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Abstract. The paper is devoted to the study of singularly perturbed fractional Schrödinger
equations involving critical frequency and critical growth in the presence of a magnetic
field. By using variational methods, we obtain the existence of mountain pass solutions uε

which tend to the trivial solution as ε → 0. Moreover, we get infinitely many solutions and
sign-changing solutions for the problem in absence of magnetic effects under some extra
assumptions.

1. Introduction and main result

In this paper, we study the following Schrödinger equations involving a critical
nonlinearity

ε2α(−�)αAε
u + V (x)u = f (x, |u|)u + K (x)|u|2∗

α−2u in RN , (1.1)

driven by the magnetic fractional Laplacian operator (−�)αAε
of order α ∈ (0, 1),

where N ≥ 2, ε is a positive parameter, 2∗
α = 2N/(N − 2α) is the critical Sobolev

exponent, V : RN → R and A : RN → R
N are the electric andmagnetic potentials

respectively and Aε(x) := ε−1A(x). If A is a smooth function, the nonlocal operator
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116 Z. Binlin et al.

(−�)αA, which up to normalization constants can be defined on smooth functions
u as

(−�)αAu(x) := 2 lim
ε→0

∫
Bc

ε (x)

u(x) − ei(x−y)·A(
x+y
2 )u(y)

|x − y|N+2α dy, x ∈ R
N ,

has been recently introduced in [13]. The motivations for its introduction are
described in [13,32] in more detail and rely essentially on the Lévy-Khintchine
formula for the generator of a general Lévy process. If the magnetic field A �≡ 0, it
seems that the first work which considered the existence of solutions for problem
(1.1) in the subcritical case with ε = 1, formally α = 1 and K = 0 was [16].
For more details on fractional magnetic operators we refer to [19–21] for related
physical background. If the magnetic field A ≡ 0, the above operator is consis-
tent with the usual notion of fractional Laplacian, which may be viewed as the
infinitesimal generators of a Lévy stable diffusion processes (see [1]). This oper-
ator arises in the description of various phenomena in the applied sciences, such
as phase transitions, materials science, conservation laws, minimal surfaces, water
waves, optimization, plasma physics. See [1] and the references therein for a more
detailed introduction. Some interesting models involving the fractional Laplacian
have received much attention recently, such as the fractional Schrödinger equation
(see [2,8,17,22,23]), the fractional Kirchhoff equation (see [18,25]) and the frac-
tional porous medium equation (see [33]). Another driving force for the study of
problem (1.1) arises in the study of the following time-dependent local Schrödinger
equation

ih̄
∂ψ

∂t
= 1

2m

( h̄
i
∇ − A(x)

)2
ψ + W (x)ψ − g(x, |ψ |)ψ, (1.2)

where h̄ is the Planck constant, m is the mass of the particle, A : RN → R
N is

the magnetic potential, W : RN → R
N is the electric potential, g is the nonlinear

coupling and ψ is the wave function representing the state of the particle. This
equation arises in Quantum Mechanics and describes the dynamics of the particle
in a non-relativistic setting, see for example [26]. Clearly, the form ψ(x, t) =
e−iωt h̄−1

u(x) is a standing wave solution of (1.2) if and only if u satisfies the
following stationary equation

(ε

i
∇ − A(x)

)2
u + V (x)u = f (x, |u|)u. (1.3)

where ε = h̄, V (x) = 2m(W (x) − ω), f = 2mg and

(ε

i
∇ − A(x)

)2
u = −ε2�u − 2ε

i
A(x) · ∇u + |A(x)|2u − ε

i
divA(x)u. (1.4)

See [14] and the references cited therein for recent results in this direction (see also
[31]). Similarly, we could derive the fractional version of (1.3) as A = 0 and ε = 1,
which is a fundamental equation of fractional Quantum Mechanics in the study of
particles on stochastic fields modeled by Lévy processes, see [23]. Also we refer
the reader to [22] for extended physical description.
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Fractional NLS with magnetic field and critical growth 117

Recently, the study on fractional Schrödinger equation has attractedmuch atten-
tion. On the one hand, some recent works involving the subcritical case have been
obtained. Felmer et al. [17] studied the following equations with A = 0 and V = 1

(−�)αu + V (x)u = f (x, u). (1.5)

Using critical point theory, they obtained the existence of a ground state. Regular-
ity, decay and symmetry properties of these solutions were also analyzed. Cheng
[10] investigated the existence of ground state for (1.5) when f (x, t) = |t |p−2t , in
which the coercivity assumption V (x) → +∞ for |x | → ∞ is imposed. In [27],
by using Mountain Pass arguments and a comparison method, Secchi considered
the existence of ground state for (1.5) when the potential V satisfies the assumption
lim inf |x |→∞ V (x) ≥ V∞. In [24], assuming that V−1(0) has nonempty interior,
Ledesma obtained the existence of nontrivial solutions and explored the concentra-
tion phenomenon of solutions for (1.5). Chen and Zheng [9] studied the problem

ε2α(−�)αu + V (x)u = f (x, u) in R
N , (1.6)

where N ≤ 3, f (x, t) = |t |p−2t and V (x) satisfies some smoothness and bounded-
ness assumptions. By using the Lyapunov–Schmidt reductionmethod, they showed
that (1.6) has a nontrivial solution uε concentrating to some single point as ε → 0.
In [11], assuming that f (x, t) = |t |p−2t and V is a sufficiently smooth potential
with infRN V > 0, Dávila et al. recovered various existence results already known
for the case α = 1 and showed the existence of solutions around k nondegener-
ate critical points of V for (1.6). Shang and Zhang [30] studied the concentration
phenomenon of solutions for (1.6) under the assumptions f (x, t) = K (x)|t |p−2t ,
V , K are positive smooth functions and infRN V > 0. By a perturbative methods,
they showed existence of solutions which concentrate near some critical points of
the function

�(x) = (V (x))
p+2
p − N

2α (K (x))−
2

p+1 .

