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Abstract. In this paper, we compute the first eigenpair for variable ex-
ponent eigenvalue problems. We compare the homogeneous definition of
first eigenvalue with previous nonhomogeneous notions in the literature.
We also highlight the symmetry-breaking phenomena.
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1. Introduction

The aim of this paper is the study of numerical solutions to the minimization
problem introduced in [7]

λ1 = inf
u∈W

1,p(x)
0 (Ω)

u �=0

‖∇u‖p(x)
‖u‖p(x) . (1.1)

Here Ω is a bounded domain in R
n and the variable exponent p : Ω̄ → R

+ is
a smooth function such that 1 < p− ≤ p(x) ≤ p+ < ∞ for every x ∈ Ω. The
norm ‖ · ‖p(x) is the so-called Luxemburg norm

‖f‖p(x) = inf

{
γ > 0 :

∫
Ω

∣∣∣∣f(x)γ

∣∣∣∣
p(x)

1

p(x)
≤ 1

}
. (1.2)

If p is a constant function, the problem reduces (up to a power p) to the min-
imization of the quotient

inf
u∈W

1,p
0 (Ω)

u �=0

∫
Ω
|∇u|p∫
Ω
|u|p (1.3)
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and, as it is known, its associated Euler–Lagrange equation is

− div(|∇u|p−2∇u) = λ |u|p−2
u. (1.4)

In this case, we refer the reader to [12, 13] for the theoretical aspects and
to [2] for a recent numerical analysis. The special case p = 2 is the classical
eigenvalue problem for the Laplacian −Δu = λu, for which we refer the
reader to [11]. In general, in these types of problems, it is crucial that some
homogeneity holds, namely, if u is a minimizer, so is ωu for any nonzero real
constant ω. On the contrary, the quotient∫

Ω
|∇u|p(x)∫
Ω
|u|p(x) (1.5)

with variable exponents fails to possess this feature. Therefore, as we point out

in the following section, its infimum over nontrivial functions of W
1,p(x)
0 (Ω)

turns out to be often equal to zero and no minimizer exists [4, 6]. A way
to avoid this collapse is to impose the constraint

∫
Ω
|u|p(x)dx = C. Unfortu-

nately, doing so, minimizers obtained for different normalization constants C
are difficult to compare. For a suitable p(x), it could even happen that any
λ > 0 is an eigenvalue for some choice of C. Thus (1.5) is not a proper general-
ization of (1.3), which has well-defined (variational) eigenvalues, although the
full spectrum is not completely understood yet. A way to avoid this situation
is to use the Rayleigh quotient (1.1), restoring the necessary homogeneity. In
the integrand of (1.2), the use of the measure p(x)−1dx simplifies the Euler–
Lagrange equation. The Sobolev inequality ‖v‖p(x) ≤ C‖∇v‖p(x) shows that
λ1 > 0 (see [3]). It is easy to see that (1.1) has a nonnegative minimizer. Pick
a minimizing sequence of vj , namely ‖vj‖p(x) = 1 and ‖∇vj‖p(x) = λ1+ o(1).
By Rellich theorem for variable Sobolev exponents [3], up to a subsequence,
we find u such that vj → u in Lp(x)(Ω) and ∇vj ⇀ ∇u in Lp(x)(Ω). This
yields

λ1 ≤ ‖∇u‖p(x)
‖u‖p(x) ≤ lim

j→∞
‖∇vj‖p(x)
‖vj‖p(x) = λ1.

Notice that if u is a minimizer so is |u|≥0. By the maximum principle of [9],
u has a fixed sign. In [7] the Euler–Lagrange equation for a minimizer is
derived. Precisely, it holds that∫

Ω

∣∣∣∣∇u

K

∣∣∣∣
p(x)−2 〈∇u

K
,∇η

〉
= λ1S

∫
Ω

∣∣∣u
k

∣∣∣p(x)−2 u

k
η ∀ η ∈ C∞

0 (Ω), (1.6)

where we have set

K = ‖∇u‖p(x), k = ‖u‖p(x), λ1 =
K

k
,

S =

(∫
Ω

∣∣∣u
k

∣∣∣p(x))−1 ∫
Ω

∣∣∣∣∇u

K

∣∣∣∣
p(x)

