
m—’OOQRN\Q Ix—=ylip

For every A > 0, we denote
Q= {x € Q : dist(x, 0Q) > A},

and M := ||[Vu - 1Au||Lm(Q) Then we obtain

J j |(V”(X) —1Axu(x) - %Epm(x ~y)dy dx

Q RN\Q
. xX-y P
- j j |(Vuc0 - i400u00) WL"’"‘X —y) dy dx
Q (RN\Q)NB(x,A)
. x-y|P
+ j j (VU0 - 14 0ot |Xfylem(x ~y) dy dx
Q (RM\Q)nB(x, )¢
. xX-y P
- j j (70 - 1A 0o |X—_y||ppm(x ~y)dy dx
Q\Qx (RM\Q)NB(x,A)
. x-y P
o] |oueo-iacouc- |Xfylem(x ~y)dy dx
Q (RM\Q)NB(x,A)¢
<CM J J pm(x—y)dxdy+CMJ J pm(x —y)dydx
O\Q) (RM\Q)NB(x,A) Q (RM\Q)NB(x, )¢
<cMIo\ @l | pudn+ Ml | puih)dh,
{lhl<A} {|h|>A}

the assertion follows by letting m — oo, recalling formula (4.2), and finally letting A — 0. If p = 1, the asser-
tion follows recalling Lemma 3.4. O
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5 Proof of Theorem 4.2

We state in the following a few elementary inequalities concerning the norm introduced in (1.4).

Lemma 5.1. The following properties of | - |, are true:

(i) Letm = Norm = 1. There exists a positive constant C = C(p, N) such that |z - w|p < Clz|p|w|p forallz € C™
andw € CVN.

(i) If T : RN — CN is a C'-function, there exists a positive constant C such that

-y
-yl
forallx,y € Q, where O(|x — y|) denotes any continuous function R : R?N — C such that |R(x, Vplx - y|™t
is bounded in Q x Q.

“T(m- l’; +O(|x—y|)|z—|T<x)-li—:§||j < Clx—yl

Proof. To prove (i), we proceed as follows: let z € CV,

N 14 N p
|z~w|§ = szw]- = ( Z RzjRwj — Iz;Iw;j + i(Rz;Iw;j + IzjRw;j) )
j=1 p j=1 p
N p | N p
= Z RzjRwj - Jz;Iw;| + Z RzjIw;j + JzjRw;
j=1 j=1
N p N p N P N p
< C(p)( Y Rz Rwj| +|) Iz Iwj| +| ) Rz Twj| +|) IzjRw; )
j=1 j=1 j=1 j=1

< Cp)(IRzPIRWP +(3zP|TwlP + [Rz[P|IwlP +|Iz[P|[Rw|P)

Dy |P
= C|Z|p|W|p-

The case m = 1, i.e. z € C, works in a similar way. To prove (ii), it is sufficient to combine the inequality
[bP — aP| < M(aP~! + bP~1)|b — a| for

a -l T() - 2+ O(1x - y|)| b::’T(X)_ x-y

,V| Ix - yllp

with the triangular inequality

“T() Y o(x- y|>| |0 :;[ < 10(x - yDlp < Clx -y,
14

-yl
taking into account that a, b are bounded in Q. O
We start with the following lemma.

Lemma 5.2. Let A : RN — RN be locally bounded. Then, for any compact V c RN with Q e V, there exists
C=C(A, V) > 0such that

j u(y + h) - e®A0 Dy dy < ClrPul?

Rn

lp IR")
forallu € WP (RN) such that u = 0 on VC and any h € RN with |h| < 1.
A y
Proof. Assume first that u € C3°(RY) with u = 0 on V. Fix y, h € RN and define
@(t) = eOPAV+ Dy 4 th),  te 0, 1].

