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1 Introduction
The celebrated Bourgain–Brezis–Mironescu formula, (BBM) in short, appeared for the first time in [8, 9], and
provided a new characterization for functions in the Sobolev spaceW1,p(Ω), with p ≥ 1 and for Ω ⊂ ℝN being
a smooth bounded domain. To this end, the authors of [8, 9] perform a careful study of the limit properties
of the Gagliardo semi-norm defined for the fractional Sobolev spaces W s,p(Ω) with 0 < s < 1. In particular,
they considered the limit as s ↗ 1. To be more precise, for anyW1,p(Ω) it holds

lim
s↗1

(1 − s) ∫
Ω

∫
Ω

|u(x) − u(y)|p

|x − y|N+ps
dx dy = Qp,N ∫

Ω

|∇u|p dx, (BBM)

where Qp,N is defined by
Qp,N =

1
p ∫

SN−1

|ω ⋅ h|p dHN−1(h), (1.1)

where SN−1 ⊂ ℝN denotes the unit sphere and ω is an arbitrary unit vector of ℝN . This also allows to get the
stability of (variational) eigenvalues for the fractional p-Laplacian operator as s ↗ 1, see [10]. We recall that
characterizations similar to (BBM) when s ↘ 0 were obtained in [30, 31].

In the following years, a huge effort in trying to extend the results proved in [8] has been made. One of
the first extension was achieved by Nguyen in [32], where he provided a new characterization for functions
in W1,p(ℝN). As we already mentioned, the (BBM)-formula proved in [8] covered the case of Ω ⊂ ℝN being
a smooth and bounded domain, therefore it was quite natural to try to relax the assumptions on the open
set Ω ⊂ ℝN : this kind of problemwas recently addressed in [25] and [26], where Leoni and Spector were able
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to provide a generalization of the (BBM)-formula to any open set Ω ⊂ ℝN . The interest resulted from [8] led
also to related new characterizations of Sobolev spaces in non-Euclidean contexts like the Heisenberg group
(see [7, 18]).

One of the most challenging problems left open in [8] was to provide similar characterizations for func-
tions of bounded variation. A positive answer to this question has been given by Davila in [20] and by Ponce
in [34]. They completed the picture by showing that

lim
s↗1

(1 − s) ∫
Ω

∫
Ω

|u(x) − u(y)|
|x − y|N+s

dx dy = Q1,N |Du|(Ω)

for every bounded Lipschitz set Ω ⊂ ℝN and every u ∈ BV(Ω). We also recall that the extension to any open
set proved in [25, 26] concerns BV-functions as well, see also [35].

In order to try to give a more complete overview of the subject, we have to mention that, parallel to the
fractional theory of Sobolev spaces, there exists a quite developed theory of fractional s-perimeters (e.g. [16]),
and also in this framework there have been several contributions concerning their analysis in the limits s ↗ 1
and s ↘ 0 (see e.g. [2, 17, 21, 23, 28, 29]).

Very recently the results we have mentioned have been discovered to have interesting applications in
image processing, see for instance [12–15]. One of the latest generalizations of (BBM) appeared very recently
in [37] in the context of magnetic Sobolev spaces W1,2

A (Ω). In fact, an important role in the study of par-
ticles which interact with a magnetic field B = ∇ × A, A : ℝ3 → ℝ3, is assumed by another extension of the
Laplacian, namely themagnetic Laplacian (∇ − iA)2 (see [6, 27, 36]), yielding to nonlinear Schrödinger equa-
tions like

− (∇ − iA)2u + u = f(u), (1.2)

which have extensively been studied (see e.g. [5] and references therein), where (∇ − iA)2 is defined in weak
sense as the differential of the integral functional

W1,2
A (Ω) ∋ u Ü→ ∫

Ω

|∇u − iA(x)u|2 dx. (1.3)

If A : ℝN → ℝN is a smooth function and s ∈ (0, 1), a nonlocal magnetic counterpart of (1.2), i.e.

(−∆)sAu(x) = c(N, s) limε↘0 ∫
Bcε(x)

u(x) − ei(x−y)⋅A(
x+y
2 )u(y)

|x − y|N+2s
dy, lim

s↗1

c(N, s)
1 − s

=
4NΓ(N2 )
2πN/2

,

was introduced in [19, 24] for complex-valued functions. We point out that (−∆)sA coincides with the usual
fractional Laplacian for A = 0. The motivations for the introduction of this operator are carefully described
in [19, 24] and fall into the framework of the general theory of Lévy processes. It is thus natural wondering
about the consistency of the norms associated with the above fractional magnetic operator in the singular
limit s ↗ 1, with the energy functional (1.3).

The aimof this paper is to continue the studyof the validity of amagnetic counterpart of (BBM), extending
the results of [37] to arbitrary magnetic fractional Sobolev spaces and tomagnetic BV-functions. We refer the
reader to Sections 2 and 3 for the definitions. On the other hand, while for p ≥ 1 the spaces W1,p

A (Ω) have
a wide background, to the best of our knowledge no notion ofmagnetic bounded variations space containing
W1,1
A (Ω) seems to be previously available in the literature.
As already recalled, this indeed holds for the Hilbert case p = 2, as stated in the following

Theorem (M. Squassina, B. Volzone [37]). Let Ω ⊂ ℝN be an open and bounded set with Lipschitz boundary
and let A ∈ C2(Ω̄,ℝN). Then, for every u ∈ W1,2

A (Ω), we have

lim
s↗1

(1 − s) ∫
Ω

∫
Ω

|u(x) − ei(x−y)⋅A(
x+y
2 )u(y)|2

|x − y|N+2s
dx dy = Q2,N ∫

Ω

|∇u − iA(x)u|2 dx,

where Q2,N is the positive constant defined in (1.1) with p = 2.
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The goal of this paper is twofold: first we aim to extend this formula to the case of general magnetic
spaces W1,p

A for p ≥ 1, and secondly we introduce a suitable notion of magnetic bounded variation |Du|A(Ω)
and we prove that a (BBM)-formula holds also in that case.

In order to state themain result we need to introduce some notation: let p ≥ 1 be fixed and let us consider
the normed space (ℂN , | ⋅ |p), with

|z|p := (|(ℜz1, . . . ,ℜzN)|p + |(ℑz1, . . . , ℑzN)|p)
1
p , (1.4)

where | ⋅ | is the Euclidean norm ofℝN andℜa,ℑa denote the real and imaginary parts of a ∈ ℂ, respectively.
Notice that |z|p = |z| whenever z ∈ ℝN , which makes our next statements consistent with the case A = 0 and
u being a real-valued function [8, 11, 20, 34].

Theorem 1.1 (General magnetic Bourgain–Brezis–Mironescu limit). Let A : ℝN → ℝN be of class C2. Then,
for any bounded extension domain Ω ⊂ ℝN ,

lim
s↗1

(1 − s) ∫
Ω

∫
Ω

|u(x) − ei(x−y)⋅A(
x+y
2 )u(y)|1

|x − y|N+s
dx dy = Q1,N |Du|A(Ω)

for all u ∈ BVA(Ω), where Qp,N is defined in (1.1). Furthermore, for any p ≥ 1andany Lipschitz bounded domain
Ω ⊂ ℝN ,

lim
s↗1

(1 − s) ∫
Ω

∫
Ω

|u(x) − ei(x−y)⋅A(
x+y
2 )u(y)|pp

|x − y|N+ps
dx dy = Qp,N ∫

Ω

|∇u − iA(x)u|pp dx

for all u ∈ W1,p
A (Ω).

We refer to Definition 3.11 for a precise explanation of extension domain. We stress that the definitions of
both the magnetic Sobolev spacesW1,p

A (Ω) and of the magnetic BV-spaces BVA(Ω)made in Sections 2 and 3
are consistent, in the case of zeromagnetic potential A, with the classical spacesW1,p(Ω) and BV(Ω), respec-
tively. Moreover, it holds |Du|A(Ω) = |Du|(Ω), so that Theorem 1.1 is consistent with the classical formulas
of [8, 20, 34].

In particular, in the spirit of [11], as a byproduct of Theorem 1.1, if Ω ⊂ ℝN is a smooth bounded domain,
A : ℝN → ℝN is of class C2 and we have

lim
s↗1

(1 − s) ∫
Ω

∫
Ω

|u(x) − ei(x−y)⋅A(
x+y
2 )u(y)|pp

|x − y|N+ps
dx dy = 0, u ∈ W1,p

A (Ω),

then we get

{
∇ℜu = −ℑuA,
∇ℑu = ℜuA,

namely the direction of∇ℜu, ∇ℑu is that of themagnetic potentialA. In the particular caseA = 0, consistently
with the results of [11], this implies that u is a constant function.

We finally notice that for a Borel set E ⊂ Ω, denoting Ec = Ω \ E, the quantity

Ps(E; A) :=
1
2 ∫
E

∫
E

|1 − ei(x−y)⋅A(
x+y
2 )|1

|x − y|N+s
dx dy + 1

2 ∫
E

∫
Ec

1
|x − y|N+s

dx dy + 1
2 ∫
Ec

∫
E

|ei(x−y)⋅A(
x+y
2 )|1

|x − y|N+s
dx dy

plays the rôle of a nonlocal s-perimeter of E depending on A, which reduces for A = 0 to the classical notion
of fractional s-perimeter of E in Ω

Ps(E) = ∫
E

∫
Ec

1
|x − y|N+s

dx dy.

Then the main result, Theorem 1.1, reads as

lim
s↗1

(1 − s)Ps(E, A) = Q1,N |D1E|A(Ω).
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The structure of the paper is as follows. In Section 2 we introduce magnetic Sobolev spacesW1,p
A (Ω). In

Section 3 we define the magnetic BV space BVA(Ω) and we prove that several classical results for BV-func-
tions hold also for functions belonging to BVA(Ω). In particular, we prove a structure result (Lemma 3.6),
a result about the extension to ℝN for Lipschitz domains (Lemma 3.12), the semi-continuity of the vari-
ation (Lemma 3.7), a magnetic counterpart of the classical Anzellotti–Giaquinta Approximation Theorem
(Lemma 3.10) and, finally, a compactness result (Lemma 3.14). In Sections 4, 5 and 6 we finally prove Theo-
rem 1.1.

2 Magnetic Sobolev spaces
In order to avoid confusion with the different uses of the symbol v ⋅ w, we define

v ⋅ w :=

{{{{{{
{{{{{{
{

N
∑
i=1
viwi if v, w ∈ ℝN ,

N
∑
i=1

(ℜvi + iℑvi)(ℜwi + iℑwi) if v, w ∈ ℂN .

Let Ω be an open set of ℝN . For any p ≥ 1 we denote by Lp(Ω,ℂ) the Lebesgue space of complex-valued
functions u : Ω → ℂ such that

‖u‖Lp(Ω) = (∫
Ω

|u(x)|pp dx)
1
p

< ∞,

where | ⋅ |p is as in (1.4). For a locally bounded function A : ℝN → ℝN , we consider the semi-norm

[u]W1,p
A (Ω) := (∫

Ω

|∇u − iA(x)u|pp dx)
1
p

,

and defineW1,p
A (Ω) as the space of functions u ∈ Lp(Ω,ℂ) such that [u]W1,p

A (Ω) < ∞ with norm

‖u‖W1,p
A (Ω) := (‖u‖pLp(Ω) + [u]p

W1,p
A (Ω)

)
1
p .

The space W1,p
0,A(Ω) will denote the closure of the space C∞c (Ω) in W1,p

A (Ω). For any s ∈ (0, 1) and p ≥ 1, the
magnetic Gagliardo semi-norm is defined as

[u]W s,p
A (Ω) := (∫

Ω

∫
Ω

|u(x) − ei(x−y)⋅A(
x+y
2 )u(y)|pp

|x − y|N+ps
dx dy)

1
p .

We denote byW s,p
A (Ω) the space of functions u ∈ Lp(Ω,ℂ) such that [u]W s,p

A (Ω) < ∞ normed with

‖u‖W s,p
A (Ω) := (‖u‖pLp(Ω) + [u]pW s,p

A (Ω))
1
p .

For A = 0 this is consistent with the usual spaceW s,p(Ω) with norm ‖ ⋅ ‖W s,p(Ω).