.
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More generally, λ ∈ R is eigenvalue if there exists u ∈ W
1,p(x)
0 (Ω), u 
≡ 0,

such that∫
Ω

∣∣∣∣∇u

K

∣∣∣∣
p(x)−2 〈∇u

K
,∇η

〉
= λS

∫
Ω

∣∣∣u
k

∣∣∣p(x)−2 u

k
η ∀ η ∈ C∞

0 (Ω). (1.7)

It follows from the regularity theory developed in [1] that the solutions to (1.7)
are continuous provided that p(x) is Hölder continuous. If λ1 is the mini-
mum in (1.1), we have λ ≥ λ1 in (1.7), thus λ1 is the first eigenvalue and
a corresponding solution is the first eigenfunction. Contrary to the constant
exponent case [12, 13], it is currently unknown if, in the variable exponent
case, the first eigenvalue is simple, and if a given positive eigenfunction is
automatically a first one. Concerning higher eigenvalues, in [15] the authors
have recently proved that there is a sequence of eigenvalues of (1.7) with
λj ↗ ∞ and if

σ = n

(
1

p−
− 1

p+

)
< 1,

then there are constants C1, C2 > 0, that depend only on n and p±, such
that

C1 |Ω|λn/(1+σ) ≤ #
{
j : λj < λ

} ≤ C2 |Ω|λn/(1−σ) for λ > 0 large, (1.8)

where |Ω| is the Lebesgue measure of Ω. Observe that, in the case of constant
p, (1.7) reduces not exactly to (1.4), which is homogeneous of degree p − 1,
but rather to the problem (homogeneous of degree 0)

− div

(
|∇u|p−2 ∇u

‖∇u‖p−1
p

)
= λ

|u|p−2 u

‖u‖p−1
p

, u ∈ W 1,p
0 (Ω).

Thus (1.8) should be compared to C1 |Ω|λn/p ≤ #
{
j : λj < λ

} ≤ C2 |Ω|λn/p,
obtained in [8].

A different notion in the literature

We compare the minimization procedure with the Rayleigh quotient with
Luxemburg norm and that without it, namely

inf
u∈W

1,p(x)
0 (Ω)

u �=0

∫
Ω
|∇u|p(x)∫

Ω
|u|p(x) .

In this framework, if λ ∈ R and u ∈ W
1,p(x)
0 (Ω), then (u, λ) is called eigenpair

if u 
= 0 and∫
Ω

|∇u|p(x)−2〈∇u,∇η〉 = λ

∫
Ω

|u|p(x)−2uη ∀ η ∈ W
1,p(x)
0 (Ω).

Set Λ = {λ > 0 : λ is an eigenvalue}. It is well known [12, 13] that, if the
function p(x) is constant, then the problem has a sequence of eigenvalues,
supΛ = +∞ and inf Λ > 0. In the general case, it follows from [6] that Λ is
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a nonempty infinite set and supΛ = +∞. Define λ∗ := inf Λ. We recall that
we often have λ∗ = 0 (recall that λ1 > 0 in (1.1)). Consider the following
Rayleigh quotients:

μ∗ = inf
u∈W

1,p(x)
0 (Ω)

u �=0

∫
Ω

|∇u|p(x)

p(x)∫
Ω

|u|p(x)

p(x)

, μ∗ = inf
u∈W

1,p(x)
0 (Ω)

u �=0

∫
Ω
|∇u|p(x)∫

Ω
|u|p(x) .

Then, in [6], the authors proved that λ∗ > 0 ⇔ μ∗ > 0 ⇔ μ∗ > 0. Fur-
thermore, if there is an open subset U ⊂ Ω and a point x0 ∈ U such that
p(x0) < p(x) (or >) for all x ∈ ∂U , then λ∗ = 0 [6, Theorem 3.1]. In
particular, if p(x) has strictly local minimum (or maximum) points in Ω,
then λ∗ = 0. There are also statements giving some sufficient conditions for
inf Λ > 0. Let n > 1. If there is a vector 	 ∈ R

n \ {0} such that, for any
x ∈ Ω, the map t �→ p(x + t	) is monotone on {t : x + t	 ∈ Ω}, then λ∗ > 0
[6, Theorem 3.3]. If n = 1, then λ∗ > 0 if and only if the function p(x) is
monotone [6, Theorem 3.2].

2. An algorithm to compute the first eigenpair

In this section we briefly describe an algorithm to approximate λ1 in (1.1)
and compute the corresponding eigenfunction. We start defining

Λ1 := inf
u∈W

1,p(x)
0 (Ω)\{0}

‖∇u‖2p(x)
‖u‖2p(x)

= inf
u∈W

1,p(x)
0 (Ω)\{0}

R(u)

S(u)
= λ2

1.