On the other hand, there are some recent papers dedicated to the study of frac-
tional Schrödinger equations with critical growth under various hypotheses on the
potential function V (x). Shang and Zhang [29] studied the existence for the critical
fractional Schrödinger equation

ε2α(−�)αu + V (x)u = λ f (u) + |u|2∗
α−2u in RN , (1.7)

where 0 < infRN V < lim inf |x |→∞ V (x) < +∞. Based on variational methods,
they showed that problem (1.7) has a nonnegative ground state solution for all
sufficiently largeλ and small ε.Moreover, Shen andGao [28] obtained the existence
of nontrivial solutions for problem (1.7) under assumptions that potential function
V is nonnegative and trapping, namely lim inf |x |→∞ V (x) = +∞. As for the case
ε = 1, we refer to [34,35] for some recent results.

Motivated by the aboveworks, especially by [14,15],we are interested in critical
fractional Schrödinger equations with the magnetic field and the critical frequency
case in the sense that minRN V = 0. It is worth mentioning that the study of
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118 Z. Binlin et al.

fractional Schrödinger equations with the critical frequency was first investigated
by Byeon and Wang [4,5]. Main difficulties arise, when dealing with this problem,
because of the appearance of the magnetic field and the critical frequency, and of
the nonlocal nature of the fractional Laplacian. For this, we need to develop new
techniques to overcome difficulties induced by these new features.
We shall assume the following conditions:

(V1) V ∈ C(RN ,R) and minRN V = 0;
(V2) There exists a > 0 such that V a = {x ∈ R

N : V (x) < a} has finite Lebesgue
measure;

(K ) There exist K0, K1 > 0 such that K0 ≤ K (x) ≤ K1 for any x ∈ R
N ;

( f1) f ∈ C(RN × R
+,R) and there exists c0 > 0 and p ∈ (2, 2∗

α) such that

| f (x, t)| ≤ c0(1 + |t |p−2), for any (x, t) ∈ R
N × R

+;

( f2) limt→0+ f (x, t) = 0 uniformly in x ∈ R
N ;

( f3) There existsμ > 2 such thatμF(x, t) ≤ f (x, t)t2 for any t > 0, F(x, t) :=∫ t
0 f (x, s)s ds;

( f4) There exist c1 > 0, q ∈ (2, 2∗
α) such that f (x, t) ≥ c1tq−2 for any t > 0.

We say that u ∈ Xε is a (weak) solution of problem (1.1) if for any v ∈ Xε,

Re
∫
R2N

(
u(x) − ei(x−y)·Aε(

x+y
2 )u(y)

) (
v(x) − ei(x−y)·Aε(

x+y
2 )v(y)

)

|x − y|N+2α dxdy

+ ε−2αRe
∫
RN

V (x)uv dx

= ε−2αRe
∫
RN

(
f (x, |u|)u + K (x)|u|2∗

α−2u
)

v dx .

where z̄ denotes complex conjugate of z ∈ C, Rez is the real part of z, (Xε, ‖ · ‖Xε )

is a suitable subspace of the fractional space Hα
Aε

(RN ,C). See Sect. 2 for more
details.

We are now in a position to state the main result of the paper.

Theorem 1.1. Assume that (V1)–(V2), ( f1)–( f4), (K ) hold and that A ∈
C(RN ,RN ). Then there exists ε0 > 0 such that for any ε ∈ (0, ε0), problem
(1.1) admits a nontrivial mountain pass solution uε ∈ Xε such that ‖uε‖Xε → 0
as ε → 0.

Remark 1.1. (i) unlike solutions with concentration phenomena constructed in
some earlier works without the magnetic field, our nontrivial solutions are
closed to the trivial solution.

(ii) If A = 0 and α ↗ 1, then Theorem 1.1 reduces to a result ofDing and Lin in
[15]. To our best knowledge, it seems that there is no result on the existence
of solutions for singularly perturbed fractional Schrödinger equations with
an external magnetic field.
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Fractional NLS with magnetic field and critical growth 119

(iii) In [32] it was proved that, in the singular limit for α ↗ 1, the operator (1−
α)ε2α(−�)αAε

converges, in a suitable sense, to the classical local magnetic
operator (1.4). Whence, up to multiplication by 1− α the nonlocal theory is
somehow consistent with the classical one.

The paper is organized as follows. In Sect. 2, we recall some necessary defini-
tions and properties of the functional spaces. In Sect. 3, we provide some prelimi-
nary results. In Sect. 4 we prove Theorem 1.1. In Sect. 5, we get some results for
problem (1.1) in the case A = 0.

2. Functional setting

For the convenience of the reader, in this part we recall some definitions and basic
properties of fractional magnetic Sobolev spaces Hα

Aε
(RN ,C). For a wider treat-

ment on these spaces, we refer the reader to [13]. Let L2(RN ,C) be the Lebesgue
space of complex-valued functions with summable square, endowed with the real
scalar product

〈u, v〉L2 := Re
∫
RN

uv dx,

for any u, v ∈ L2(RN ,C). For any α ∈ (0, 1), the space Hα
Aε

(RN ,C) is defined
by

Hα
Aε

(RN ,C) =
{
u ∈ L2(RN ,C) : [u]α,Aε < ∞

}
,

where [u]α,Aε denotes the so-called magnetic Gagliardo semi-norm, that is

[u]α,Aε :=
(∫

R2N

|u(x) − ei(x−y)·Aε(
x+y
2 )u(y)|2

|x − y|N+2α dxdy

) 1
2

and Hα
Aε

(RN ,C) is endowed with the norm

‖u‖α,Aε =
(
[u]2α,Aε

+ ‖u‖2L2

)1/2
.

If A = 0, then Hα
Aε

(RN ,C) reduces to the well-known fractional space Hα(RN ).