3 Magnetic BV-spaces
In this section we introduce a suitable notion of magnetic bounded variation functions. Let Ω be an open set
ofℝN . We recall that a real-valued function u ∈ L1(Ω) is of bounded variation, and we shall write u ∈ BV(Ω),
if

|Du|(Ω) = sup{∫
Ω

u(x)divφ(x) dx : φ ∈ C∞c (Ω,ℝN), ‖φ‖L∞(Ω) ≤ 1} < ∞.
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The space BV(Ω) is endowed with the norm

‖u‖BV(Ω) := ‖u‖L1(Ω) + |Du|(Ω).

The space of complex-valued bounded variation functions BV(Ω,ℂ) is defined as the class of Borel functions
u : Ω → ℂ such thatℜu, ℑu ∈ BV(Ω). The ℂ-total variation of u is defined by

|Du|(Ω) := |Dℜu|(Ω) + |Dℑu|(Ω).

More generally, it is possible to define a notion of variation for functions u : Ω → E, where Ω ⊂ ℝN is an open
set and (E, d) is a locally compact metric space. We refer the interested reader to [1].

We are now ready to define the magnetic BV-functions.

Definition 3.1 (A-bounded variation functions). Let Ω ⊂ ℝN be an open set and let A : ℝN → ℝN be a locally
bounded function. A function u ∈ L1(Ω,ℂ) is said to be of A-bounded variation and we write u ∈ BVA(Ω) if

|Du|A(Ω) := C1,A,u(Ω) + C2,A,u(Ω) < ∞,

where we have set

C1,A,u(Ω) := sup{∫
Ω

ℜu(x)divφ(x) − A(x) ⋅ φ(x)ℑu(x) dx : φ ∈ C∞c (Ω,ℝN), ‖φ‖L∞(Ω) ≤ 1},

C2,A,u(Ω) := sup{∫
Ω

ℑu(x)divφ(x) + A(x) ⋅ φ(x)ℜu(x) dx : φ ∈ C∞c (Ω,ℝN), ‖φ‖L∞(Ω) ≤ 1}.

A function u ∈ L1loc(Ω,ℂ) is said to be of locally A-bounded variation and we write u ∈ BVA,loc(Ω), provided
that it holds

|Du|A(U) < ∞ for every open set U ⋐ Ω.

We stress that for A ≡ 0, the previous definition is consistent with the one of BV(Ω). In order to justify our
definition, we will collect in the following some properties of the space BVA(Ω). These properties are the
natural generalization to the magnetic setting of the classical theory [3, 22, 38].

Lemma 3.2 (Extension of |Du|A|). Let Ω ⊂ ℝN be an open and bounded set, A : ℝN → ℝN locally bounded and
u ∈ BVA(Ω). Let E ⊂ Ω be a Borel set. Then

|Du|A(E) := inf{C1,A,u(U) : E ⊂ U, U ⊂ Ω open} + inf{C2,A,u(U) : E ⊂ U, U ⊂ Ω open}

extends |Du|A( ⋅ ) to a Radon measure in Ω. For any open set U ⊂ Ω, C1,A,u(U) and C2,A,u(U) are defined
requiring the test functions to be supported in U and |Du|A(0) := 0.

Proof. We note that
ν1(E) := inf{C1,A,u(U) : E ⊂ U, U ⊂ Ω open}

is the variation measure associated with

φ Ü→ ∫
Ω

ℜu(x)divφ(x) − A(x) ⋅ φ(x)ℑu(x) dx,

and by [22, Theorem 1.38] it is a Radon measure. The same argument applies to

ν2(E) := inf{C2,A,u(U) : E ⊂ U, U ⊂ Ω open}

and the thesis follows.

Lemma 3.3 (Local inclusion of Sobolev functions). Let Ω ⊂ ℝN be an open set. Let A : ℝN → ℝN be locally
bounded. Then

W1,1
loc (Ω) ⊂ BVA,loc(Ω).
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Proof. Let u ∈ W1,1
loc (Ω), U ⋐ Ω open and consider φ ∈ C∞c (U,ℝN) with ‖φ‖L∞(U) ≤ 1. Then

∫
U

ℜu(x)divφ(x) − A(x) ⋅ φ(x)ℑu(x) dx + ∫
U

ℑu(x)divφ(x) + A(x) ⋅ φ(x)ℜu(x) dx

= −∫
U

(∇ℜu(x) + A(x)ℑu(x)) ⋅ φ(x) dx − ∫
U

(∇ℑu(x) − A(x)ℜu(x)) ⋅ φ(x) dx

≤ ∫

Ū

|∇ℜu(x) + A(x)ℑu(x)| dx + ∫

Ū

|∇ℑu(x) − A(x)ℜu(x)| dx

≤ ∫

Ū

|∇ℜu(x)| dx + ∫

Ū

|∇ℑu(x)| dx + ‖A‖L∞(Ū)(∫

Ū

(|ℜu(x)| + |ℑu(x)|) dx) < ∞,

which, taking the supremum over φ, concludes the proof.

Next we prove that for W1,1
A (Ω)-functions the magnetic bounded variation semi-norm |Du|A(Ω) boils down

to the usual local magnetic semi-norm.

Lemma 3.4 (BVA-norm onW1,1
A ). Let Ω ⊂ ℝN be an open set. Let A : ℝN → ℝN be locally bounded. Assume

that u ∈ W1,1
A (Ω). Then u ∈ BVA(Ω) and it holds

|Du|A(Ω) = ∫
Ω

|∇u − iA(x)u|1 dx.

Furthermore, if u ∈ BVA(Ω) ∩ C∞(Ω), then u ∈ W1,1
A (Ω).

Proof. If u ∈ W1,1
A (Ω), then we have

∇ℜu + Aℑu ∈ L1(Ω), ∇ℑu − Aℜu ∈ L1(Ω).

For every φ ∈ C∞c (Ω,ℝN) with ‖φ‖L∞(Ω) ≤ 1, we have
!!!!!!!!!
∫
Ω

ℜu(x)divφ(x) − A(x) ⋅ φ(x)ℑu(x) dx
!!!!!!!!!
=
!!!!!!!!!
∫
Ω

∇ℜu(x) ⋅ φ(x) + A(x) ⋅ φ(x)ℑu(x) dx
!!!!!!!!!
≤ ∫
Ω

|∇ℜu + Aℑu| dx,

as well as
!!!!!!!!!
∫
Ω

ℑu(x)divφ(x) + A(x) ⋅ φ(x)ℜu(x) dx
!!!!!!!!!
=
!!!!!!!!!
∫
Ω

∇ℑu(x) ⋅ φ(x) − A(x) ⋅ φ(x)ℜu(x) dx
!!!!!!!!!
≤ ∫
Ω

|∇ℑu − Aℜu| dx,

which, taking the supremum over φ, proves u ∈ BVA(Ω,ℂ) and

|Du|A(Ω) ≤ ∫
Ω

|∇u − iA(x)u|1 dx. (3.1)

Defining now f, g ∈ L∞(Ω,ℝN) by setting

f(x) :=
{{
{{
{

−
∇ℜu(x) + A(x)ℑu(x)
|∇ℜu(x) + A(x)ℑu(x)|

if x ∈ Ω and ∇ℜu(x) + A(x)ℑu(x) ̸= 0,

0 otherwise,

and

g(x) :=
{{
{{
{

−
∇ℑu(x) − A(x)ℜu(x)
|∇ℑu(x) − A(x)ℜu(x)|

if x ∈ Ω and ∇ℑu(x) − A(x)ℜu(x) ̸= 0,

0 otherwise,
we have ‖f‖∞, ‖g‖∞ ≤ 1. By a standard approximation result, there exist two sequences {φn}n∈ℕ, {ψn}n∈ℕ
in C∞c (Ω,ℝN) such thatφn → f andψn → g pointwise as n → ∞, with ‖φn‖L∞(Ω), ‖ψn‖L∞(Ω) ≤ 1 for all n ∈ ℕ.
By the definition of C1,A,u(Ω), after integration by parts, it follows that, for every n ≥ 1,

C1,A,u(Ω) ≥ −
N
∑
i=1

∫
Ω

(∂xiℜu(x) + A(i)(x)ℑu(x))φ(i)
n (x) dx.
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By the Dominated Convergence Theorem and the definition of f , letting n → ∞, we obtain

C1,A,u(Ω) ≥ ∫
Ω

|∇ℜu(x) + A(x)ℑu(x)| dx.

Similarly, using the sequence {ψn}n∈ℕ and arguing in a similar fashion yields

C2,A,u(Ω) ≥ ∫
Ω

|∇ℑu(x) − A(x)ℜu(x)| dx,

which, on account of (1.4), proves the opposite of inequality (3.1), concluding the proof of the first statement.
If u ∈ BVA(Ω) ∩ C∞(Ω), fix a compact set K ⊂ Ω with nonempty interior and consider

̃f := fχint(K), g̃ := gχint(K).

Then, as above, one canfind two sequences {φn}n∈ℕ,{ψn}n∈ℕ ⊂ C∞c (int(K),ℝN) such thatφn → f andψn → g
pointwise and ‖φn‖L∞(int(K)), ‖ψn‖L∞(int(K)) ≤ 1, for all n ∈ ℕ. Then we have

C1,A,u(Ω) ≥ ∫
Ω

ℜu(x)divφn(x) − A(x) ⋅ φn(x)ℑu(x) dx

= ∫
K

ℜu(x)divφn(x) − A(x) ⋅ φn(x)ℑu(x) dx

= −
N
∑
i=1

∫
K

(∂xiℜu(x) + A(i)(x)ℑu(x))φ(i)
n (x) dx.

Since u ∈ C∞(Ω), we have ∇ℜu + Aℑu ∈ L1(K). Thus, by the Dominated Convergence Theorem,

C1,A,u(Ω) ≥ ∫
K

|∇ℜu(x) + A(x)ℑu(x)| dx.

The conclusion follows using an exhaustive sequence of compacts via monotone convergence.

We endow the space BVA(Ω,ℂ) with the following norm:

‖u‖BVA(Ω) := ‖u‖L1(Ω) + |Du|A(Ω).

Lemma 3.5 (Norm equivalence). LetΩ ⊂ ℝN be an open andbounded set. Let A :ℝN →ℝN be locally bounded.
Then u ∈ BVA(Ω) if and only if u ∈ BV(Ω). Moreover, for every u ∈ BVA(Ω), there exists a positive constant
K = K(A, Ω) such that

K−1‖u‖BV(Ω) ≤ ‖u‖BVA(Ω) ≤ K‖u‖BV(Ω).

Proof. Denoting by supφ the supremum over functions φ ∈ C∞c (Ω,ℝN) with ‖φ‖L∞(Ω) ≤ 1, we get

|Du|(Ω) = |ℜu|(Ω) + |ℑu|(Ω) = sup
φ

∫
Ω

ℜu(x)divφ(x) dx + sup
φ

∫
Ω

ℑu(x)divφ(x) dx

= sup
φ

∫
Ω

ℜu(x)divφ(x) − A(x) ⋅ φ(x)ℑu(x) + A(x) ⋅ φ(x)ℑu dx

+ sup
φ

∫
Ω

ℑu(x)divφ(x) + A(x) ⋅ φ(x)ℜu(x) − A(x) ⋅ φ(x)ℜu(x) dx

≤ sup
φ

∫
Ω

ℜu(x)divφ(x) − A(x) ⋅ φ(x)ℑu(x) dx + sup
φ

∫
Ω

A(x) ⋅ φ(x)ℑu(x) dx

+ sup
φ

∫
Ω

ℑu(x)divφ(x) + A(x) ⋅ φ(x)ℜu(x) dx + sup
φ

∫
Ω

A(x) ⋅ (−φ)(x)ℜu(x) dx

≤ C1,A,u(Ω) + C2,A,u(Ω) + ‖A‖L∞(Ω)‖u‖L1(Ω).
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Therefore, we have that
‖u‖BV(Ω) ≤ (1 + ‖A‖L∞(Ω))‖u‖BVA(Ω).