Then we have u(y + h) — e A0+ y(y) = Iol @' (t) dt, and since

@' (t) = e-ORAY+) (Vyu(y+th) 1A<y+ )u(y+th))
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by Holder’s inequality and recalling that |el1-0"40+2)|, < C, we get

1
. p
luy + h) - &40 Hy ) < clrp ”Vyu(y +th) - iA(y N g>u(y + th)’ dt.
D
0

Therefore, integrating with respect to y over R and using Fubini’s Theorem, we get

1
. 14
J lu(y + h) — M40 DU E dy < ClhPP j dt ”Vyu(y +thy Ay + g)u(y + )| dy
P

RN 0 R"
— p
= C|h/? dtJ Vzu(z)—iA<z+ ! 2l‘h>u(z)| dz
2 p
RN
< CIhIP | IVou(z) - iA(z)u(2)lp dz

+ ClhP lA(z+ 1-

S — %_. O —_—

Zth) - A(z)|p|u(z)|§; dz.
p

Then, since A is bounded on the set V, we have for some constant C > 0

j lu(y + h) - e A0 Dy dy < C|h|P( J IV.u(z) - iA(z)u(2)lh dz + J lu(z)lh dz)

RN RN R?
_ Dias 1P
= CIRP Iy
When dealing with a general u, we can argue by a density argument [27, Theorem 7.22]. O

Lemma 5.3. Let A : RY — RY be locally bounded. Let u € W}l’p(Q) and p € LY(RN) with p > 0. Then

p
w,P(©Q)’

|u(x) - eV ACT Yy ()b
H P p(x - y) dxdy < Clipllys Jul

|x - yIP
QaQ
where C depends only on Q and A.
Proof. Let V c RY be a fixed compact set with Q € V. Given u ¢ W};’p (Q), there exists i € Wj’p (RM) with
t=uonQandit=0on Ve (seee.g. [37, Lemma 2.2]). By Lemma 5.2, we obtain

~ _ ihAy+ ) = NP PP D, 1P
[ 1+ by - M40 Daglp ay < i 1y < CIRIPII 1 g (5.1)
IRN

for some positive constant C depending on Q and A. Then, in light of (5.1), we get

lu(x) - eI A y(y) P la(y + h) - " A0+ Dagy)p

] x—yP pee-yaxdys | [ AP dy dh

QQ RN ]RN
) - h iRAG+D 560P dv ) dh
= e lu(y + h) e u(ylp dy

RN RY
< CIIPIILIIIMII;’V;,,,(Q),
concluding the proof. O

We can now conclude the proof of Theorem 4.2. Setting

(x) - ei(xfy)-A(xzﬂ)u(y) 1

u
Frn(x,y) := Xyl pm(x-y), x,yeQ, meN,
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by virtue of Lemma 5.3, forall u, v € W}l’p (Q), we have (recall that p,, fulfills condition (4.1))

[1F e axa) = IFmlizr@xe)| < I1Fy — Frllzexa) < Cllu - Viwtr )

for some C > 0 depending on Q and A. This allows to prove the assertion for functions u € C2(Q) since for
everyu € W}l’p (Q) thereis a sequence {uj}jen € C*(Q) such that fluj — u”w}”(u) — 0. Therefore, the assertion
follows by Proposition 4.5.

6 Proof of Theorem 4.1

We first state a technical lemma.
Lemma 6.1. Let Q c RN be open and bounded and A € C>(RY, RN) and R > 0. For x,y € Q let
P(z) := eONACT+) ¢ B0, R).
Then there exist positive constants D1 = D1(A, Q) and D, = D,(A, Q, R) such that
[(z) - P(O)|1 < Dlzllx - y| + Da|z|*|x - y| (6.1)
for every z € B(0, R). Moreover, lim supg_,o D> < co.

Proof. Recalling (1.4), we can prove (6.1) separately for the real part Ry and the imaginary part Ji. To
simplify the notation, for fixed x, y € Q, let us denote

X+Yy

9(z) = (x —y)-A( +z), z € B(O, R).

Therefore,
Y(z) = RY(2) +iTYP(2) = cos(9(2)) + isin(I(z)), z € B(O, R).