Also, Hα
Aε

(RN ,C) is a Hilbert space with the real scalar product

〈u, v〉α,Aε := 〈u, v〉L2

+Re
∫
R2N

(
u(x) − ei(x−y)·Aε(

x+y
2 )u(y)

)(
v(x) − ei(x−y)·Aε(

x+y
2 )v(y)

)
|x − y|N+2α dxdy,

for any u, v ∈ Hα
Aε

(RN ,C). The operator (−�)αAε
: Hα

Aε
(RN ,C) → H−α

Aε
(RN ,C)

is defined by〈
(−�)αAε

u, v
〉

:= Re
∫
R2N

(
u(x) − ei(x−y)·Aε(

x+y
2 )u(y)

)(
v(x) − ei(x−y)·Aε(

x+y
2 )v(y)

)
|x − y|N+2α dxdy,
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120 Z. Binlin et al.

via duality. Furthermore, the space Dα
Aε

(RN ,C) is defined as

Dα
Aε

(RN ,C) := {
u ∈ L2∗

α (RN ,C) : [u]α,Aε < ∞}
.

and endowed with the norm [·]α,Aε . We recall (cf. [13, Lemma 3.5]) the following
embedding

Proposition 2.1. (Magnetic embeddings) The embeddings

Dα
Aε

(RN ,C) ↪→ L2∗
α (RN ,C), Hα

Aε
(RN ,C) ↪→ Lν(RN ,C),

is continuous for any ν ∈ [2, 2∗
α]. Moreover, the embedding

Hα
Aε

(RN ,C) ↪→↪→ Lν
loc(R

N ,C)

is compact for any ν ∈ [1, 2∗
α).

In this paper, we will use the following subspace of Dα
Aε

(RN ) defined by

Xε :=
{
u ∈ Dα

Aε
(RN ,C) :

∫
RN

V (x)|u|2 dx < ∞
}

with the norm

‖u‖Xε =
(

[u]2α,Aε
+
∫
RN

V (x)|u|2 dx
)1/2

,

where V is nonnegative. For any ε > 0, the norm ‖ · ‖Xε is equivalent to the
following norm

‖u‖ε :=
(

[u]2α,Aε
+ ε−2α

∫
RN

V (x)|u|2 dx
)1/2

,

which will be used from time to time.

Proposition 2.2. (Xε embedding) If (V2) holds, the injection Xε ↪→ Hα
Aε

(RN ,C)

is continuous.

Proof. Let a > 0 be as in assumption (V2). For any u ∈ Xε, we obtain∫
RN

V (x)|u|2 dx =
∫
RN \Va

V (x)|u|2 dx +
∫
Va

V (x)|u|2 dx .

By the Hölder inequality,

∫
Va

|u|2 dx ≤ |V a |1−
2
2∗α
(∫

Va
|u|2∗

α dx

) 2
2∗α ≤ 1

Sε
α

|V a |1−
2
2∗α [u]2α,Aε

,

where | · | denotes the Lebesgue measure and Sε
α is the best Sobolev constant of the

magnetic Sobolev embedding Dα
Aε

(RN ,C) ↪→ L2∗
α (RN ,C),

Sε
α := inf

u∈Dα
Aε

(RN )\{0}
[u]2α,Aε

‖u‖2
L2∗α

. (2.1)
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Fractional NLS with magnetic field and critical growth 121

Then, it follows from condition (V2) that

‖u‖2Xε
≥ 1

2
[u]2α,Aε

+ 1

2
[u]2α,Aε

+
∫
RN \Va

V (x)|u|2 dx

≥ 1

2
[u]2α,Aε

+ 1

2
Sε
α|V a |

2
2∗α −1

∫
Va

|u|2 dx + a
∫
RN \Va

|u|2 dx

≥ min

{
1

4
,
1

4
Sε
α|V a |

2
2∗α −1

,
a

2

}
‖u‖2α,Aε

,

which implies that Xε is continuously embedded in Hα
Aε

(RN ,C). ��

3. Preliminary results

Throughout this section, we assume that conditions ( f1)–( f4), (V1)–(V2) and (K )

are satisfied. Without loss of generality, we assume that

V (0) = min
x∈RN

V (x) = 0.

To obtain the solution of problem (1.1), we will use the following equivalent form

(−�)αAε
u + ε−2αV (x)u = ε−2α f (x, |u|)u + ε−2αK (x)|u|2∗

α−2u, (3.1)

where ε > 0. The energy functional associated with (3.1) on Xε is defined as
follows

Iε(u) := 1

2
[u]2α,Aε

+ ε−2α

2

∫
RN

V (x)|u|2 dx

− ε−2α
∫
RN

F(x, |u|) dx − ε−2α

2∗
α

∫
RN

K (x)|u|2∗
α dx .

It is easy to check that Iε ∈ C1(Xε, R) and that any critical point for Iε is a weak
solution of problem (3.1). In the following, let {un}n∈N be a (PS)c sequence for Iε,
namely Iε(un) → c and I ′

ε(un) → 0 in X∗
ε , as n → ∞, where X∗

ε is the dual space
of Xε.

By standard arguments, we get that {un}n∈N is bounded in Xε. Passing to a
subsequence, still denoted by {un}n∈N, we assume that un → u weakly in Xε,
un → u in L2

loc(R
N ,C), L p

loc(R
N ,C) and un(x) → u(x) a.e. in R

N . It is easy to
verify that I ′

ε(u) = 0 and Iε(u) ≥ 0. Due to the loss of compactness for the critical
embedding, we do not expect that the energy functional Iε satisfies the Palais-Smale
condition ((PS) condition for short) at any positive energy level, which makes the
study via variational methods rather complicated. As in the celebrated contribution
by Brézis and Nirenberg [3], we show that the (PS) condition holds for energy
level less than some positive constant. Then, by the Minimax Theorem, we get the
existence of solutions to (3.1).

First of all, we give some preliminary results to show that Iε satisfies the (PS)c
at energy levels c below some constant. From now on {un}n∈N denotes the afore-
mentioned (PS)c sequence.
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122 Z. Binlin et al.

Lemma 3.1. (Vanishing) There is a subsequence {un j } j∈N of the (PS)c sequence
{un}n∈N ⊂ Xε such that for any σ > 0, there exists rσ > 0, which satisfies

lim sup
j→∞

∫
Bj\Br

|un j |s dx ≤ σ (3.2)

for any r ≥ rσ , where s = 2 or s = p, and Br = {x ∈ R
N : |x | < r}.

Proof. For any r > 0,
∫
Br

|un|s dx → ∫
Br

|u|s dx as n → ∞. Then, there exists
n j ∈ N with n j+1 > n j such that∫

Bj

|un j |s dx −
∫
Bj

|u|s dx <
1

j
.