For the second inequality, we have

C1,A,u(Ω) ≤ sup
φ

∫
Ω

ℜu(x)divφ(x) dx + sup
φ

∫
Ω

A(x) ⋅ (−φ)(x)ℑu(x) dx

≤ |Dℜu|(Ω) + ‖A‖L∞(Ω) ∫
Ω

|ℑu| dx,

and similarly for C2,A,u(Ω). Therefore, we conclude

‖u‖BVA(Ω) ≤ (1 + ‖A‖L∞(Ω))‖u‖BV(Ω).

Calling K := (1 + ‖A‖L∞(Ω)) concludes the proof.

Lemma 3.6 (Structure theorem for BVA-functions). Let Ω ⊂ ℝN be an open and bounded set, A : ℝN → ℝN

locally bounded and u ∈ BVA(Ω). There exists a uniqueℝ2N -valued finite Radonmeasure μA,u = (μ1,A,u , μ2,A,u)
such that

∫
Ω

u(x)divφ(x) + iA(x) ⋅ φ(x)u(x) dx = ∫
Ω

ℜu(x)divφ(x) − A(x) ⋅ φ(x)ℑu(x) dx

+ i∫
Ω

ℑu(x)divφ(x) + A(x) ⋅ φ(x)ℜu(x) dx

= ∫
Ω

φ(x) ⋅ d(μ1,A,u + iμ2,A,u)(x)

for every φ ∈ C∞c (Ω,ℝN) and
|Du|A(Ω) = |μ1,A,u|(Ω) + |μ2,A,u|(Ω).

Proof. Of course, we have
!!!!!!!!!
∫
Ω

ℜu(x)divφ(x) − A(x) ⋅ φ(x)ℑu(x) dx
!!!!!!!!!
≤ C1,A,u(Ω)‖φ‖L∞(Ω) for all φ ∈ C∞c (Ω,ℝN).

Then a standard application of the Hahn–Banach Theorem yields the existence of a linear and continuous
extension L of the functional Ψ : C∞c (Ω,ℝN) → ℝ

⟨Ψ, φ⟩ = ∫
Ω

ℜu(x)divφ(x) − A(x) ⋅ φ(x)ℑu(x) dx

to the normed space (Cc(Ω,ℝN), ‖ ⋅ ‖L∞(Ω)) such that

‖L‖ = ‖Ψ‖ = C1,A,u(Ω).

On the other hand, by the Riesz Representation Theorem (cf. [3, Corollary 1.55]) there exists a unique ℝN -
valued finite Radon measure μ1,A,u with

L(φ) = ∫
Ω

φ(x) ⋅ dμ1,A,u(x) for all φ ∈ Cc(Ω,ℝN),

and such that |μ1,A,u|(Ω) = ‖L‖. Thus |μ1,A,u|(Ω) = C1,A,u(Ω). The same argument can be repeated verbatim
for the functional

φ Ü→ ∫
Ω

ℑu(x)divφ(x) + A(x) ⋅ φ(x)ℜu(x) dx,

which concludes the proof.
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Lemma 3.7 (Lower semicontinuity of |Du|A(Ω)). Let A : ℝN → ℝN be locally bounded. Let Ω ⊂ ℝN be an open
set and {uk}k∈ℕ ⊂ BVA(Ω) a sequence converging locally in L1(Ω) to a function u. Then

lim inf
k→∞

|Duk|A(Ω) ≥ |Du|A(Ω).

Proof. Fix φ ∈ C∞c (Ω,ℝN) with ‖φ‖L∞(Ω) ≤ 1. By the definitions of Ci,A,uk (Ω), we have

C1,A,uk (Ω) ≥ ∫
Ω

ℜuk(x)divφ(x) − A(x) ⋅ φ(x)ℑuk(x) dx,

C2,A,uk (Ω) ≥ ∫
Ω

ℑuk(x)divφ(x) + A(x) ⋅ φ(x)ℜuk(x) dx.

By the convergence of {uk}k∈ℕ in L1loc(Ω,ℂ) to u, we get

lim inf
k→∞

C1,A,uk (Ω) ≥ ∫
Ω

ℜu(x)divφ(x) − A(x) ⋅ φ(x)ℑu(x) dx,

lim inf
k→∞

C2,A,uk (Ω) ≥ ∫
Ω

ℑu(x)divφ(x) + A(x) ⋅ φ(x)ℜu(x) dx.

The assertion follows by the definition of |Du|A(Ω) and the arbitrariness of such functions φ.

Lemma 3.8. The space (BVA(Ω), ‖ ⋅ ‖BVA(Ω)) is a real Banach space.

Proof. It is readily seen that ‖ ⋅ ‖BVA(Ω) is a norm (to this end, it is enough to check that the map u Ü→ |Du|A(Ω)
defines a semi-norm over BVA(Ω), which is left to the reader). Let us prove that the space is complete. Let
{un}n∈ℕ ⊂ BVA(Ω) be a Cauchy sequence, namely for every ε > 0 there exists n0 ∈ ℕ such that

∫
Ω

|un − uk|1 dx + |D(un − uk)|A(Ω) < ε for all n, k ≥ n0.

In particular, {un}n∈ℕ is a Cauchy sequence in the Banach space (L1(Ω), ‖ ⋅ ‖L1(Ω)), which implies that there
exists u ∈ L1(Ω) with ‖un − u‖L1(Ω) → 0, as n → ∞. Therefore, in light of Lemma 3.7, we get

|D(u − uk)|A(Ω) ≤ lim inf
n

|D(un − uk)|A(Ω) ≤ ε for all k ≥ n0,

namely |D(un − u)|A(Ω) → 0, as n → ∞, which concludes the proof.

Lemma 3.9 (Multiplication by Lipschitz functions). Let Ω ⊂ ℝN be an open set. Let A : ℝN → ℝN be locally
bounded and u ∈ BVA,loc(Ω). Then, for every locally Lipschitz ψ : Ω → ℝ, the function uψ ∈ BVA,loc(Ω) and

μ1,A,ψu = ψμ1,A,u − ℜu ⋅ ∇ψLN ,
μ2,A,ψu = ψμ2,A,u − ℑu ⋅ ∇ψLN ,

where LN denotes the N-dimensional Lebesgue measure.

Proof. Consider U ⋐ Ω open and let φ ∈ C∞c (U,ℝN) be such that ‖φ‖L∞(U) ≤ 1. By Rademacher’s Theoremwe
have ψ divφ = div(ψφ) − φ ⋅ ∇ψ a.e. in U. Therefore, up to smoothing ψ, we get

∫
U

ℜ(uψ)(x)divφ(x) − A(x) ⋅ φ(x)ℑ(uψ)(x) dx

= ∫
U

ψ(x)ℜu(x)divφ(x) − A(x) ⋅ φ(x)ψ(x)ℑu(x) dx

= ∫
U

ℜu(x)div(ψφ)(x) − A(x) ⋅ φ(x)ψ(x)ℑu(x) dx − ∫
U

ℜu(x)φ(x) ⋅ ∇ψ(x) dx

≤ C1,A,u(U)‖ψ‖L∞(U) + Lip(ψ)‖u‖L1(U).
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A similar estimate holds for the second term, proving uψ ∈ BVA,loc(Ω). By Lemma 3.6, we have

∫
Ω

φ(x) ⋅ dμ1,A,uψ = ∫
Ω

ψ(x)ℜu(x)divφ(x) − A(x) ⋅ φ(x)ψ(x)ℑu(x) dx

= ∫
Ω

ℜu(x)div(ψφ)(x) − A(x) ⋅ φ(x)ψ(x)ℑu(x) dx − ∫
Ω

ℜu(x)φ(x) ⋅ ∇ψ(x) dx

= ∫
Ω

φ(x)ψ(x)dμ1,A,u − ∫
Ω

ℜu(x)φ(x) ⋅ ∇ψ(x) dx

and the assertion follows. A similar argument holds also for μ2,A,uψ, and this concludes the proof.

Let η ∈ C∞0 (ℝN) be a radial nonnegative function with ∫ℝN η(x) dx = 1 and supp(η) ⊂ B1(0). Given ε > 0 and
u ∈ L1(Ω;ℂ), extended to zero out of Ω, we define the usual regularization

uε(x) :=
1
εN

∫

ℝN

η( x − yε )u(y) dy = 1
εN

∫
B(x,ε)

η( x − yε )u(y) dy. (3.2)

Next we have the magnetic counterpart of the classic Anzellotti–Giaquinta Theorem [4].

Lemma 3.10 (Approximation with smooth functions). Suppose that A : ℝN → ℝN is locally Lipschitz. Let
Ω ⊂ ℝN be an open and bounded set and let u ∈ BVA(Ω). Then there exists a sequence {uk}k∈ℕ ⊂ C∞(Ω,ℂ)
such that

lim
k→∞

∫
Ω

|uk − u|1 dx = 0 and lim
k→∞

|Duk|A(Ω) = |Du|A(Ω).

Proof. We follow closely the proof of [22, Theorem 5.3]. In light of the semicontinuity property (Lemma 3.7),
it is enough to prove that, for every ε > 0, there exists a function vε ∈ C∞(Ω) such that

∫
Ω

|u − vε|1 dx < ε and |Dvε|A(Ω) < |Du|A(Ω) + ε. (3.3)

Let {Ωj}j∈ℕ be a sequence of domains defined, for m ∈ ℕ, as follows:

Ωj := {x ∈ Ω : dist(x, ∂Ω) > 1
m + j}

∩ B(0, k + m), j ∈ ℕ,

where B(0, k + m) denotes the open ball of center 0 and radius k + m. Since |Du|A is a Radon measure, given
ε > 0 we can choose m ∈ ℕ so large that

|Du|A(Ω \ Ω0) < ε. (3.4)

We want to stress that the sequence of open domains {Ωj} is built in such a way that

Ωj ⊂ Ωj+1 ⊂ Ω for any j ∈ ℕ, and
∞
⋃
j=0
Ωj = Ω.

We now define another sequence of open domains {Uj}j∈ℕ, by setting

U0 := Ω0, Uj := Ωj+1 \ Ωj−1 for j ≥ 1.

By standard results, there exists a partition of unity related to the covering {Uj}j∈ℕ, which means that there
exists {fj}j∈ℕ ∈ C∞c (Uj) such that 0 ≤ fj ≤ 1 for every j ≥ 0 and∑∞

j=0 fj = 1on Ω.We stress that the last property,
in particular, implies that

∞
∑
j=0

∇ fj = 0 on Ω. (3.5)

Recalling the definition of the norm | ⋅ |1 given by (1.4), and the classical properties of the convolution, we
easily get that for every j ≥ 0 there exists 0 < εj < ε such that

supp((fju)εj ) ⊂ Uj , ∫
Ω

|(fju)εj − fju|1 dx < ε2−(j+1), ∫
Ω

|(u∇ fj)εj − u∇ fj|1 dx < ε2−(j+1). (3.6)
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We can now define vε := ∑∞
j=0(ufj)εj . Since the sum is locally finite, we have that vε ∈ C∞(Ω,ℂ), and that

u = ∑∞
j=0 ufj pointwise. Let us start considering the real part of the linear functional

C∞c (Ω) ∋ φ Ü→ ∫
Ω

vε(x)divφ(x) + iA(x) ⋅ φ(x) vε(x) dx.

We have

∫
Ω

ℜvε(x)divφ(x) − A(x) ⋅ φ(x)ℑvε(x) dx

=
∞
∑
j=0

∫
Ω

((ℜufj) ∗ ηεj )(x)divφ(x) dx −
∞
∑
j=0

∫
Ω

A(x) ⋅ φ(x)((ℑufj) ∗ ηεj )(x) dx =: I − II.