We start considering first the real part Ry. By Taylor’s formula with Lagrange’s rest, we have
1 _
R(z) - RYP(0) = VRY(O) - z + EVZLRll)(tz)z -z (6.2)

for some 7 € [0, 1], where V2R stands for the Hessian matrix of Ri). A simple computation gives

N X+Yy

32, RY(2) = —sin(9(2))d,9(2) = —sin(9(2)) ¥ (xx - yk)aZ}.A(k)<T + z)

k=1

foreveryj=1,..., N. Therefore, we have

VRP(0) = —sin((x —y) -A(X;y))(x —y)- VA(X;y), (6.3)

where VA denotes the Jacobian matrix of A. Another quite simple computation yields

(V2RY(2)n,j = —[ cos(8(z))((x —y)- aZhA(g + Z))((x _y). az].A<X2ﬂ +z)>
(6.4)

+5sin(9(2))(x - y) - 0z, az,.A(X ; + Z>]

foreveryi,j=1,...,N.
Now, using (6.2) and (6.3), we get

IRY(2) - RY(0)] < |VA<¥)||2||X “yl+ %|z|2|v2uz¢(?z)| for some 7 € [0, 1].

On the other hand, by (6.4) we get

2 N
V2 R(E2)| < |x—y|(C|x—y||VA(“y vz)| + Y a2 +zz)|).
k=1

2 2
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Therefore, (6.1) for R follows taking

D, := sup VA<X+y>l <00
x,yeQ 2
and
1 2
D; := = sup leA(k)(X y+tz)|+C|x y||VA(ﬂ+tz>| < 00.
x,yeQ k 1 2
z€B(0,R)

The fact thatlim supp_,o D2 < oo follows observing that D, decreases as R decreases. Since a similar argument
holds for Ji, we get the assertion. O

Lemma 6.2. Let Q c RN be an openset and A € C>(RY, RN). Let u € L*(Q). Denote by u. its regularization as
defined in (3.2). Define
Q,:={xeQ:d(x,0Q)>r} forallr>0.

Then, forallr > 0 and € € (0, r), there holds

I J lue (x) - XAy (y)]

x-y)dxd

Q, Q,

_ pl-»-A(F)
SJJ [u(x) —e u(y)l1pm(x_y)dxdy

[x -yl

el VA +2) LA
+_ J ” u(y) - z u(y)llpm(x—y)dxdydz

[x =yl
B(0,¢)

and

1 2 VAT +2) () — l-1ACT )y,
i & [ o) [

B(0,¢) QQ

Proof. Letusextend u to the whole of RN by zero. To simplify the notation, let us still denote by u its extension.
By definition,

e (x) - eV Ay (y) = giN J U(g)(”(x_z) Aty - 2) de
RN

:eiN I ( )(u(x 2) - e A u(y - 2)) dz.

B(0,¢)

Thus, for every € € (0, r), there holds

1(x )-A( 2)
J J |ue(x) — ™7 us()/)llpm(x_y) dx dy

Ix =yl
Q0
1 Z\ [u(x - z) — eCNACTE) Yy (y - 2)|;
— - -y)dzdxd
s | ] ] aZ) r pnlx-y) dzdxdy
Q, Q, BO,e)
1 z u(x) — elNACT +2y
se—N J’ n(E)Jj| ) X7 (y)llpm(x—y)dxdydzsj+jﬂ,
B(0,¢) Q0

where

«
I

L zZ\ [ [ [u() - eI Ay )
eN J n(E)JJ Ix -yl Pm(x—y)dxdydz

B(0,¢) QQ

pm(x —y)dxdy

JJWu VA ()]
[x =yl
Q

Q
Brought to you by | University of Sussex Library

Authenticated
Download Date | 7/9/17 2:43 AM



22 — A.Pinamonti et al., Magnetic BV-functions and the Bourgain—Brezis—Mironescu formula DE GRUYTER

and

1 z |l CIACGH 42y (y) — el AG Dy (y)|y
JJ.—E—N J n(E>Jj T pm(x—y)dxdydz.