For any σ > 0, there exists rσ > 0 such that for any r ≥ rσ ,∫
RN \Br

|u|s dx < σ.

If j > rσ , we have∫
Bj\Br

|un j |s dx =
∫
Bj

|un j |s dx −
∫
Bj

|u|s dx +
∫
Bj\Br

|u|s dx

+
∫
Br

|u|s dx −
∫
Br

|un j |s dx

<
1

j
+ σ +

∫
Br

|u|s dx −
∫
Br

|un j |s dx,

for any r ≥ rσ , which yields the desired assertion. ��
Take ϕ ∈ C∞

0 (RN ) such that 0 ≤ ϕ ≤ 1, ϕ(x) = 1 for |x | ≤ 1 and ϕ(x) = 0 for
|x | ≥ 2. Define

û j (x) := ϕ j (x)u(x), ϕ j (x) := ϕ
(2x

j

)
, j ∈ N.

Then we have the following preliminary result.

Lemma 3.2. (Stability of truncation) For any ε > 0, ‖û j − u‖ε → 0 as j → ∞.

Proof. It is readily seen that

[̂u j − u]α,Aε ≤ 2
∫
R2N

u2(x)(ϕ j (x) − ϕ j (y))2

|x − y|N+2α dxdy

+ 2
∫
R2N

(ϕ j (y) − 1)2
∣∣u(x) − ei(x−y)·Aε(

x+y
2 )u(y)

∣∣2
|x − y|N+2α dxdy.

(3.3)

Note that u ∈ Xε, |ϕ j (y) − 1| ≤ 2 and ϕ j (y) − 1 → 0 a.e. as j → ∞. Then, the
Dominated Convergence Theorem yields

∫
R2N

(ϕ j (y) − 1)2
∣∣u(x) − ei(x−y)·Aε(

x+y
2 )u(y)

∣∣2
|x − y|N+2α dxdy → 0
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Fractional NLS with magnetic field and critical growth 123

as j → ∞. In the following, we will prove that
∫
R2N

u2(x)(ϕ j (x) − ϕ j (y))2

|x − y|N+2α dxdy → 0 as j → ∞.

Note that

R
N × R

N = ((RN\Bj ) ∪ Bj ) × ((RN\Bj ) ∪ Bj )

= ((RN\Bj ) × (RN\Bj )) ∪ (Bj × R
N ) ∪ ((RN\Bj ) × Bj ).

(i) (x, y) ∈ (RN\Bj ) × (RN\Bj ), we have ϕ j (x) = ϕ j (y) = 0.
(ii) (x, y) ∈ Bj × R

N . One has
∫
Bj

dx
∫

{y∈RN :|x−y|≤ 1
2 j}

u2(x)|ϕ j (x) − ϕ j (y)|2
|x − y|N+2α dy

=
∫
Bj

dx
∫

{y∈RN :|x−y|≤ 1
2 j}

u2(x)|∇ϕ(ξ)|2| 2(x−y)
j |2

|x − y|N+2α dy

≤ C j−2
∫
Bj

dx
∫

{y∈RN :|x−y|≤ 1
2 j}

u2(x)

|x − y|N+2α−2 dy

= C j−2α
∫
Bj

u2(x)dx,

where ξ = 2y
j + τ

2(x−y)
j , τ ∈ (0, 1) and

∫
Bj

dx
∫

{y∈RN :|x−y|> 1
2 j}

u2(x)|ϕ j (x) − ϕ j (y)|2
|x − y|N+2α dy

≤ C
∫
Bj

dx
∫

{y∈RN :|x−y|> 1
2 j}

u2(x)

|x − y|N+2α dy

= C j−2α
∫
Bj

u2(x)dx .

(iii) (x, y) ∈ (RN\Bj ) × Bj . If |x − y| ≤ 1
2 j , then |x | ≤ |x − y| + |y| ≤ 3

2 j.
Furthermore,

∫
RN \Bj

dx
∫

{y∈Bj :|x−y|≤ 1
2 j}

u2(x)|ϕ j (x) − ϕ j (y)|2
|x − y|N+2α dy

≤ C j−2
∫
B 3
2 j

dx
∫

{y∈Bj :|x−y|≤ 1
2 j}

u2(x)

|x − y|N+2α−2 dy

≤ C j−2α
∫
B 3
2 j

u2(x)dx .

Notice that, for any k > 4, there holds

R
N\Bj ⊂ Bk

2 j
∪ (RN\Bk

2 j
).
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124 Z. Binlin et al.

If |x − y| > 1
2 j , then we obtain

∫
B k
2 j

dx
∫

{y∈Bj :|x−y|> 1
2 j}

u2(x)|ϕ j (x) − ϕ j (y)|2
|x − y|N+2α dy

≤ C
∫
B k
2 j

dx
∫

{y∈Bj :|x−y|> 1
2 j}

u2(x)

|x − y|N+2α dy

≤ C j−2α
∫
B k
2 j

u2(x)dx .

If (x, y) ∈ (RN\Bk
2 j

)× Bj , then |x − y| ≥ |x |− |y| ≥ |x |
2 + k

4 j − j >
|x |
2 . Hölder

inequality yields

∫
RN \B k

2 j

dx
∫

{y∈Bj :|x−y|> 1
2 j}

u2(x)|ϕ j (x) − ϕ j (y)|2
|x − y|N+2α dy

≤ C
∫
RN \B k

2 j

dx
∫

{y∈Bj :|x−y|> 1
2 j}

u2(x)

|x |N+2α dy

≤ C j N
∫
RN \B k

2 j

u2(x)

|x |N+2α dx

≤ Ck−N

⎛
⎝
∫
RN \B k

2 j

|u(x)|2∗
α dx

⎞
⎠

2
2∗α

.

By combining (i), (ii) and (iii), we get

∫
R2N

u2(x)|ϕ j (x) − ϕ j (y)|2
|x − y|N+2α dxdy

=
(∫

Bj×RN
+
∫

(RN \Bj )×Bj

)
u2(x)|ϕ j (x) − ϕ j (y)|2

|x − y|N+2α dxdy

≤ C j−2α
∫
B k
2 j

u2(x) dx + Ck−N

⎛
⎝
∫
RN \B k

2 j

|u(x)|2∗
α dx

⎞
⎠

2/2∗
α

≤ C j−2α + Ck−N .