Now
I =

∞
∑
j=0

1
εNj

∫
Ω

∫
Ω

ℜu(y)fj(y)η(
x − y
εj

)divφ(x) dy dx

=
∞
∑
j=0

∫
Ω

ℜu(y)fj(y)div(φ ∗ ηεj )(y) dy

=
∞
∑
j=0

∫
Ω

ℜu(y)div(fj(φ ∗ ηεj ))(y) dy −
∞
∑
j=0

∫
Ω

ℜu(y)∇ fj(y) ⋅ (φ ∗ ηεj )(y) dy

=
∞
∑
j=0

∫
Ω

ℜu(y)div(fj(φ ∗ ηεj ))(y) dy −
∞
∑
j=0

∫
Ω

[((ℜu∇ fj) ∗ ηεj )(y) − ℜu(y)∇ fj(y)] ⋅ φ(y) dy

=: I� − I��,

where in the last equality we used (3.5). For II, we have

II =
∞
∑
j=0

∫
Ω

A(x) ⋅ φ(x)[ 1
εNj

∫
Ω

ℑu(y)fj(y)η(
x − y
εj

) dy] dx

=
∞
∑
j=0

1
εNj

∫
Ω

∫
Ω

A(y) ⋅ φ(x)ℑu(y)fj(y)η(
x − y
εj

) dx dy

+
∞
∑
j=0

1
εNj

∫
Ω

∫
Ω

(A(x) − A(y)) ⋅ φ(x)ℑu(y)fj(y)η(
x − y
εj

) dx dy

=
∞
∑
j=0

∫
Ω

A(y) ⋅ (fj(φ ∗ ηεj ))(y)ℑu(y) dy +
∞
∑
j=0

1
εNj

∫
Ω

∫
Ω

(A(x) − A(y)) ⋅ φ(x)ℑu(y)fj(y)η(
x − y
εj

) dx dy.

Denoting fj(φ ∗ ηεj ) := (fj(φ1 ∗ ηεj ), . . . , fj(φn ∗ ηεj )), we note that |fj(φ ∗ ηεj )| ≤ 1 for any j ≥ 0, whenever
‖φ‖L∞(Ω) ≤ 1. We also stress that |I��| < ε, because of (3.6). Therefore,

!!!!!!!!!
∫
Ω

ℜvε(x)divφ(x) − A(x) ⋅ φ(x)ℑvε(x) dx
!!!!!!!!!

≤
!!!!!!!!!

∞
∑
j=0

∫
Ω

ℜu(y)div(fj(φ ∗ ηεj ))(y) − A(y) ⋅ (fj(φ ∗ ηεj ))(y)ℑu(y) dy
!!!!!!!!!

+
∞
∑
j=0

!!!!!!!!!

1
εNj

∫
Ω

∫
Ω

(A(x) − A(y)) ⋅ φ(x)ℑu(y)fj(y)η(
x − y
εj

) dx dy
!!!!!!!!!
+ ε.

(3.7)

Now,
!!!!!!!!!

∞
∑
j=0

∫
Ω

ℜu(y)div(fj(φ ∗ ηεj ))(y) − A(y) ⋅ (fj(φ ∗ ηεj ))(y)ℑu(y) dy
!!!!!!!!!

can be treated as in [22, Theorem 2, Section 5.2.2.]. Indeed, recalling that by construction every point x ∈ Ω
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belongs to at most three of the sets Uj, we have
!!!!!!!!!

∞
∑
j=0

∫
Ω

ℜu(y)div(fj(φ ∗ ηεj ))(y) − A(y) ⋅ (fj(φ ∗ ηεj ))(y)ℑu(y) dy
!!!!!!!!!

=
!!!!!!!!!
∫
Ω

ℜu(y)div(f0(φ ∗ ηε0 ))(y) − A(y) ⋅ (f0(φ ∗ ηε0 ))(y)ℑu(y) dy

+
∞
∑
j=1

∫
Ω

ℜu(y)div(fj(φ ∗ ηεj ))(y) − A(y) ⋅ (fj(φ ∗ ηεj ))(y)ℑu(y) dy
!!!!!!!!!

≤ C1,A,u(Ω) +
∞
∑
j=1
C1,A,u(Uj) ≤ C1,A,u(Ω) + 3C1,A,u(Ω \ Ω0)

≤ C1,A,u(Ω) + 3ε,

where the last inequality follows from (3.4). It remains to estimate
∞
∑
j=0

!!!!!!!!!

1
εNj

∫
Ω

∫
Ω

(A(x) − A(y)) ⋅ φ(x)ℑu(y)fj(y)η(
x − y
εj

) dx dy
!!!!!!!!!
=:

∞
∑
j=0

|IIIj|.

Recalling that A is locally Lipschitz, ‖φ‖L∞(Ω) ≤ 1 and that supp(η) ⊂ B1(0), we have
∞
∑
j=0

|IIIj| ≤ Lip(A, Ω)ε ∫

ℝN

η(z) dz∫
Ω

∞
∑
j=0
fj(y)|ℑu(y)| dy = ε Lip(A, Ω)‖ℑ(u)‖L1(Ω) =: Cε.

Going back to (3.7), taking the supremum over φ and by the arbitrariness of ε > 0, we get precisely (3.3)
for the real part. An analogous argument provides (3.3) also for the imaginary part and this concludes the
proof.

Definition 3.11 (Extension domains). LetA : ℝN → ℝN bea locally bounded function. Let Ω ⊂ ℝN beanopen
set. We say that Ω is an extension domain if its boundary ∂Ω is bounded and for any open set W ⊃ Ω, there
exists a linear and continuous extension operator E : BVA(Ω) → BVA(ℝN) such that

Eu = 0 for almost every x ∈ ℝN \W, and |DEu|A(∂Ω) = 0

for every u ∈ BVA(Ω).

Lemma 3.12 (Lipschitz extension domains). Let Ω ⊂ ℝN be an open bounded set with Lipschitz boundary and
A : ℝN → ℝN locally Lipschitz. Then Ω is an extension domain.

Proof. Given an arbitrary open set W ⊃ Ω, by virtue of [3, Proposition 3.21] there exists a linear and con-
tinuous extension operator E0 : BV(Ω,ℝ) → BV(ℝN ,ℝ) such that E0u = 0 for almost every x ∈ ℝN \W, and
|DE0u|(∂Ω) = 0 for all u ∈ BV(Ω). Given u ∈ BVA(Ω), we have from Lemma 3.5 that u ∈ BV(Ω), which means
that bothℜu and ℑu are elements of BV(Ω,ℝ). Let us define

Eu := E0ℜu + iE0ℑu, u ∈ BVA(Ω).

Then |DE0ℜu|(∂Ω) = |DE0ℑu|(∂Ω) = 0 and there exists a positive constant CW depending onW and Ω with

‖E0ℜu‖BV(ℝN ) ≤ CW‖ℜu‖BV(Ω), ‖E0ℑu‖BV(ℝN ) ≤ CW‖ℑu‖BV(Ω).

Taking into account Lemma 3.5, we have that

‖Eu‖BVA(ℝN ) = C1,A,Eu(ℝ
N) + C2,A,Eu(ℝN) + ‖E0ℜu‖L1(ℝN ) + ‖E0ℑu‖L1(ℝN )

≤ |DE0ℜu|(ℝN) + ‖A‖L∞(W)‖E0ℑu‖L1(ℝN ) + ‖E0ℜu‖L1(ℝN ) + ‖E0ℑu‖L1(ℝN )
+ |DE0ℑu|(ℝN) + ‖A‖L∞(W)‖E0ℜu‖L1(ℝN )

≤ (1 + ‖A‖L∞(W))(‖E0ℜu‖BV(ℝN ) + ‖E0ℑu‖BV(ℝN ))
≤ (1 + ‖A‖L∞(W))CW (‖ℜu‖BV(Ω) + ‖ℑu‖BV(Ω))
= (1 + ‖A‖L∞(W))CW‖u‖BV(Ω)
≤ (1 + ‖A‖L∞(W))CWK‖u‖BVA(Ω).
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Therefore, there exists C = C(A, Ω,W) > 0 such that

‖Eu‖BVA(ℝN ) ≤ C‖u‖BVA(Ω) for all u ∈ BVA(Ω).

We have to prove that |DEu|A(∂Ω) = 0. We have

|DEu|A(∂Ω) := inf{C1,A,Eu(U) : ∂Ω ⊂ U, U open} + inf{C2,A,Eu(U) : ∂Ω ⊂ U open}.

Then, for arbitrary U, U�, U�� open with ∂Ω ⊂ U ⊂ U� ⊂ U�� ⊂ W, we have

|DEu|A(∂Ω) ≤ |DEu|A(U) ≤ |DE0ℜu|(U) + |DE0ℑu|(U) + ‖A‖L∞(W)‖Eu‖L1(U)
≤ |DE0ℜu|(U) + |DE0ℑu|(U�) + ‖A‖L∞(W)‖Eu‖L1(U��).

Taking the infimum over U and recalling that |DE0ℜu|(∂Ω) = 0 yields

|DEu|A(∂Ω) ≤ |DE0ℑu|(U�) + ‖A‖L∞(W)‖Eu‖L1(U��).

Taking the infimum over U� and recalling that |DE0ℑu|(∂Ω) = 0 yields

|DEu|A(∂Ω) ≤ ‖A‖L∞(W)‖Eu‖L1(U��).

Finally, taking as U�� a sequence {U��
j }j∈ℕ of open sets such that ∂Ω ⊂ U��

j ⊂ W and with LN(U��
j ) → 0 as

j → ∞, we conclude that |DEu|A(∂Ω) = 0.

Lemma 3.13 (Convolution). Assume that A : ℝN → ℝN is locally Lipschitz. Suppose that U ⊂ ℝN is an open set
with U ⋐ Ω and let u ∈ BVA(Ω). Then, for every sufficiently small ε > 0, there holds

|Duε|A(U) ≤ |Du|A(Ω) + ε Lip(A, Ω)‖u‖L1(Ω).

Proof. Fix φ ∈ C1c (U,ℝN)with ‖φ‖L∞(U) ≤ 1. Choose δ > 0 such that {x ∈ ℝN : d(x, U) < δ} ⊂ Ω. Thenwe have
‖φε‖L∞(Ω) ≤ 1 and supp(φε) ⊂ {x ∈ ℝN : d(x, U) < δ} for all small ε > 0. Then

∫
U

ℜuε(x)divφ(x) − A(x) ⋅ φ(x)ℑuε(x) dx = ∫
Ω

(ℜu)ε(x)divφ(x) − A(x) ⋅ φ(x)(ℑu)ε(x) dx

= ∫
Ω

ℜu(x)(divφ)ε(x) − (A(x) ⋅ φ(x))εℑu(x) dx

= ∫
Ω

ℜu(x)divφε(x) − A(x) ⋅ φε(x)ℑu(x) dx

− ∫
Ω

1
εN

∫

ℝN

η( x − yε )(A(y) − A(x)) ⋅ φ(y) dyℑu(x) dx

≤ ∫
Ω

ℜu(x)divφε(x) − A(x) ⋅ φε(x)ℑu(x) dx

+ ∫
Ω

1
εN

∫
B(x,ε)

η( x − yε )|A(y) − A(x)| dy|ℑu(x)| dx

≤ C1,A,u(Ω) + ε Lip(A, Ω)‖u‖L1(Ω).

Similarly, for every φ ∈ C1c (U,ℝN) with ‖φ‖L∞(U) ≤ 1, we get

∫
U

ℑuε(x)divφ(x) + A(x) ⋅ φ(x)ℜuε(x) dx ≤ C2,A,u(Ω) + ε Lip(A, Ω)‖u‖L1(Ω).

By the definition of |Du|A(Ω) and taking the supremum over all φ, we get the assertion.

Lemma 3.14 (Compactness for BVA(Ω)-functions). Assume that Ω ⊂ ℝN is a bounded domain with Lipschitz
boundary and that A : ℝN → ℝN is locally bounded. Let {uk}k∈ℕ be a bounded sequence in BVA(Ω). Then, up
to a subsequence, it converges strongly in L1(Ω) to some function u ∈ BVA(Ω).
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14 | A. Pinamonti et al., Magnetic BV-functions and the Bourgain–Brezis–Mironescu formula

Proof. By the approximation Lemma 3.10, for any k ∈ ℕ there is vk ∈ BVA(Ω) ∩ C∞(Ω) such that

∫
Ω

|uk − vk|1 dx <
1
k
, sup

k∈ℕ
|Dvk|A(Ω) = C, (3.8)

for some C > 0. In particular, we have

∫
Ω

|vk|1 dx ≤ ∫
Ω

|uk − vk|1 dx + ∫
Ω

|uk|1 dx ≤ C� + 1, C� := sup
k∈ℕ

‖uk‖L1(Ω).

Now, Lemma 3.4 yields vk ∈ W1,1
A (Ω) and

∫
Ω

|∇vk − iAvk|1 dx = |Dvk|A(Ω).