It is now possible to apply the inverse power method, where the (j + 1)th
iteration is

ũj+1 = argmin
u

(R(u)−∇S(uj)u) = argmin
u

J(u), (2.1a)

uj+1 =
ũj+1

S(ũj+1)1/2
, (2.1b)

Λj+1
1 =

R(uj+1)

S(uj+1)
, (2.1c)

where uj is the result of the previous iteration and, by (2.1b), has Luxemburg
norm equal to 1. It is possible to show (see [5]) that the algorithm converges
to a critical point of R(u)/S(u), even if it is not possible in general to prove
convergence to the smallest eingevalue. However, a good choice of the initial
guess u0 can reasonably assure that the result is the smallest eigenvalue.
For the computation of ∇S(u)η, for given u and η, in the so-called inner
problem (2.1a), we observe that if u 
= 0, its Luxemburg norm γ(u) = ‖u‖p(x)
is implicitly defined by

F (u, γ) =

∫
Ω

∣∣∣∣u(x)γ

∣∣∣∣
p(x)

1

p(x)
− 1 = 0. (2.2)
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Therefore, we can use the differentiation of implicit functions to get

∇‖u‖p(x)η = −∇uF (u, γ)η

∂γF (u, γ)
=

∫
Ω

∣∣∣ u
‖u‖p(x)

∣∣∣p(x)−2
u

‖u‖p(x)
η

∫
Ω

∣∣∣ u
‖u‖p(x)

∣∣∣p(x)
from which

∇S(u)η = 2

∫
Ω

∣∣∣ u
‖u‖p(x)

∣∣∣p(x)−2

uη

∫
Ω

∣∣∣ u
‖u‖p(x)

∣∣∣p(x) .

Since we are mainly interested is some particular two-dimensional domains,
such as a rectangle, a disk or an annulus, we approximated the problem by
the finite element method which well adapts to different geometries by con-
structing an appropriate discretization mesh. In particular, we used the tool
FreeFem++ [10] which can handle minimization problems as (2.1a) through
the function NLCS (nonlinear conjugate gradient method, Fletcher–Reeves
implementation). Such a function requires the application of the gradient of
J(u) to a test function η:

∇J(u)η = 2

∫
Ω

∣∣∣ ∇u
‖∇u‖p(x)

∣∣∣p(x)−2

〈∇u,∇η〉
∫
Ω

∣∣∣ ∇u
‖∇u‖p(x)

∣∣∣p(x) − 2

∫
Ω

∣∣∣ uj

‖uj‖p(x)

∣∣∣p(x)−2

ujη

∫
Ω

∣∣∣ uj

‖uj‖p(x)

∣∣∣p(x)
and an initial guess which, for the (j + 1)th iteration of the inverse power

method, is uj/Λ
j
1. The stopping criterion for the inverse power method is

based on the difference of two successive approximations of Λ1.

2.1. Some details of the algorithm

The algorithm described above requires recurrent computations of the Lux-
emburg norm of a function. For a given u 
= 0, it is the zero of the function
F (u, ·) defined in (2.2). This is a C2(0,+∞) convex and monotonically de-
creasing function in γ, with limγ→0+ F (u, γ) = +∞ and limγ→+∞ F (u, γ) =
−1. Therefore, it is possible to apply the quadratically convergent Newton’s
method in order to find its unique zero, starting with an initial guess γ0 on its
left-hand side (i.e., such that F (u, γ0) > 0). As pointed out above, the inverse
power method cannot guarantee the convergence to the smallest eigenvalue
and relative eigenfunction. It is very reasonable to expect that if the initial
guess u0 for the method is close enough to the smallest eigenfunction, then
the algorithm will converge to it. For p ≡ 2, the problem essentially reduces
to the Helmholtz equation