B(O,e) Q0
Define (z) := el AT +2) Then [)(z)|; < 2 forall z € B(0, €) and by Lemma 6.1,

[Y(z) - Y(0)|1 < Dilzllx —y| + Dy|z|*|x —y| forallx,y € Q, z € B(O, €),
for some D; = D1(A, Q) and D, = D,(4A, Q, €) which is bounded as € \, 0. Therefore,
D z D, z 2
wet [ n(E) | [umhizonce-paxdydze 5 [ n(Z) [ [ umhizpntc-y) dxdy dz.
B(0,¢) QQ B(0,¢) QQ

We have

J [u)l1lzl*pm(x - y) dx dy dz
Q

z _
n(E)IZIZdZI |u(y)|1( jpm(x -y dx) dy < 2D (SN |ull;1 0y €2,
Q Q

since [, pm(x —y) dx < SV j(;x’ pm(r)rN=1 dr < 2|$¥-1|, in view of (4.1). Analogously, we have

D z _
o | n(E) | [ uoniziontc-y) dxdy dz < 20118" iuluore

B(0,¢) QQ

Hence, we conclude that

lim lim JJ =0,

£—0 M—00
and the assertion follows. O

Lemma 6.3. Let Q c RN be an open and bounded set. Denote by xy; := tx + (1 — t)y with t € [0, 1] the linear
combination of x, y € Q. There exists a positive constant C = C(N, Q, A) such that

1

el1-0(x~ -y)-A(Y) -1 (V u(x )—iA<X+y
JJ” )M ﬂ v

Q0

)uxyd)me(X—y)dtdxdy

1 (o9
< CIIuIIBVA(W)< J Npm(r) dr + J ™o dr)
0 1

for every open set W > Q and for every u € C2(RN, C) such that u = 0 on W¢.

Proof. 1t is readily seen that there exists a positive constant C = C(A4, Q) such that

i(1-O(x-y)-ACFE)

le -1y <Clx-y| forallx,y e Qandallte€ [0, 1]. (6.5)

Then, by (i) of Lemma 5.1 with p = 1 and by (6.5), we have

1
T —
0

SCJJ
scij

L Yuteyn)| pmtx -y dt dxdy
|l1-00yACT 1||Vyu(Xy0-—h4( )u(xyglpnxx y) dt dx dy

[x = ylpm(x — y)lVyu(xyt) - 1A( )u(xy[)l dtdxdy <J+ 177,

O'—ua o_.,_\
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where we have set

X = ylpm(x - y)|Vyu(xyt) - iA(XYt)u(XYt)L dtdxdy,

b= ylpm - y)|A( 552 ) - ACey|uteyols de dx ay

for some positive constant C = C(A4, Q). Then we get

1
1<c| ( | = yipmix- y)( [ 19,u6er0 - ia0youceyon dt) dx) dy
B(,1)nQ 0

1
+ Cj ( j Pl - y)( j 19, u(xye) — LAy UGyl dt) dx) dy
0

B(y,1)°nQ

J ( J |z|pm(z)( J Vyu(y + t2) ~ 1Ay + t2)u(y + t2)]1 dt) dz) dy

B(0,1)

1
+C I ( J pm(z)( J [Vyu(y + tz) —iA(y + t2)u(y + t2)1 dt) dz) dy
B(0,1)¢ 0

1
<C J Izlpm(z)( J I [Vyu(y + tz) —iA(y + tz)u(y + tz)|; dt dy) dz
B(0,1) RN 0
1
+C J pm(z)( J j [Vyu(y + tz) —iA(y + t2)u(y + tz)|; dt dy) dz
B(0,1)° RN 0

1 [}
C( J [Vyu(z) - iA(2)u(z)|1 dz)( J erm(r) dr + J rN‘lpm(r) dr),
w 0 1

where in the last inequality we used

1
J J V,u(y + t2) ~ 1A(y + t2)u(y + t2)|1 dt dy = J IV,u(2) - A@)u(): dz
RN O RN
as well as
J 1V,u(2) — A@u(); dz = J 1V,u(2) - A@u(2)); dz.
w RN
On the other hand, denoting by Conv(Q) the convex hull of Q, and arguing in a similar fashion, one obtains

1

7 < anan(cOnv(m)( | e dz)( [ Mo dr+ [ #1pn0) dr)
0 1

w

1 ()
C( lu(z)|1 dz)( Nom() dr+ | N1 pn(r) dr)
Junae)( | Aontoar- |

for some positive constant C = C(4, Q). The desired assertion finally follows by combining the above inequal-
ities and then using Lemma 3.4. O