Therefore, we obtain

∫
Ω

|∇vk|1 dx ≤ ∫
Ω

|∇vk − iAvk|1 dx + C1 ∫
Ω

|Avk|1 dx

≤ |Dvk|A(Ω) + C1‖A‖L∞(Ω)‖vk‖L1(Ω) ≤ C
��,

for some C�� > 0. Hence we infer that {vk}k∈ℕ is a bounded sequence in W1,1(Ω). Since ∂Ω is smooth, from
the Rellich Compact Embedding Theorem there exists a subsequence {vkj }j∈ℕ of {vk}k∈ℕ and w ∈ L1(Ω) such
that vkj → w in L1(Ω). Then from (3.8) we get ukj → w in L1(Ω). By the semi-continuity Lemma 3.7 we obtain

|Dw|A(Ω) ≤ lim inf
kj

|Dvkj |A(Ω) ≤ C,

which shows that w ∈ BVA(Ω) and concludes the proof.

4 Proof of the main result
We now state two results that will be proven in the next section. In the following Qp,N is as in definition (1.1).

Theorem 4.1 (BVA-case). Let Ω ⊂ ℝN be an open bounded set with Lipschitz boundary and A : ℝN → ℝN of
class C2. Let u ∈ BVA(Ω) and consider a sequence {ρm}m∈ℕ of nonnegative radial functions with

lim
m→∞

∞

∫
0

ρm(r)rN−1 dr = 1 (4.1)

and such that, for every δ > 0,

lim
m→∞

∞

∫
δ

ρm(r)rN−1 dr = 0. (4.2)

Then we have

lim
m→∞

∫
Ω

∫
Ω

|u(x) − ei(x−y)⋅A(
x+y
2 )u(y)|1

|x − y|
ρm(x − y) dx dy = Q1,N |Du|A(Ω).

Theorem 4.2 (W1,p
A (Ω)-case). Let Ω ⊂ ℝN be an open bounded set with Lipschitz boundary and assume that

A ∈ C2(ℝN ,ℝN). Let p ≥ 1, u ∈ W1,p
A (Ω) and {ρm}m∈ℕ as in Theorem 4.1. Then we have

lim
m→∞

∫
Ω

∫
Ω

|u(x) − ei(x−y)⋅A(
x+y
2 )u(y)|pp

|x − y|p
ρm(x − y) dx dy = pQp,N ∫

Ω

|∇u − iAu|pp dx.

Remark 4.3. In the notation of Theorem 4.1, assuming (4.1) and (4.2) automatically implies that

lim
m→∞

δ

∫
0

ρm(r)rN−1+β dr = 0 for every β > 0 and for every δ > 0.
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In fact, fixed δ > 0, taking an arbitrary 0 < τ < δ, we have

δ

∫
0

ρm(r)rN−1+β dr =
τ

∫
0

ρm(r)rN−1+β dr +
δ

∫
τ

ρm(r)rN−1+β dr

≤ τβ
τ

∫
0

ρm(r)rN−1 dr + δβ
∞

∫
τ

ρm(r)rN−1 dr ≤ Cτβ + δβ
∞

∫
τ

ρm(r)rN−1 dr,

from which the assertion follows by letting m → ∞ first, using (4.2), and finally letting τ ↘ 0.

Proof of the main result (Theorem 1.1) completed. Let rΩ denote the diameter of Ω. Then we consider a func-
tion ψ ∈ C∞c (ℝN), ψ(x) = ψ0(|x|) with ψ0(t) = 1 for t < rΩ and ψ0(t) = 0 for t > 2rΩ. Then ψ0(|x − y|) = 1
for every x, y ∈ Ω. Let {sm}m∈ℕ ⊂ (0, 1) with sm ↗ 1. For a p ≥ 1 consider the sequence of radial functions
in L1(ℝN)

ρm(|x|) :=
p(1 − sm)
|x|N+psm−p

ψ0(|x|), x ∈ ℝN , m ∈ ℕ. (4.3)

Notice that both conditions (4.1) and (4.2) hold, since

lim
m→∞

rΩ

∫
0

ρm(r)rN−1 dr = lim
m→∞

p(1 − sm)
rΩ

∫
0

r−psm+p−1 dr = lim
m→∞

rp(1−sm)Ω = 1

and

lim
m→∞

2rΩ

∫
rΩ

ρm(r)rN−1 dr = lim
m→∞

p(1 − sm)
2rΩ

∫
rΩ

ψ0(r)
rpsm+1−p

dr ≤ C lim
m→∞

1 − sm = 0.

In a similar fashion, for any δ > 0, there holds

lim
m→∞

∞

∫
δ

ρm(r)rN−1 dr ≤ C lim
m→∞

p(1 − sm)
2rΩ

∫
δ

1
tpsm+1−p

dt = 0.

Then Theorem 1.1 follows directly from Theorems 4.1 and 4.2 using ρm as in (4.3).

We first need the following:

Lemma 4.4. Let p ≥ 1. Then, for every v ∈ ℂN , it holds

lim
m→∞

∫

ℝN

!!!!!!!
v ⋅ h

|h|
!!!!!!!

p

p
ρm(h) dh = pQp,N |v|

p
p . (4.4)

Proof. First of all we observe that, due to symmetry reasons, Qp,N is independent of the choice of the direc-
tion ω ∈ SN−1. We prove that (4.4) easily follows assuming (4.4) with v ∈ ℝN . Let v = (v1, . . . , vN) ∈ ℂN and
h = (h1, . . . , hN) ∈ ℝN . Then

!!!!!!!
v ⋅ h

|h|
!!!!!!!

p

p
=
!!!!!!!!!

N
∑
j=1
vj
hj
|h|

!!!!!!!!!

p

p
=
!!!!!!!!!

N
∑
j=1

ℜvj
hj
|h|

+ i
N
∑
j=1

ℑvj
hj
|h|

!!!!!!!!!

p

p

=
!!!!!!!!!

N
∑
j=1

ℜvj
hj
|h|

!!!!!!!!!

p

+
!!!!!!!!!

N
∑
j=1

ℑvj
hj
|h|

!!!!!!!!!

p

=
!!!!!!!
ℜv ⋅ h

|h|
!!!!!!!

p
+
!!!!!!!
ℑv ⋅ h

|h|
!!!!!!!

p
, (4.5)

where we denoted byℜv = (ℜv1, . . . ,ℜvN) and ℑv = (ℑv1, . . . , ℑvN). Using (4.5), we get

lim
m→∞

∫

ℝN

!!!!!!!
v ⋅ h

|h|
!!!!!!!

p

p
ρm(h) dh = lim

m→∞
∫

ℝN

!!!!!!!
ℜv ⋅ h

|h|
!!!!!!!

p
ρm(h) dh + lim

m→∞
∫

ℝN

!!!!!!!
ℑv ⋅ h

|h|
!!!!!!!

p
ρm(h) dh

= pQp,N(|ℜv|p + |ℑv|p) = pQp,N |v|
p
p .
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16 | A. Pinamonti et al., Magnetic BV-functions and the Bourgain–Brezis–Mironescu formula

In order to prove (4.4) with v ∈ ℝN , we apply the co-area formula, a change of variable and (4.1), getting

lim
m→∞

∫

ℝN

!!!!!!!
v ⋅ h

|h|
!!!!!!!

p
ρm(h) dh = lim

m→∞

∞

∫
0

∫
{|h|=R}

!!!!!!!
v ⋅ h

|h|
!!!!!!!

p
ρm(h) dHN−1(h) dR

= lim
m→∞

∞

∫
0

ρm(R)RN−1 dR ∫

SN−1

|v ⋅ h|p dHN−1(h)

= |v|p ∫

SN−1

!!!!!!!
v
|v|

⋅ h
!!!!!!!

p
dHN−1(h)

= |v|p ∫

SN−1

|ω ⋅ h|p dHN−1(h) = pQp,N |v|p

for an arbitrarily fixed ω ∈ SN−1. This concludes the proof.

Let now {ρm}m∈ℕ be as in Theorem 4.1. The following is the main result for smooth functions.

Proposition 4.5 (Smooth case). Let Ω ⊂ ℝN be a bounded set and A ∈ C2(ℝN ,ℝN). Then

lim
m→∞

∫
Ω

∫
Ω

|u(x) − ei(x−y)⋅A(
x+y
2 )u(y)|pp

|x − y|p
ρm(x − y) dx dy = pQp,N ∫

Ω

|∇u − iAu|pp dx

for every u ∈ C2(Ω̄,ℂ) and for every p ≥ 1. In particular, if p = 1, then

lim
m→∞

∫
Ω

∫
Ω

|u(x) − ei(x−y)⋅A(
x+y
2 )u(y)|1

|x − y|
ρm(x − y) dx dy = Q1,N |Du|A(Ω). (4.6)

Proof. Let p ≥ 1. If we set φ(y) := ei(x−y)⋅A(
x+y
2 )u(y), since

∇yφ(y) = ei(x−y)⋅A(
x+y
2 )(∇yu(y) − iA( x + y2 )u(y) + i

2u(y)(x − y) ⋅ ∇yA(
x + y
2 )),

if x, y ∈ Ω, since u, A ∈ C2(Ω̄), by Taylor’s formula we get (for y ∈ B(x, ρ) ⊂ Ω)

u(x) − ei(x−y)⋅A(
x+y
2 )u(y)

|x − y|
=
φ(x) − φ(y)

|x − y|
= (∇u(x) − iA(x)u(x)) ⋅ x − y

|x − y|
+ O(|x − y|).

Then, taking into account (ii) of Lemma 5.1 below, applied with T(x) := ∇u(x) − iA(x)u(x) we get

!!!!!!!
u(x) − ei(x−y)⋅A(

x+y
2 )u(y)

|x − y|
!!!!!!!

p

p
=
!!!!!!!
(∇u(x) − iA(x)u(x)) ⋅ x − y

|x − y|
!!!!!!!

p

p
+ O(|x − y|).

For x ∈ Ω, if we set Rx = dist(x, ∂Ω), then we get for some positive constant C,

Ψm(x) := ∫
Ω

!!!!!!!
|u(x) − ei(x−y)⋅A(

x+y
2 )u(y)|pp − |(∇u(x) − iA(x)u(x)) ⋅ (x − y)|pp

|x − y|p
ρm(x − y)

!!!!!!!
dy

= ∫
B(x,Rx)

!!!!!!!!!

!!!!!!!
u(x) − ei(x−y)⋅A(

x+y
2 )u(y)

|x − y|
!!!!!!!

p

p
−
!!!!!!!
(∇u(x) − iA(x)u(x)) ⋅ x − y

|x − y|
!!!!!!!

p

p

!!!!!!!!!
ρm(x − y) dy

+ ∫
Ω\B(x,Rx)

!!!!!!!!!

!!!!!!!
u(x) − ei(x−y)⋅A(

x+y
2 )u(y)

|x − y|
!!!!!!!

p

p
−
!!!!!!!
(∇u(x) − iA(x)u(x)) ⋅ x − y

|x − y|
!!!!!!!

p

p

!!!!!!!!!
ρm(x − y) dy

≤ C ∫
B(x,Rx)

|x − y|ρm(x − y) dy + C ∫
Ω\B(x,Rx)

ρm(x − y) dy

≤ C
Rx

∫
0

ρm(r)rN dr + C
∞

∫
Rx

ρm(r)rN−1 dr,
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where to handle the second integral we used that
!!!!!!!!!

!!!!!!!
u(x) − ei(x−y)⋅A(

x+y
2 )u(y)

|x − y|
!!!!!!!

p

p
−
!!!!!!!
(∇u(x) − iA(x)u(x)) ⋅ x − y

|x − y|
!!!!!!!

p

p

!!!!!!!!!
≤ C for all x, y ∈ Ω.

Letting m → ∞ and recalling (4.2) and Remark 4.3, we get Ψm(x) → 0 for every x ∈ Ω. Since

|Ψm(x)| ≤ C∫
Ω

ρm(x − y) dy ≤ C
∞

∫
0

ρm(r)rN−1 dr ≤ C,

the Dominated Convergence Theorem yields Ψm → 0 in L1(Ω) as m → ∞. Then, to get the assertion, it is
sufficient to prove that

lim
m→∞

∫
Ω

∫
Ω

|(∇u(x) − iA(x)u(x)) ⋅ (x − y)|pp
|x − y|p

ρm(x − y) dy dx = pQp,N ∫
Ω

|∇u − iAu|pp dx.