−Δu = λ1u,

for which the eigenfunctions are well known for the domains we have in mind.
Therefore, starting with p ≡ 2 and u0 the eigenfunction corresponding to the
smallest eigenvalue for the Helmholtz equation, we moved to the desired p(x)
through a standard continuation technique.
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We tested our algorithm using both linear and quadratic finite elements
and checked the correct order of convergence (two and three for the rectangle
and one and two for the circular domains, respectively). Moreover, we checked
that the results with constant p were consistent with those reported in [2]. The
results in the next section were obtained with quadratic finite elements. We
observed convergence of our algorithm also for some cases with p(x) < 2, for
which the Hessian of J(u) degenerates and the nonlinear conjugate gradient
is not guaranteed to converge. In this case some authors add a regularization
parameter to the functional J(u) (see [2]). We, moreover, observed sometimes
slow convergence of the nonlinear conjugate gradient. In this case, a more
sophisticated method, using the Hessian of J(u) or an approximation of it,
could be employed. Another possibility would be to use a preconditioner,
either based on a low order approximation of J(u) (see again [2] and references
therein) or on a linearized version of J(u). The implementation of a more
robust and fast algorithm, on which we are currently working, is beyond the
scopes of this paper.

2.2. Examples and breaking symmetry

We show in this section the results we obtained by applying the algorithm
described above to three test cases, in the square, the disk and the annulus,
respectively. For each test, we report the plot of the obtained eigenfunction
from the x-axis, the y-axis and from the top view, respectively.

The first case (Figure 1) refers to the unit square [0, 1] × [0, 1] and
p(x, y) = 5 + 3 sin(5πx). The first plot (left) in this figure does not present
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Figure 1. Unit square, p(x, y) = 5 + 3 sin(5πx), x-axis
(left), y-axis (right) and top views.
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Figure 2. Unit disk, p(x, y) = 11+9 sin(2πx), x-axis (left),
y-axis (right) and top views.
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Figure 3. Annulus, p(x, y) = 4 + 2 sin(2πx), x-axis (left),
y-axis (right) and top views.

special features because the exponent p(x, y) is independent of y. In the
second plot (right) the profile is different as it feels the diffusion variation
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in the x-variable. Both plots are symmetric with respect to the center of the
domain, since p(x, y) has a center of symmetry in (1/2, 1/2); see Figure 4.
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Figure 4. p(x, y) = 5+3 sin(5πx), p(x, y) = 11+9 sin(2πx)
and p(x, y) = 4 + 2 sin(2πx), respectively.
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Figure 5. Interval [−1, 1], p(x) = 28 + 26 cos(2πx), eigen-
function (left) and its logarithm (right).

The second case (Figure 2) refers to the unit disk with center 0 and
radius 1 and p(x, y) = 11+ 9 sin(2πx). The maximum of p(x, y) is quite high
(see Figure 4) and the profile is reminiscent of the one for the limiting case
p = ∞. The second plot is remarkable because we loose the symmetry for the
center of the domain.

The third case (Figure 3) refers to the annulus with center 0, external
radius 1 and internal radius 0.25 and p(x, y) = 4 + 2 sin(2πx). The resulting
eigenfunction is more shifted than the case in the unit square and the case
in the unit disc. Even the shape of the domain influences the contour, here
we see that the annulus reflects intensely the mold of the exponent. The first
plot (left) maintains the center of symmetry in (0, 0) and p(x, y) does not
depend on y.

Already in the one-dimensional case, it is evident that the logarithm
of first eigenfunction is not a concave function, in general, contrary to the
constant exponent case where this was proved to be true [16]. See Figure 5
for an example in this regard.

In the case where Ω has some symmetry and p(x) is a radially symmetric
(resp., axially symmetric with respect to some half-space) function, then some
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symmetry (resp., partial symmetry) results where recently obtained in [14]
for semistable solutions and mountain pass solutions.
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[3] L. Diening, P. Harjulehto, P. Hästö and M. Ruzicka, Lebesgue and Sobolev
Spaces with Variable Exponents. Lecture Notes in Math. 2017, Springer, Hei-
delberg, 2011.

[4] X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω). J. Math. Anal.
Appl. 263 (2001), 424–446.

[5] M. Hein and T. Bühler, An inverse power method for nonlinear eigenproblems
with applications in 1-spectral clustering and sparse PCA. In: Proc. Neural
Information Processing Systems (NIPS), 2010, 847–855.

[6] X. Fan, Q. Zhang and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet prob-
lem. J. Math. Anal. Appl. 302 (2005), 306–317.

[7] G. Franzina and P. Lindqvist, An eigenvalue problem with variable exponents.
Nonlinear Anal. 85 (2013), 1–16.

[8] L. Friedlander, Asymptotic behavior of the eigenvalues of the p-Laplacian.
Comm. Partial Differential Equations 14 (1989), 1059–1069.
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