Therefore, we have

lim sup
j→∞

∫
R2N

u2(x)(ϕ j (x) − ϕ j (y))2

|x − y|N+2α dxdy

= lim
k→∞ lim sup

j→∞

∫
R2N

u2(x)(ϕ j (x) − ϕ j (y))2

|x − y|N+2α dxdy = 0.

(3.4)
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It follows from (3.3) and (3.4) that

[̂u j − u]α,Aε → 0, as j → ∞.

Note that, as j → ∞,
∫
RN

V (x)|̂u j (x) − u(x)|2 dx =
∫
RN

V (x)(ϕ j (x) − 1)2u2(x) dx → 0,

we deduce from the Dominated Convergence Theorem that
∫
RN

V (x)|̂u j (x) − u(x)|2 dx → 0,

as j → ∞. Thus ‖û j − u‖ε → 0 as j → ∞. ��
Lemma 3.3. (Shifted Palais-Smale) Let {un j } j∈N ⊂ Xε be the sequence intro-
duced in Lemma 3.1. Moreover, for any j ∈ N, let us denote

u1n j
:= un j − û j , j ≥ 1.

Then, Iε(u1n j
) → c − Iε(u) and I ′

ε(u
1
n j

) → 0 in X∗
ε as j → ∞.

Proof. Notice that, it holds

Iε(u
1
n j

) − Iε(un j ) + Iε(̂u j )

=
∫
R2N

|̂u j (x) − ei(x−y)·Aε(
x+y
2 )û j (y)|2

|x − y|N+2α dxdy

− Re
∫
R2N

(
un j (x) − ei(x−y)·Aε(

x+y
2 )un j (y)

) (
û j (x) − ei(x−y)·Aε(

x+y
2 )û j (y)

)

|x − y|N+2α dxdy

+ ε−2α
∫
RN

V (x)|̂u j |2 dx − ε−2αRe
∫
RN

V (x)un j û j dx

+ ε−2α
∫
RN

(F(x, |un j |) − F(x, |un j − û j |) − F(x, |̂u j |)) dx

+ ε−2α

2∗
α

∫
RN

K (x)
(
|un j |2

∗
α − |un j − û j |2∗

α − |̂u j |2∗
α

)
dx .

As un j → u weakly in Xε and û j → u strongly in Xε, we could derive that

∫
R2N

|̂u j (x) − ei(x−y)·Aε(
x+y
2 )û j (y)|2

|x − y|N+2α dxdy

− Re
∫
R2N

(
un j (x)−ei(x−y)·Aε(

x+y
2 )un j (y)

) (
û j (x)−ei(x−y)·Aε(

x+y
2 )û j (y)

)

|x − y|N+2α dxdy→0

and, as j → ∞,
∫
RN

V (x)|̂u j |2 dx − Re
∫
RN

V (x)un j û j dx → 0.
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Arguing as for the proof of the Brézis-Lieb Lemma and recalling that û j → u
strongly in Xε as j → ∞, it is easy to prove that∫

RN
(F(x, un j ) − F(x, un j − û j ) − F(x, û j )) dx → 0,

∫
RN

K (x)(|un j |2
∗
α − |un j − û j |2∗

α − |̂u j |2∗
α ) dx → 0.

Thus, Iε(u1n j
) → c − Iε(u), as j → ∞. Taking now φ ∈ Xε with ‖φ‖ε ≤ 1, we

obtain

〈I ′
ε(u

1
n j

) − I ′
ε(un j ) + I ′

ε(̂u j ), φ〉
= ε−2αRe

∫
RN

( f (x, |un j |)un j − f (x, |un j −û j |)(un j − û j )− f (x, |̂u j |)̂u j )φ dx

+ ε−2αRe
∫
RN

K (x)(|un j |2
∗
α−2un j

− |un j − û j |2∗
α−2(un j − û j ) − |̂u j |2∗

α−2û j )φ dx .

It follows, again by a standard argument, that∣∣∣∣
∫
RN

K (x)(|un j |2
∗
α−2un j − |un j − û j |2∗

α−2(un j − û j ) − |̂u j |2∗
α−2û j )φ dx

∣∣∣∣ → 0

uniformly in φ ∈ Xε with ‖φ‖ε ≤ 1, as j → ∞. Meanwhile, we have∣∣∣∣
∫
RN

( f (x, |un j |)un j − f (x, |un j − û j |)(un j − û j ) − f (x, |̂u j |)̂u j )φ dx

∣∣∣∣
≤
∫
Br

∣∣ f (x, |un j |)un j − f (x, |un j − û j |)(un j − û j ) − f (x, |̂u j |)̂u j
∣∣ · |φ| dx

+
∫
RN \Br

∣∣ f (x, |un j |)un j − f (x, |un j − û j |)(un j − û j )

− f (x, |̂u j |)̂u j
∣∣ · |φ| dx

for any r ≥ rσ , where rσ > 0 is as in Lemma 3.1. Since û j → u and un j → u in
L p(Br ,C), we get∫

Br
| f (x, |un j |)un j − f (x, |un j − û j |)(un j − û j ) − f (x, |̂u j |)̂u j | · |φ| dx → 0

(3.5)
uniformly in φ ∈ Xε with ‖φ‖ε ≤ 1. By ( f1) and ( f2), for any t > 0 we obtain

| f (x, t)t | ≤ C(|t | + |t |p−1),

which implies (we recall that û j = 0 on R
N\Bj for any j ≥ 1)∫

RN \Br
| f (x, |un j |)un j − f (x, |un j − û j |)(un j − û j ) − f (x, |̂u j |)̂u j | · |φ| dx

=
∫
Bj\Br

| f (x, |un j |)un j − f (x, |un j − û j |)(un j − û j ) − f (x, |̂u j |)̂u j | · |φ| dx

≤ C
∫
Bj\Br

(|un j | + |̂u j | + |un j |p−1 + |̂u j |p−1) · |φ| dx .
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For any σ > 0, by inequality (3.2), the Hölder inequality and Proposition 2.2, we
have

lim sup
j→∞

∫
Bj\Br

(|un j | + |un j |p−1) · |φ| dx

≤ lim sup
j→∞

( ∫
Bj\Br

|un j |2 dx
) 1

2
( ∫

Bj\Br
|φ|2 dx

) 1
2

+ lim sup
j→∞

( ∫
Bj\Br

|un j |p dx
) p−1

p
( ∫

Bj\Br
|φ|p dx

) 1
p ≤ C

(
σ

1
2 + σ

p−1
p
)
.