Fixed x ∈ Ω, by virtue of formula (4.4), we can write

pQp,N |∇u(x) − iA(x)u(x)|pp = lim
m→∞

∫

ℝN

!!!!!!!
(∇u(x) − iA(x)u(x)) ⋅ h

|h|
!!!!!!!

p

p
ρm(h) dh

= lim
m→∞

∫
Ω

!!!!!!!
(∇u(x) − iA(x)u(x)) ⋅ x − y

|x − y|
!!!!!!!

p

p
ρm(x − y) dy

+ lim
m→∞

∫

ℝN\Ω

!!!!!!!
(∇u(x) − iA(x)u(x)) ⋅ x − y

|x − y|
!!!!!!!

p

p
ρm(x − y) dy.

To conclude the proof, it suffices to prove that

lim
m→∞

∫
Ω

∫

ℝN\Ω

!!!!!!!
(∇u(x) − iA(x)u(x)) ⋅ x − y

|x − y|
!!!!!!!

p

p
ρm(x − y) dy dx = 0.

For every λ > 0, we denote
Ωλ := {x ∈ Ω : dist(x, ∂Ω) > λ},

and M := ‖∇u − iAu‖pL∞(Ω). Then we obtain

∫
Ω

∫

ℝN\Ω

!!!!!!!
(∇u(x) − iA(x)u(x)) ⋅ x − y

|x − y|
!!!!!!!

p

p
ρm(x − y) dy dx

= ∫
Ω

∫

(ℝN\Ω)∩B(x,λ)

!!!!!!!
(∇u(x) − iA(x)u(x)) ⋅ x − y

|x − y|
!!!!!!!

p

p
ρm(x − y) dy dx

+ ∫
Ω

∫

(ℝN\Ω)∩B(x,λ)c

!!!!!!!
(∇u(x) − iA(x)u(x)) ⋅ x − y

|x − y|
!!!!!!!

p

p
ρm(x − y) dy dx

= ∫
Ω\Ωλ

∫

(ℝN\Ω)∩B(x,λ)

!!!!!!!
(∇u(x) − iA(x)u(x)) ⋅ x − y

|x − y|
!!!!!!!

p

p
ρm(x − y) dy dx

+ ∫
Ω

∫

(ℝN\Ω)∩B(x,λ)c

!!!!!!!
(∇u(x) − iA(x)u(x)) ⋅ x − y

|x − y|
!!!!!!!

p

p
ρm(x − y) dy dx

≤ CM ∫
Ω\Ωλ

∫

(ℝN\Ω)∩B(x,λ)

ρm(x − y) dx dy + CM∫
Ω

∫

(ℝN\Ω)∩B(x,λ)c

ρm(x − y) dy dx

≤ CM|Ω \ Ωλ| ∫
{|h|≤λ}

ρm(h) dh + CM|Ω| ∫
{|h|>λ}

ρm(h) dh,

the assertion follows by lettingm → ∞, recalling formula (4.2), and finally letting λ → 0. If p = 1, the asser-
tion follows recalling Lemma 3.4.
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5 Proof of Theorem 4.2
We state in the following a few elementary inequalities concerning the norm introduced in (1.4).

Lemma 5.1. The following properties of | ⋅ |p are true:
(i) Let m = N or m = 1. There exists a positive constant C = C(p, N) such that |z ⋅ w|p ≤ C|z|p|w|p for all z ∈ ℂm

and w ∈ ℂN .
(ii) If T : ℝN → ℂN is a C1-function, there exists a positive constant C such that

!!!!!!!!!

!!!!!!!
T(x) ⋅ x − y

|x − y|
+ O(|x − y|)

!!!!!!!

p

p
−
!!!!!!!
T(x) ⋅ x − y

|x − y|
!!!!!!!

p

p

!!!!!!!!!
≤ C|x − y|

for all x, y ∈ Ω, whereO(|x − y|) denotes any continuous function R : ℝ2N → ℂ such that |R(x, y)|p|x − y|−1
is bounded in Ω × Ω.

Proof. To prove (i), we proceed as follows: let z ∈ ℂN ,

|z ⋅ w|pp =
!!!!!!!!!

N
∑
j=1
zjwj

!!!!!!!!!

p

p
= (

!!!!!!!!!

N
∑
j=1

ℜzjℜwj − ℑzjℑwj + i(ℜzjℑwj + ℑzjℜwj)
!!!!!!!!!p
)
p

=
!!!!!!!!!

N
∑
j=1

ℜzjℜwj − ℑzjℑwj
!!!!!!!!!

p

+
!!!!!!!!!

N
∑
j=1

ℜzjℑwj + ℑzjℜwj
!!!!!!!!!

p

≤ C(p)(
!!!!!!!!!

N
∑
j=1

ℜzjℜwj
!!!!!!!!!

p

+
!!!!!!!!!

N
∑
j=1

ℑzjℑwj
!!!!!!!!!

p

+
!!!!!!!!!

N
∑
j=1

ℜzjℑwj
!!!!!!!!!

p

+
!!!!!!!!!

N
∑
j=1

ℑzjℜwj
!!!!!!!!!

p

)

≤ C(p)(|ℜz|p|ℜw|p + |ℑz|p|ℑw|p + |ℜz|p|ℑw|p + |ℑz|p|ℜw|p)
= C|z|pp|w|

p
p .

The case m = 1, i.e. z ∈ ℂ, works in a similar way. To prove (ii), it is sufficient to combine the inequality
|bp − ap| ≤ M(ap−1 + bp−1)|b − a| for

a :=
!!!!!!!
T(x) ⋅ x − y

|x − y|
+ O(|x − y|)

!!!!!!!p
, b :=

!!!!!!!
T(x) ⋅ x − y

|x − y|
!!!!!!!p
,

with the triangular inequality
!!!!!!!!!

!!!!!!!
T(x) ⋅ x − y

|x − y|
+ O(|x − y|)

!!!!!!!p
−
!!!!!!!
T(x) ⋅ x − y

|x − y|
!!!!!!!p

!!!!!!!!!
≤ |O(|x − y|)|p ≤ C|x − y|,

taking into account that a, b are bounded in Ω.

We start with the following lemma.

Lemma 5.2. Let A : ℝN → ℝN be locally bounded. Then, for any compact V ⊂ ℝN with Ω ⋐ V, there exists
C = C(A, V) > 0 such that

∫
ℝn

|u(y + h) − eih⋅A(y+
h
2 )u(y)|pp dy ≤ C|h|p‖u‖

p
W1,p
A (ℝn)

for all u ∈ W1,p
A (ℝN) such that u = 0 on Vc and any h ∈ ℝN with |h| ≤ 1.

Proof. Assume first that u ∈ C∞0 (ℝN) with u = 0 on Vc. Fix y, h ∈ ℝN and define

φ(t) := ei(1−t)h⋅A(y+
h
2 )u(y + th), t ∈ [0, 1].

Then we have u(y + h) − eih⋅A(y+ h
2 )u(y) = ∫

1
0 φ

�(t) dt, and since

φ�(t) = ei(1−t)h⋅A(y+
h
2 )h ⋅ (∇yu(y + th) − iA(y + h2)u(y + th)),
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by Hölder’s inequality and recalling that |ei(1−t)h⋅A(y+ h
2 )|p ≤ C, we get

|u(y + h) − eih⋅A(y+
h
2 )u(y)|pp ≤ C|h|p

1

∫
0

!!!!!!!
∇yu(y + th) − iA(y + h2)u(y + th)

!!!!!!!

p

p
dt.

Therefore, integrating with respect to y overℝN and using Fubini’s Theorem, we get

∫

ℝN

|u(y + h) − eih⋅A(y+
h
2 )u(y)|pp dy ≤ C|h|p

1

∫
0

dt ∫
ℝn

!!!!!!!
∇yu(y + th) − iA(y + h2)u(y + th)

!!!!!!!

p

p
dy

= C|h|p
1

∫
0

dt ∫
ℝN

!!!!!!!
∇zu(z) − iA(z + 1 − 2t

2 h)u(z)
!!!!!!!

p

p
dz

≤ C|h|p ∫
ℝn

|∇zu(z) − iA(z)u(z)|pp dz

+ C|h|p ∫
V

!!!!!!!
A(z + 1 − 2t

2 h) − A(z)
!!!!!!!

p

p
|u(z)|pp dz.

Then, since A is bounded on the set V, we have for some constant C > 0

∫

ℝN

|u(y + h) − eih⋅A(y+
h
2 )u(y)|pp dy ≤ C|h|p( ∫

ℝN

|∇zu(z) − iA(z)u(z)|pp dz + ∫
ℝn

|u(z)|pp dz)

= C|h|p‖u‖p
W1,p
A (ℝN )

.

When dealing with a general u, we can argue by a density argument [27, Theorem 7.22].

Lemma 5.3. Let A : ℝN → ℝN be locally bounded. Let u ∈ W1,p
A (Ω) and ρ ∈ L1(ℝN) with ρ ≥ 0. Then

∫
Ω

∫
Ω

|u(x) − ei(x−y)⋅A(
x+y
2 )u(y)|pp

|x − y|p
ρ(x − y) dx dy ≤ C‖ρ‖L1‖u‖

p
W1,p
A (Ω)

,

where C depends only on Ω and A.

Proof. Let V ⊂ ℝN be a fixed compact set with Ω ⋐ V. Given u ∈ W1,p
A (Ω), there exists ũ ∈ W1,p

A (ℝN) with
ũ = u on Ω and ũ = 0 on Vc (see e.g. [37, Lemma 2.2]). By Lemma 5.2, we obtain

∫

ℝN

|ũ(y + h) − eih⋅A(y+
h
2 )ũ(y)|pp dy ≤ C|h|p‖ũ‖

p
W1,p
A (ℝN )

≤ C|h|p‖u‖p
W1,p
A (Ω)

(5.1)

for some positive constant C depending on Ω and A. Then, in light of (5.1), we get

∫
Ω

∫
Ω

|u(x) − ei(x−y)⋅A(
x+y
2 )u(y)|pp

|x − y|p
ρ(x − y) dx dy ≤ ∫

ℝN

∫

ℝN

ρ(h)
|ũ(y + h) − eih⋅A(y+ h

2 )ũ(y)|pp
|h|p

dy dh

= ∫

ℝN

ρ(h)
|h|p ( ∫

ℝN

|ũ(y + h) − eih⋅A(y+
h
2 )ũ(y)|pp dy) dh

≤ C‖ρ‖L1‖u‖
p
W1,p
A (Ω)

,

concluding the proof.

We can now conclude the proof of Theorem 4.2. Setting

Fum(x, y) :=
u(x) − ei(x−y)⋅A(

x+y
2 )u(y)

|x − y|
ρ

1
p
m(x − y), x, y ∈ Ω, m ∈ ℕ,
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by virtue of Lemma 5.3, for all u, v ∈ W1,p
A (Ω), we have (recall that ρm fulfills condition (4.1))

!!!!‖F
u
m‖Lp(Ω×Ω) − ‖Fvm‖Lp(Ω×Ω)

!!!! ≤ ‖Fum − Fvm‖Lp(Ω×Ω) ≤ C‖u − v‖W1,p
A (Ω)

for some C > 0 depending on Ω and A. This allows to prove the assertion for functions u ∈ C2(Ω̄) since for
every u ∈ W1,p

A (Ω) there is a sequence {uj}j∈ℕ ⊂ C∞(Ω) such that ‖uj − u‖W1,p
A (Ω) → 0. Therefore, the assertion

follows by Proposition 4.5.

6 Proof of Theorem 4.1
We first state a technical lemma.

Lemma 6.1. Let Ω ⊂ ℝN be open and bounded and A ∈ C2(ℝN ,ℝN) and R > 0. For x, y ∈ Ω let

ψ(z) := ei(x−y)⋅A(
x+y
2 +z), z ∈ B(0, R).

Then there exist positive constants D1 = D1(A, Ω) and D2 = D2(A, Ω, R) such that

|ψ(z) − ψ(0)|1 ≤ D1|z||x − y| + D2|z|2|x − y| (6.1)

for every z ∈ B(0, R). Moreover, lim supR→0 D2 < ∞.