The following lemma is an adaptation to our case of [20, Lemma 3] and [34, Lemma 5.2].
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Lemma 6.4. Let A : RY — RY be locally Lipschitz and let Q ¢ RN be an open and bounded set. Then there
exists a positive constant C = C(Q, A) such that forallr, m > 0, W 5 Q (i.e. Q is compactly contained in W) and
u € BV4(Q), denoting by u € BV4(RN) an extension of u to RN such that u = 0 in W¢, the following inequality
holds:

|u(x) - ATy
x—-vy)dxd

r

< QuIDlA(E]) jpm<s)sN-1 ds+
0

r
CLip(4, ED|u
ip( zr)"u"Ll(W) Jszm(s)ds
0

(o]
Cllullz _
—rL ) JSN Lom(s) ds,

1 0
+ CllﬁllBVA(W,)( Jszm(s) ds + J sV 1p(s) ds) +
0 1 r
where E, := Q + B(0, r), W' (resp. E}) is any bounded open set with W' > W (resp. E. 5 E,).

Proof. Foranye € (0, r), let g be as in formula (3.2) for 7 : R¥ — C. By a change of variables, Fubini’s Theo-
rem and Lemma 5.1, we have

U.(x) — el NACTH)Y
JJ| (%) e(}/)|1pm(x_y) dx dy

Ix =yl
Q0
U (%) — elOVACH) Y Cllullz
SI J’ e (x) 71 S(Y)llpm(x—y)dx) dy+% I pm(h) dh,
Q nBy,n BOryF

where C = C(N) > 0. Let us now define

Y(t) 1= e DOVACO Y (tx + (1 - t)y), tel0,1].

Then )
B0 - ¢ ACE() = (1) - o) = [ Wierde,
0
and since
P(8) = e100DACE ) (9, e+ (1 - 0y) -4 2L e+ (1 - 09) ),
we have
m lM-ACT )y
[ue (x) - — lz U, (y)llpm(x_y)dx>dysj+w,
Q  QnB(y,r) y
where we have set
1
X_
J:=J J J IX—)):I (Vyue(XYt)—lA( 5 )ug(xyt))llpm(x—y)dth) dy,
Q QnB(y,r) 0
1
(v X _ ([ X+ Y \_
J9 := J J ” el (1= 0=y)-A( y)ﬁ (Vy“g(xyt)—lA( y)ug(xyt))l pm(x —y)dtdxdy
Q QnB(y,r) O !

1
X_
_J J ” _; <Vyug(XYt)—1A( )ug(xyt)>l pm(x—y)dtdxdy’.
Q QnB(y,r) 0 1

Let
ci={x e RY s d(x, W) < g};
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we have u, = 0 on W¢ and by Lemmas 6.3 and 3.13

1 [}
JJ < CIIEgIIBVA(WE)( J Npm(r) dr + J N 1o (1) dr)
0 1

1 (o)
< C(I by, + ELip(A, W')||ﬂ||L1(W'))< [ Pomrrdre [ 1o, dr) (6.6)
0 1

for an arbitrary open set W’ > W and for some positive constant C = C(N, Q, A). On the other hand, we have

1
_ . hy_
J ” Vyug(y+th)—1A(y+E)ug(y+th)) |h||pm(h)dydtdh
B0, 0 O

1
Hl Vye(y + th) — LA(y + this(y + th)) - |h|| pm(h) dy dt dh
0Q

B(0,r)
1
J j” 1A y+ ug(y+th) 1A(y+th)ug(y+th)) |h||pm(h)dydtdh
B(0,r) 0 O
< J ”(vyug(z) A2 (2)) - |h|| pm(h) dz dh
B(0,r) E,

1
e | “|<A(“g>‘f‘(y”h))'l,};—|| [Ue(y + th)l1pm(h) dy dt dh
B(0,r) 0 Q 1

[(VyUe(2) - iA(2)Ue(2)) - W], dJ{N-l(w)>sN-1pm(s) dzds

IN
O —
L P
/-~
%)
\'—.