Since û j → u in Xε as j → ∞, Proposition 2.2 yields that û j → u in L2(RN ,C)

and L p(RN ,C). Then, by the Hölder inequality, for any r ≥ rσ (up to enlarging
rσ ) we obtain

lim sup
j→∞

∫
Bj\Br

(|̂u j | + |̂u j |p−1) · |φ| dx

=
∫
RN \Br

(|u| + |u|p−1) · |φ| dx ≤ C

(
σ

1
2 + σ

p−1
p

)
. (3.6)

From (3.5)–(3.6), we have

lim sup
j→∞

∫
RN

| f (x, |un j |)un j − f (x, |un j − û j |)(un j − û j )

− f (x, |̂u j |)̂u j | · |φ| dx ≤ C

(
σ

1
2 + σ

p−1
p

)

uniformly in φ ∈ Xε with ‖φ‖ε ≤ 1. Letting σ → 0 yields,

lim sup
j→∞

∫
RN

| f (x, |un j |)un j − f (x, |un j − û j |)(un j − û j )

− f (x, |̂u j |)̂u j | · |φ| dx = 0.

As I ′
ε(un j ) → 0 and I ′

ε(̂u j ) → I ′
ε(u) = 0, we get that I ′

ε(u
1
n j

) → 0, as j → ∞. ��
In what follows, we will show that for any ε > 0, Iε satisfies (PS)c condition for
energy level c below some positive constant depending on ε.

Lemma 3.4. (Palais-Smale) Let K0, K1 > 0 and μ > 2 be as in conditions (K )

and ( f3) and let us denote by c2 > 0 a suitable constant depending upon f . Then,
for any ε > 0, if

−∞ < c < C0(ε)ε
N−2α, C0(ε) :=

(
Sε
α

c2 + K1

) 2∗α
2∗α−2 (2∗

α − μ)K0

μ2∗
α

.

then un j → u in Xε as j → ∞.
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Proof. By the definition of {u1n j
} j∈N and Lemma 3.2, it suffices to have u1n j

→ 0
in Xε as j → ∞. By means of conditions ( f3) and (K ), we have

Iε(u
1
n j

) − 1

μ
〈I ′

ε(u
1
n j

), u1n j
〉

=
(
1

2
− 1

μ

)
[u1n j

]2α,Aε
+
(
1

2
− 1

μ

)
ε−2α

∫
RN

V (x)|u1n j
|2 dx

+ ε−2α
∫
RN

(
1

μ
f (x, |u1n j

|)|u1n j
|2 − F(x, |u1n j

|)
)

dx

+ ε−2α
(
1

μ
− 1

2∗
α

)∫
RN

K (x)|u1n j
|2∗

α dx

≥ ε−2α
(
1

μ
− 1

2∗
α

)
K0

∫
RN

|u1n j
|2∗

α dx .

Then, from Lemma 3.3, we get

lim sup
j→∞

∫
RN

|u1n j
|2∗

α dx ≤ μ2∗
αε2α

K0(2∗
α − μ)

(c − Iε(u)). (3.7)

Suppose that u1n j
�→ 0 in L2∗

α (RN ,C). Then, we have

lim inf
j→∞ ‖u1n j

‖L2∗α > 0. (3.8)

Noting that 〈I ′
ε(u

1
n j

), u1n j
〉 → 0 as j → ∞, we have

[u1n j
]2α,Aε

+ ε−2α
∫
RN

V (x)|u1n j
|2 dx

= ε−2α
∫
RN

f (x, |u1n j
|)|u1n j

|2 dx + ε−2α
∫
RN

K (x)|u1n j
|2∗

α dx + o j (1).
(3.9)

It follows from (2.1) that

Sε
α

(∫
RN

|u1n j
|2∗

α dx

) 2
2∗α ≤ [u1n j

]2α,Aε

= ε−2α
∫
RN

f (x, |u1n j
|)|u1n j

|2 dx + ε−2α
∫
RN

K (x)|u1n j
|2∗

α dx

− ε−2α
∫
RN

V (x)|u1n j
|2 dx + o j (1).

By ( f1) and ( f2), for any λ > 0, there exists C(λ) > 0 such that

| f (x, t)| ≤ λ + C(λ)|t |2∗
α−2. (3.10)
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Thus

Sε
α

(∫
RN

|u1n j
|2∗

α dx

) 2
2∗α ≤ λε−2α

∫
RN

|u1n j
|2 dx + C(λ)ε−2α

∫
RN

|u1n j
|2∗

α dx

+ ε−2αK1

∫
RN

|u1n j
|2∗

α dx − ε−2α
∫
RN

a|u1n j
|2 dx

+ ε−2α
∫
RN

a|u1n j
|2 dx

− ε−2α
∫
RN

V (x)|u1n j
|2 dx + o j (1).

(3.11)

Since Va has finite Lebesgue measure, we obtain |Va\BR | → 0 for R → ∞.
Then, for any η > 0, there exists R0 > 0 such that |V a\BR | < η for any R ≥ R0.
We have ∫

RN
(a − V (x))|u1n j

|2 dx ≤
∫
Va

(a − V (x))|u1n j
|2 dx

=
∫
Va\BR0

(a − V (x))|u1n j
|2 dx

+
∫
Va∩BR0

(a − V (x))|u1n j
|2 dx .

Now the Hölder inequality gives
∫
Va\BR0

(a − V (x))|u1n j
|2 dx ≤

∫
Va\BR0

a|u1n j
|2 dx

≤ a‖u1n j
‖2
L2∗α |V a\BR0 |1−

2
2∗α ≤ Cη

1− 2
2∗α .