Proof. Recalling (1.4), we can prove (6.1) separately for the real part ℜψ and the imaginary part ℑψ. To
simplify the notation, for fixed x, y ∈ Ω, let us denote

ϑ(z) := (x − y) ⋅ A( x + y2 + z), z ∈ B(0, R).

Therefore,
ψ(z) = ℜψ(z) + iℑψ(z) = cos(ϑ(z)) + i sin(ϑ(z)), z ∈ B(0, R).

We start considering first the real partℜψ. By Taylor’s formula with Lagrange’s rest, we have

ℜψ(z) − ℜψ(0) = ∇ℜψ(0) ⋅ z + 1
2∇

2ℜψ( ̄tz)z ⋅ z (6.2)

for some ̄t ∈ [0, 1], where ∇2ℜψ stands for the Hessian matrix ofℜψ. A simple computation gives

∂zjℜψ(z) = − sin(ϑ(z))∂zjϑ(z) = − sin(ϑ(z))
N
∑
k=1

(xk − yk)∂zjA(k)(
x + y
2 + z)

for every j = 1, . . . , N. Therefore, we have

∇ℜψ(0) = − sin((x − y) ⋅ A( x + y2 ))(x − y) ⋅ ∇A( x + y2 ), (6.3)

where ∇A denotes the Jacobian matrix of A. Another quite simple computation yields

(∇2ℜψ(z))h,j = −[ cos(ϑ(z))((x − y) ⋅ ∂zhA(
x + y
2 + z))((x − y) ⋅ ∂zjA(

x + y
2 + z))

+ sin(ϑ(z))(x − y) ⋅ ∂zh∂zjA(
x + y
2 + z)]

(6.4)

for every i, j = 1, . . . , N.
Now, using (6.2) and (6.3), we get

|ℜψ(z) − ℜψ(0)| ≤
!!!!!!!
∇A( x + y2 )

!!!!!!!
|z||x − y| + 1

2 |z|
2|∇2ℜψ(tz)| for some t ∈ [0, 1].

On the other hand, by (6.4) we get

|∇2ℜψ(tz)| ≤ |x − y|(C|x − y|
!!!!!!!
∇A( x + y2 + tz)

!!!!!!!

2
+

N
∑
k=1

!!!!!!!
∇2A(k)(

x + y
2 + tz)

!!!!!!!
).
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Therefore, (6.1) forℜψ follows taking

D1 := sup
x,y∈Ω

!!!!!!!
∇A( x + y2 )

!!!!!!!
< ∞

and

D2 :=
1
2 sup

x,y∈Ω
z∈B(0,R)

N
∑
k=1

!!!!!!!
∇2A(k)(

x + y
2 + tz)

!!!!!!!
+ C|x − y|

!!!!!!!
∇A( x + y2 + tz)

!!!!!!!

2
< ∞.

The fact that lim supR→0 D2 < ∞ followsobserving thatD2 decreases asR decreases. Since a similar argument
holds for ℑψ, we get the assertion.

Lemma 6.2. Let Ω ⊂ ℝN be an open set and A ∈ C2(ℝN ,ℝN). Let u ∈ L1(Ω). Denote by uε its regularization as
defined in (3.2). Define

Ωr := {x ∈ Ω : d(x, ∂Ω) > r} for all r > 0.

Then, for all r > 0 and ε ∈ (0, r), there holds

∫
Ωr

∫
Ωr

|uε(x) − ei(x−y)⋅A(
x+y
2 )uε(y)|1

|x − y|
ρm(x − y) dx dy

≤ ∫
Ω

∫
Ω

|u(x) − ei(x−y)⋅A(
x+y
2 )u(y)|1

|x − y|
ρm(x − y) dx dy

+
1
εN

∫
B(0,ε)

η( zε)∫
Ω

∫
Ω

|ei(x−y)⋅A(
x+y
2 +z)u(y) − ei(x−y)⋅A(

x+y
2 )u(y)|1

|x − y|
ρm(x − y) dx dy dz

and

lim
ε→0

lim
m→∞

1
εN

∫
B(0,ε)

η( zε)∫
Ω

∫
Ω

|ei(x−y)⋅A(
x+y
2 +z)u(y) − ei(x−y)⋅A(

x+y
2 )u(y)|1

|x − y|
ρm(x − y) dx dy dz = 0.

Proof. Let us extend u to thewhole ofℝN by zero. To simplify thenotation, let us still denoteby u its extension.
By definition,

uε(x) − ei(x−y)⋅A(
x+y
2 )uε(y) =

1
εN

∫

ℝN

η( zε)
(u(x − z) − ei(x−y)⋅A(

x+y
2 )u(y − z)) dz

=
1
εN

∫
B(0,ε)

η( zε)
(u(x − z) − ei(x−y)⋅A(

x+y
2 )u(y − z)) dz.

Thus, for every ε ∈ (0, r), there holds

∫
Ωr

∫
Ωr

|uε(x) − ei(x−y)⋅A(
x+y
2 )uε(y)|1

|x − y|
ρm(x − y) dx dy

≤
1
εN

∫
Ωr

∫
Ωr

∫
B(0,ε)

η( zε)
|u(x − z) − ei(x−y)⋅A(

x+y
2 )u(y − z)|1

|x − y|
ρm(x − y) dz dx dy

≤
1
εN

∫
B(0,ε)

η( zε)∫
Ω

∫
Ω

|u(x) − ei(x−y)⋅A(
x+y
2 +z)u(y)|1

|x − y|
ρm(x − y) dx dy dz ≤ I + II,

where

I := 1
εN

∫
B(0,ε)

η( zε)∫
Ω

∫
Ω

|u(x) − ei(x−y)⋅A(
x+y
2 )u(y)|1

|x − y|
ρm(x − y) dx dy dz

= ∫
Ω

∫
Ω

|u(x) − ei(x−y)⋅A(
x+y
2 )u(y)|1

|x − y|
ρm(x − y) dx dy
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and

II := 1
εN

∫
B(0,ε)

η( zε)∫
Ω

∫
Ω

|ei(x−y)⋅A(
x+y
2 +z)u(y) − ei(x−y)⋅A(

x+y
2 )u(y)|1

|x − y|
ρm(x − y) dx dy dz.

Define ψ(z) := ei(x−y)⋅A(
x+y
2 +z). Then |ψ(z)|1 ≤ 2 for all z ∈ B(0, ε) and by Lemma 6.1,

|ψ(z) − ψ(0)|1 ≤ D1|z||x − y| + D2|z|2|x − y| for all x, y ∈ Ω, z ∈ B(0, ε),

for some D1 = D1(A, Ω) and D2 = D2(A, Ω, ε) which is bounded as ε ↘ 0. Therefore,

II ≤
D1
εN

∫
B(0,ε)

η( zε)∫
Ω

∫
Ω

|u(y)|1|z|ρm(x − y) dx dy dz +
D2
εN

∫
B(0,ε)

η( zε)∫
Ω

∫
Ω

|u(y)|1|z|2ρm(x − y) dx dy dz.

We have
D2
εN

∫
B(0,ε)

η( zε)∫
Ω

∫
Ω

|u(y)|1|z|2ρm(x − y) dx dy dz

≤
D2
εN

∫
B(0,ε)

η( zε)
|z|2dz∫

Ω

|u(y)|1(∫
Ω

ρm(x − y) dx) dy ≤ 2D2|SN−1|‖u‖L1(Ω)ε2,

since ∫Ω ρm(x − y) dx ≤ |SN−1| ∫
∞
0 ρm(r)rN−1 dr ≤ 2|SN−1|, in view of (4.1). Analogously, we have

D1
εN

∫
B(0,ε)

η( zε)∫
Ω

∫
Ω

|u(y)|1|z|ρm(x − y) dx dy dz ≤ 2D1|SN−1|‖u‖L1(Ω)ε.

Hence, we conclude that

lim
ε→0

lim
m→∞

II = 0,

and the assertion follows.

Lemma 6.3. Let Ω ⊂ ℝN be an open and bounded set. Denote by xyt := tx + (1 − t)y with t ∈ [0, 1] the linear
combination of x, y ∈ Ω. There exists a positive constant C = C(N, Ω, A) such that

∫
Ω

∫
Ω

1

∫
0

!!!!!!!
(ei(1−t)(x−y)⋅A(

x+y
2 ) − 1) x − y

|x − y|
⋅ (∇yu(xyt) − iA( x + y2 )u(xyt))

!!!!!!!1
ρm(x − y) dt dx dy

≤ C‖u‖BVA(W)(
1

∫
0

rNρm(r) dr +
∞

∫
1

rN−1ρm(r) dr)

for every open set W ⋑ Ω and for every u ∈ C2(ℝN ,ℂ) such that u = 0 on Wc.

Proof. It is readily seen that there exists a positive constant C = C(A, Ω) such that

|ei(1−t)(x−y)⋅A(
x+y
2 ) − 1|1 ≤ C|x − y| for all x, y ∈ Ω and all t ∈ [0, 1]. (6.5)

Then, by (i) of Lemma 5.1 with p = 1 and by (6.5), we have

∫
Ω

∫
Ω

1

∫
0

!!!!!!!
(ei(1−t)(x−y)⋅A(

x+y
2 ) − 1) x − y

|x − y|
⋅ (∇yu(xyt) − iA( x + y2 )u(xyt))

!!!!!!!1
ρm(x − y) dt dx dy

≤ C∫
Ω

∫
Ω

1

∫
0

!!!!e
i(1−t)(x−y)⋅A( x+y2 ) − 1!!!!1

!!!!!!!
∇yu(xyt) − iA( x + y2 )u(xyt)

!!!!!!!1
ρm(x − y) dt dx dy

≤ C∫
Ω

∫
Ω

1

∫
0

|x − y|ρm(x − y)
!!!!!!!
∇yu(xyt) − iA( x + y2 )u(xyt)

!!!!!!!1
dt dx dy ≤ I + II,
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where we have set

I := C∫
Ω

∫
Ω

1

∫
0

|x − y|ρm(x − y)
!!!!!!!
∇yu(xyt) − iA(xyt)u(xyt)

!!!!!!!1
dt dx dy,

II := C∫
Ω

∫
Ω

1

∫
0

|x − y|ρm(x − y)
!!!!!!!
A( x + y2 ) − A(xyt)

!!!!!!!
|u(xyt)|1 dt dx dy

for some positive constant C = C(A, Ω). Then we get

I ≤ C∫
Ω

( ∫
B(y,1)∩Ω

|x − y|ρm(x − y)(
1

∫
0

|∇yu(xyt) − iA(xyt)u(xyt)|1 dt) dx) dy

+ C∫
Ω

( ∫
B(y,1)c∩Ω

ρm(x − y)(
1

∫
0

|∇yu(xyt) − iA(xyt)u(xyt)|1 dt) dx) dy

≤ C ∫

ℝN

( ∫
B(0,1)

|z|ρm(z)(
1

∫
0

|∇yu(y + tz) − iA(y + tz)u(y + tz)|1 dt) dz) dy

+ C ∫

ℝN

( ∫
B(0,1)c

ρm(z)(
1

∫
0

|∇yu(y + tz) − iA(y + tz)u(y + tz)|1 dt) dz) dy

≤ C ∫
B(0,1)

|z|ρm(z)( ∫

ℝN

1

∫
0

|∇yu(y + tz) − iA(y + tz)u(y + tz)|1 dt dy) dz

+ C ∫
B(0,1)c

ρm(z)( ∫

ℝN

1

∫
0

|∇yu(y + tz) − iA(y + tz)u(y + tz)|1 dt dy) dz

≤ C(∫
W

|∇yu(z) − iA(z)u(z)|1 dz)(
1

∫
0

rNρm(r) dr +
∞

∫
1

rN−1ρm(r) dr),

where in the last inequality we used

∫

ℝN

1

∫
0

|∇yu(y + tz) − iA(y + tz)u(y + tz)|1 dt dy = ∫

ℝN

|∇yu(z) − iA(z)u(z)|1 dz

as well as
∫
W

|∇yu(z) − iA(z)u(z)|1 dz = ∫

ℝN

|∇yu(z) − iA(z)u(z)|1 dz.