1

e J J”<A<y+ g)-A(y+th)>.|Z_|| [ue(y + th)l1pm(h) dy dt dh.
B(0,r) 0 Q 1

Taking into account that (see the final lines of the proof of Lemma 4.4)

j 1€ Wiy dHN L (w) = Quylél, forany £ € CV,

SN-1

we obtain

< Quy [ [19)7:) - 4@, 5" pn(s) ds dz
0

r

1
J ”| A(Y+th)) |h||1|ﬁs()’+th)llpm(h)dydtdh.
B(0,r) 0 Q

Whence, taking into account Lemma 3.4 and Lemma 3.13, we finally get

J< Q1,N< J|Vyﬂg(z) - iA(z)ﬂg(z)|ldz) me(s)sN’1 ds
0

E,
1
j H| A<y+th>) I| [Ue(y + th)1pm(h) dy dt dh
B(0,r) 0 Q !
_ ) _ CLip(A, E))|ul
< 01,N<|Du|A(E;) j pm(h>dh+eL1p(A,E;)||u||L1(E;)>+ P 5 LW 1 \hlpm(h) dh, (6.7)
B(0,r) B(0,r)
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where in the last inequality we used Lemma 3.13. Putting together (6.7) and (6.6), we get

J J [t (x) — el VAT, ()]
[x =yl

pm(x —y)dxdy
QQ

r r
_ . _ CLip(4, ED|u
< Ql,N(|Du|A<E;) [ one)s" ds + eLipa, E;)nuup(E;)) , LHE 2Ry [ *om(s) as
0

0

1 [}
C(ITlsv, ) + £ Lip(A, W')||ﬂ||L1(W'))( j sV pm(s) ds + j SN Lp(s) ds)
0 1

CllullLl(W)

; J Lom(s)ds.

The conclusion follows letting € — 0*. O

Proof of Theorem 4.1 concluded. Fixr >0, W » Q and let 7 = Eu € BV4(R") be an extension of u such that
u =0 in W and |Du|s(0Q) = 0, according to Lemma 3.12. Using Lemma 6.2 and Lemma 6.4, for every
0 < € < r we have

J J lue(x) — eV ACTy ()]
Ix -yl

pm(x —y)dxdy
Q,nB(0,1) 0,nB(0, 1)

< J J u(x) — A y(y))y
Q0

pm(x —y)dxdy

Ix -yl
1 eIOVACT +2)y () — eI OVACT Iy ()|
1 x—-y)dxdydz
o [ aG)[]" =yl oo
B(0,¢)
' CLip(A, ED @l [
< Ql N|Du|A(E, me(s)sN 1 ds + plA4, 2r L1(W) JSNpm(S) ds
o 0

1 0
_ _ Cl1al:
+ cnuquA(wr)( jszm(s> ds + js” 1pm(s>ds) = j " pm(s) ds
0 1

r

i(x-y)-A(2L +2) _ Lilx-y)-A(ZY)
o I @”le L UM, - y) dxdy de.

eN £ [x -yl

B(0,¢) Q0
Letting m — oo, using (4.6), (4.1) and (4.2) we get
1
QunIDuela(0r 0 B(0, )
. lu(x) — ey (y);
Q0
Pl OVACE+2) (1)) _ pily)ACE)
) e
B(0,¢) QQ
B . el(xyA(2+Zu X)’)A(Z)u
< QuuDTLAED + Jim = | )j j | (I’;) . O - y) dx dy dz.
B(0,¢)

Letting € — 0", using the lower semi-continuity of the total variation and Lemma 6.2, we have

1 ) u(x) — VAT )Yy
Quwipula(0:n (0, 1)) < Jim [ [ " Wl x — y) dx dy
QQ

< Q1,n1DUla(E)),
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the assertion follows letting r \, 0 and observing that
1 _
lim |Du|A(Qr n B<0, —>) _ lim |DEA(EL) = |Dula(Q).
r—0+ r r—0t
Indeed, since |[Du|(-) is a Radon measure, by inner regularity

tim 1Dul( 1 B(0, %)) - 1Duls(Q),
r—0*

and by outer regularity
rlit(l)g |Dula(E}) = [Dula(Q) = |Dul4(Q).

This concludes the proof. O
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