As u1n j
→ 0 weakly in X , u1n j

→ 0 in L2(BR0 ,C), as j → ∞. Then, for the above
η > 0, there exists j0 ∈ N such that for any j ≥ j0,

∫
Va∩BR0

(a − V (x))|u1n j
|2 dx ≤ a

∫
BR0

|u1n j
|2 dx ≤ aη. (3.12)

Let λ = a/2. In terms of (3.11)–(3.12), there exists c2 > 0 depending on f such
that

Sε
α

(∫
RN

|u1n j
|2∗

α dx

) 2
2∗α ≤ (c2 + K1)ε

−2α
∫
RN

|u1n j
|2∗

α dx + Cε−2αη
1− 2

2∗α

+ ε−2αaη + o j (1).

Letting η → 0, we have

Sε
α

(∫
RN

|u1n j
|2∗

α dx

) 2
2∗α ≤ (c2 + K1)ε

−2α
∫
RN

|u1n j
|2∗

α dx + o j (1).
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From (3.7) and (3.8), we get

Sε
α ≤ (c2 + K1)ε

−2α
(

μ2∗
αε2α

K0(2∗
α − μ)

(c − Iε(u))

)1− 2
2∗α

.

Then C0(ε)ε
N−2α ≤ c − Iε(u) ≤ c. If c < C0(ε)ε

N−2α , we get a contradiction,
which implies

u1n j
→ 0 in L2∗

α (RN ,C).

It follows from (3.10) that
∣∣∣∣
∫
RN

f (x, |u1n j
|)|u1n j

|2 dx
∣∣∣∣ ≤

∫
RN

(λ|u1n j
|2 + C(λ)|u1n j

|2∗
α ) dx .

As {u1n j
} j∈N is bounded in L2(RN ), we have

lim sup
j→∞

∫
RN

f (x, |u1n j
|)|u1n j

|2 dx = lim sup
λ→0

lim sup
j→∞

∫
RN

f (x, |u1n j
|)|u1n j

|2 dx = 0.

By (3.9), it follows that u1n j
→ 0 in Xε as j → ∞. ��

Next we provide a result to show that Iε has a Mountain Pass geometry.

Lemma 3.5. (Mountain Pass geometry I) For any ε > 0 and δ > 0, there exist
t0 = t0(ε, δ) > 0 and ψε,δ ∈ Xε such that Iε(t0ψε,δ) < 0.

Proof. We first verify that

inf

{∫
RN

|φ(x) − φ(y)|2
|x − y|N+2α dxdy : φ ∈ C∞

0 (RN ) with ‖φ‖Lq (RN ) = 1

}
= 0.

Let φ ∈ C∞
0 (RN ) with ‖φ‖Lq (RN ) = 1 and suppφ ⊂ Br0 , where r0 > 0. Then we

have ∫
RN

|δ N
q φ(δx)|q dx = 1

and, as δ → 0,

∫
R2N

|δ N
q φ(δx) − δ

N
q φ(δy)|2

|x − y|N+2α dxdy

= δ
2N−(N−2α)q

q

∫
R2N

|φ(x) − φ(y)|2
|x − y|N+2α dxdy → 0.

Hence, for any δ > 0, there exist rδ > 0 and φδ ∈ C∞
0 (RN )with ‖φδ‖Lq (RN ) =

1 and suppφδ ⊂ Brδ such that

∫
R2N

|φδ(x) − φδ(y)|2
|x − y|N+2α dxdy ≤ Cδ

2N−(N−2α)q
q .
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Let ψδ(x) := eiA(0)·xφδ(x) and ψε,δ(x) := ψδ(ε
−1x). By ( f4), for any t > 0 we

get

Iε(tψε,δ) ≤ t2

2
[ψε,δ]2α,Aε

+ t2
ε−2α

2

∫
RN

V (x)|ψε,δ(x)|2 dx − tq
c1
q

ε−2α
∫
RN

|ψε,δ(x)|q dx

= εN−2α
{
t2

2

∫
R2N

|ψδ(x) − ei(x−y)·A(
εx+εy

2 )ψδ(y)|2
|x − y|N+2α dxdy

+ t2

2

∫
RN

V (εx)|ψδ(x)|2 dx

− tq
c1
q

∫
RN

|ψδ(x)|q dx
}

=: εN−2α Jε(tψδ).

Now it is easy to see that assumption q > 2 implies there exists t0 > 0 such that

Iε(t0ψε,δ) ≤ εN−2α Jε(t0ψδ) < 0.

This finishes the proof. ��
Let ψδ(x) = eiA(0)·xφδ(x), where φδ is as in the proof of Lemma 3.5. Then, we
have the following

Lemma 3.6. (Norm estimate) For any δ > 0 there exists ε0 = ε0(δ) > 0 such that

∫
R2N

|ψδ(x)−ei(x−y)·A(
εx+εy

2 )ψδ(y)|2
|x − y|N+2α dxdy≤Cδ

2N−(N−2α)q
q + 1

1 − α
δ2α+ 4

α
δ2α,

for all 0 < ε < ε0, for come constant C > 0 depending only on [φ]α,0.

Proof. For any δ > 0, we have

∫
R2N

|ψδ(x) − ei(x−y)·A(
εx+εy

2 )ψδ(y)|2
|x − y|N+2α dxdy

=
∫
R2N

|eiA(0)·xφδ(x) − ei(x−y)·A(
εx+εy

2 )eiA(0)·yφδ(y)|2
|x − y|N+2α dxdy

≤ 2
∫
R2N

|φδ(x) − φδ(y)|2
|x − y|N+2α dxdy

+ 2
∫
R2N

|φδ(y)|2|ei(x−y)·(A(0)−A(
εx+εy

2 )) − 1|2
|x − y|N+2α dxdy.

Next we will estimate the second term in the above inequality. Notice that

∣∣∣ei(x−y)·(A(0)−A(
εx+εy

2 )) − 1
∣∣∣2 = 4 sin2

[
(x − y) · (A(0) − A(

εx+εy
2 ))

2

]
. (3.13)
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For any y ∈ Brδ , if |x − y| ≤ 1
δ
‖φδ‖

1
α

L2 , then |x | ≤ rδ + 1
δ
‖φδ‖

1
α

L2 . Hence, we have

∣∣∣∣εx + εy

2

∣∣∣∣ ≤ ε

2

(
2rδ + 1

δ
‖φδ‖

1
α

L2

)
.