On the other hand, denoting by Conv(Ω) the convex hull of Ω, and arguing in a similar fashion, one obtains

II ≤ C‖A‖L∞(Conv(Ω))(∫
W

|u(z)|1 dz)(
1

∫
0

rNρm(r) dr +
∞

∫
1

rN−1ρm(r) dr)

≤ C(∫
W

|u(z)|1 dz)(
1

∫
0

rNρm(r) dr +
∞

∫
1

rN−1ρm(r) dr)

for some positive constant C = C(A, Ω). The desired assertion finally follows by combining the above inequal-
ities and then using Lemma 3.4.

The following lemma is an adaptation to our case of [20, Lemma 3] and [34, Lemma 5.2].
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Lemma 6.4. Let A : ℝN → ℝN be locally Lipschitz and let Ω ⊂ ℝN be an open and bounded set. Then there
exists a positive constant C = C(Ω, A) such that for all r,m > 0, W ⋑ Ω (i.e. Ω is compactly contained in W) and
u ∈ BVA(Ω), denoting by u ∈ BVA(ℝN) an extension of u to ℝN such that u = 0 in Wc, the following inequality
holds:

∫
Ω

∫
Ω

|u(x) − ei(x−y)⋅A(
x+y
2 )u(y)|1

|x − y|
ρm(x − y) dx dy

≤ Q1,N |Du|A(E�r)
r

∫
0

ρm(s)sN−1 ds +
C Lip(A, E�r)‖u‖L1(W)

2

r

∫
0

sNρm(s) ds

+ C‖u‖BVA(W�)(
1

∫
0

sNρm(s) ds +
∞

∫
1

sN−1ρm(s) ds) +
C‖u‖L1(W)

r

∞

∫
r

sN−1ρm(s) ds,

where Er := Ω + B(0, r), W� (resp. E�r) is any bounded open set with W� ⋑ W (resp. E�r ⋑ Er).

Proof. For any ε ∈ (0, r), let uε be as in formula (3.2) for u : ℝN → ℂ. By a change of variables, Fubini’s Theo-
rem and Lemma 5.1, we have

∫
Ω

∫
Ω

|uε(x) − ei(x−y)⋅A(
x+y
2 )uε(y)|1

|x − y|
ρm(x − y) dx dy

≤ ∫
Ω

( ∫
Ω∩B(y,r)

|uε(x) − ei(x−y)⋅A(
x+y
2 )uε(y)|1

|x − y|
ρm(x − y) dx) dy +

C‖u‖L1(W)

r ∫
B(0,r)c

ρm(h) dh,

where C = C(N) > 0. Let us now define

ψ(t) := ei(1−t)(x−y)⋅A(
x+y
2 )uε(tx + (1 − t)y), t ∈ [0, 1].

Then

uε(x) − ei(x−y)⋅A(
x+y
2 )uε(y) = ψ(1) − ψ(0) =

1

∫
0

ψ�(t) dt,

and since

ψ�(t) = ei(1−t)(x−y)⋅A(
x+y
2 )(x − y) ⋅ (∇yuε(tx + (1 − t)y) − iA( x + y2 )uε(tx + (1 − t)y)),

we have

∫
Ω

( ∫
Ω∩B(y,r)

|uε(x) − ei(x−y)⋅A(
x+y
2 )uε(y)|1

|x − y|
ρm(x − y) dx) dy ≤ I + II,

where we have set

I := ∫
Ω

( ∫
Ω∩B(y,r)

1

∫
0

!!!!!!!
x − y
|x − y|

⋅ (∇yuε(xyt) − iA( x + y2 )uε(xyt))
!!!!!!!1
ρm(x − y)dtdx) dy,

II :=
!!!!!!!!!
∫
Ω

∫
Ω∩B(y,r)

1

∫
0

!!!!!!!
ei(1−t)(x−y)⋅A(

x+y
2 ) x − y

|x − y|
⋅ (∇yuε(xyt) − iA( x + y2 )uε(xyt))

!!!!!!!1
ρm(x − y) dt dx dy

− ∫
Ω

∫
Ω∩B(y,r)

1

∫
0

!!!!!!!
x − y
|x − y|

⋅ (∇yuε(xyt) − iA( x + y2 )uε(xyt))
!!!!!!!1
ρm(x − y) dt dx dy

!!!!!!!!!
.

Let
Wε := {x ∈ ℝN : d(x,W) < ε};
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we have uε = 0 onWc
ε and by Lemmas 6.3 and 3.13

II ≤ C‖uε‖BVA(Wε)(
1

∫
0

rNρm(r) dr +
∞

∫
1

rN−1ρm(r) dr)

≤ C(‖u‖BVA(W�) + εLip(A,W�)‖u‖L1(W�))(
1

∫
0

rNρm(r) dr +
∞

∫
1

rN−1ρm(r) dr) (6.6)

for an arbitrary open setW� ⋑ W and for some positive constant C = C(N, Ω, A). On the other hand, we have

I ≤ ∫
B(0,r)

1

∫
0

∫
Ω

!!!!!!!
(∇yuε(y + th) − iA(y + h2)uε(y + th)) ⋅

h
|h|

!!!!!!!1
ρm(h) dy dt dh

≤ ∫
B(0,r)

1

∫
0

∫
Ω

!!!!!!!
(∇yuε(y + th) − iA(y + th)uε(y + th)) ⋅

h
|h|

!!!!!!!1
ρm(h) dy dt dh

+ C ∫
B(0,r)

1

∫
0

∫
Ω

!!!!!!!
(iA(y + h2)uε(y + th) − iA(y + th)uε(y + th)) ⋅

h
|h|

!!!!!!!1
ρm(h) dy dt dh

≤ ∫
B(0,r)

∫
Er

!!!!!!!
(∇yuε(z) − iA(z)uε(z)) ⋅

h
|h|

!!!!!!!1
ρm(h) dz dh

+ C ∫
B(0,r)

1

∫
0

∫
Ω

!!!!!!!
(A(y + h2) − A(y + th)) ⋅

h
|h|

!!!!!!!1
|uε(y + th)|1ρm(h) dy dt dh

≤
r

∫
0

∫
Er

( ∫

SN−1

!!!!(∇yuε(z) − iA(z)uε(z)) ⋅ w!!!!1 dH
N−1(w))sN−1ρm(s) dz ds

+ C ∫
B(0,r)

1

∫
0

∫
Ω

!!!!!!!
(A(y + h2) − A(y + th)) ⋅

h
|h|

!!!!!!!1
|uε(y + th)|1ρm(h) dy dt dh.

Taking into account that (see the final lines of the proof of Lemma 4.4)

∫

SN−1

|ξ ⋅ w|1 dHN−1(w) = Q1,N |ξ|1 for any ξ ∈ ℂN ,

we obtain

I ≤ Q1,N

r

∫
0

∫
Er

!!!!∇yuε(z) − iA(z)uε(z)!!!!1s
N−1ρm(s) ds dz

+ C ∫
B(0,r)

1

∫
0

∫
Ω

!!!!!!!
(A(y + h2) − A(y + th)) ⋅

h
|h|

!!!!!!!1
|uε(y + th)|1ρm(h) dy dt dh.

Whence, taking into account Lemma 3.4 and Lemma 3.13, we finally get

I ≤ Q1,N(∫
Er

!!!!∇yuε(z) − iA(z)uε(z)!!!!1dz)
r

∫
0

ρm(s)sN−1 ds

+ C ∫
B(0,r)

1

∫
0

∫
Ω

!!!!!!!
(A(y + h2) − A(y + th)) ⋅

h
|h|

!!!!!!!1
|uε(y + th)|1ρm(h) dy dt dh

≤ Q1,N(|Du|A(E�r) ∫
B(0,r)

ρm(h) dh + ε Lip(A, E�r)‖u‖L1(E�r)) +
C Lip(A, E�r)‖u‖L1(W)

2 ∫
B(0,r)

|h|ρm(h) dh, (6.7)
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where in the last inequality we used Lemma 3.13. Putting together (6.7) and (6.6), we get

∫
Ω

∫
Ω

|uε(x) − ei(x−y)A(
x+y
2 )uε(y)|1

|x − y|
ρm(x − y) dx dy

≤ Q1,N(|Du|A(E�r)
r

∫
0

ρm(s)sN−1 ds + ε Lip(A, E�r)‖u‖L1(E�r)) +
C Lip(A, E�r)‖u‖L1(W)

2

r

∫
0

sNρm(s) ds

+ C(‖u‖BVA(W�) + ε Lip(A,W�)‖u‖L1(W�))(
1

∫
0

sNρm(s) ds +
∞

∫
1

sN−1ρm(s) ds)

+
C‖u‖L1(W)

r

∞

∫
r

sN−1ρm(s) ds.

The conclusion follows letting ε → 0+.

Proof of Theorem 4.1 concluded. Fix r > 0, W ⋑ Ω and let u = Eu ∈ BVA(ℝN) be an extension of u such that
u = 0 in Wc and |Du|A(∂Ω) = 0, according to Lemma 3.12. Using Lemma 6.2 and Lemma 6.4, for every
0 < ε < r we have

∫

Ωr∩B(0, 1r )

∫

Ωr∩B(0, 1r )

|uε(x) − ei(x−y)⋅A(
x+y
2 )uε(y)|1

|x − y|
ρm(x − y) dx dy

≤ ∫
Ω

∫
Ω

|u(x) − ei(x−y)⋅A(
x+y
2 )u(y)|1

|x − y|
ρm(x − y) dx dy

+
1
εN

∫
B(0,ε)

η( zε)∫
Ω

∫
Ω

|ei(x−y)⋅A(
x+y
2 +z)u(y) − ei(x−y)⋅A(

x+y
2 )u(y)|1

|x − y|
ρm(x − y) dx dy dz

≤ Q1,N |Du|A(E�r)
r

∫
0

ρm(s)sN−1 ds +
C Lip(A, E�r)‖u‖L1(W)

2

r

∫
0

sNρm(s) ds

+ C‖u‖BVA(W�)(
1

∫
0

sNρm(s) ds +
∞

∫
1

sN−1ρm(s) ds) +
C‖u‖L1(W)

r

∞

∫
r

sN−1ρm(s) ds

+
1
εN

∫
B(0,ε)

η( zε)∫
Ω

∫
Ω

|ei(x−y)⋅A(
x+y
2 +z)u(y) − ei(x−y)⋅A(

x+y
2 )u(y)|1

|x − y|
ρm(x − y) dx dy dz.

Letting m → ∞, using (4.6), (4.1) and (4.2) we get

Q1,N |Duε|A(Ωr ∩ B(0,
1
r ))

≤ lim
m→∞

∫
Ω

∫
Ω

|u(x) − ei(x−y)⋅A(
x+y
2 )u(y)|1

|x − y|
ρm(x − y) dx dy

+ lim
m→∞

1
εN

∫
B(0,ε)

η( zε)∫
Ω

∫
Ω

|ei(x−y)⋅A(
x+y
2 +z)u(y) − ei(x−y)⋅A(

x+y
2 )u(y)|1

|x − y|
ρm(x − y) dx dy dz

≤ Q1,N |Du|A(E�r) + lim
m→∞

1
εN

∫
B(0,ε)

η( zε)∫
Ω

∫
Ω

|ei(x−y)⋅A(
x+y
2 +z)u(y) − ei(x−y)⋅A(

x+y
2 )u(y)|1

|x − y|
ρm(x − y) dx dy dz.

Letting ε → 0+, using the lower semi-continuity of the total variation and Lemma 6.2, we have

Q1,N |Du|A(Ωr ∩ B(0,
1
r ))

≤ lim
m→∞

∫
Ω

∫
Ω

|u(x) − ei(x−y)⋅A(
x+y
2 )u(y)|1

|x − y|
ρm(x − y) dx dy

≤ Q1,N |Du|A(E�r),
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the assertion follows letting r ↘ 0 and observing that

lim
r→0+

|Du|A(Ωr ∩ B(0,
1
r ))

= lim
r→0+

|Du|A(E�r) = |Du|A(Ω).

Indeed, since |Du|A( ⋅ ) is a Radon measure, by inner regularity

lim
r→0+

|Du|A(Ωr ∩ B(0,
1
r ))

= |Du|A(Ω),

and by outer regularity
lim
r→0+

|Du|A(E�r) = |Du|A(Ω) = |Du|A(Ω).

This concludes the proof.
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