Since A : RN → R
N is continuous, there exists ε0 > 0 such that for any 0 < ε <

ε0,∣∣∣∣A(0) − A

(
εx + εy

2

)∣∣∣∣ ≤ δ‖φδ‖− 1
α

L2 , for |y| ≤ rδ and |x | ≤ rδ + 1

δ
‖φδ‖

1
α

L2 .

which implies

∣∣∣ei(x−y)·(A(0)−A(
εx+εy

2 )) − 1
∣∣∣2 ≤ |x − y|2δ2‖φδ‖− 2

α

L2 .

For all δ > 0 and y ∈ Brδ , let us define

Mδ,y :=
{
x ∈ R

N : |x − y| ≤ 1

δ
‖φδ‖

1
α

L2

}
.

Then gathering the above facts, for all 0 < ε < ε0, we have

∫
R2N

|φδ(y)|2|ei(x−y)·(A(0)−A(
εx+εy

2 )) − 1|2
|x − y|N+2α dxdy

=
(∫

Brδ

|φδ(y)|2 dy
∫
Mδ,y

+
∫
Brδ

|φδ(y)|2 dy
∫
RN \Mδ,y

) |ei(x−y)(A(0)−A(
εx+εy

2 )) − 1|2
|x − y|N+2α dx

≤
∫
Brδ

|φδ(y)|2 dy
∫
Mδ,y

|x − y|2
|x − y|N+2α δ2‖φδ‖− 2

α

L2 dx

+
∫
Brδ

|φδ(y)|2 dy
∫
RN \Mδ,y

4

|x − y|N+2α dx

≤ 1

2 − 2α
δ2α + 4

2α
δ2α.

Combining the previous inequalities concludes the proof. ��
Let t0 = t0(ε, δ) > 0 and ψε,δ of Lemma 3.5. Then, we have the following

Lemma 3.7. (Mountain Pass geometry II) For any ε > 0 and δ > 0, there exist

dε,δ > 0 and 0 < ρε,δ < ‖t0ψε,δ‖ε,

with Iε(u) ≥ dε,δ for u ∈ Xε with ‖u‖ε = ρε,δ and Iε(u) > 0 for any u ∈ Xε\{0}
with ‖u‖ε < ρε,δ .
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Proof. By ( f1) and ( f2), for any τ > 0, there exists C(τ ) > 0 such that

|F(x, t)| ≤ τ t2 + C(τ )|t |2∗
α .

For any u ∈ Xε, from Proposition 2.2, we derive

Iε(u) ≥ 1

2
‖u‖2ε − τε−2α‖u‖2L2 − C(τ )ε−2α‖u‖2∗

α

L2∗α − ε−2α K1

2∗
α

‖u‖2∗
α

L2∗α

≥ 1

2
‖u‖2ε − τε−2αc2(ε)‖u‖2ε − C(ε)‖u‖2∗

α
ε ,

where c(ε) > 0 is the embedding constant of (Xε, ‖ · ‖ε) ↪→ L2(RN ,C). Letting
τ < ε2α

4c2(ε)
, we get

Iε(u) ≥ 1

4
‖u‖2ε − C(ε)‖u‖2∗

α
ε .

Then, there exist dε,δ > 0 and 0 < ρε,δ < ‖t0ψε,δ‖ε such that Iε(u) ≥ dε,δ for
u ∈ Xε with ‖u‖ε = ρε,δ and Iε(u) > 0 for any u ∈ Xε\{0} with ‖u‖ε < ρε,δ . ��
Proposition 3.1. (Sobolev constant bounds) There exists Sα,Sα > 0 independent
of ε with

Sα ≤ Sε
α ≤ Sα, for every ε > 0.

In particular, with reference to Lemma 3.4, the Palais-Smale for Iε holds for

−∞ < c < C0ε
N−2α, C0 :=

( Sα

c2 + K1

) 2∗α
2∗α−2 (2∗

α − μ)K0

μ2∗
α

. (3.14)

Proof. By virtue of the pointwise diamagnetic inequality [13, Remark 3.2]
∣∣|u(x)| − |u(y)|∣∣ ≤ ∣∣u(x) − ei(x−y)·Aε(

x+y
2 )u(y)

∣∣, for a.e. x, y ∈ R
N and all ε>0,

we have

Sε
α = inf

u∈Dα
Aε

(RN )\{0}
[u]2α,Aε

‖u‖2
L2∗α

≥ inf
Dα

Aε
(RN )\{0}

( ∫
R2N

||u(x)| − |u(y)||2
|x − y|N+2α dxdy

)1/2

‖|u|‖2
L2∗α

≥ Sα,

where Sα > 0 is the Sobolev constant for the embedding Dα(RN ) ↪→ L2∗
α (RN ).

Concerning the opposite inequality, fix ϕ ∈ C∞
c (RN )\{0} with ‖ϕ‖L2∗α = 1 and

use the function

x �→ ϕ
( x

ε

)
eiA(0)· x

ε ,

in the definition of Sε
α . We have

Sε
α ≤

∫
R2N

|ϕ(x) − ei(x−y)·(A(
εx+εy

2 )−A(0))ϕ(y)|2
|x − y|N+2α dxdy ≤ I1 + I2,
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where

I1 = 2
∫
R2N

|ϕ(x) − ϕ(y)|2
|x − y|N+2α dxdy,

I2 = 2
∫
R2N

|ϕ(y)|2|ei(x−y)·(A(0)−A(
εx+εy

2 )) − 1|2
|x − y|N+2α dxdy.

It is sufficient to estimate I2 from above independently of ε > 0. If K is the support
of ϕ, let

My := {
x ∈ R

N : |x − y| ≤ 1
}
, y ∈ K ,

Taking into account (3.13), for some C > 0 independent of ε, we have

I2 =
( ∫

K
|ϕ(y)|2 dy

∫
My

+
∫
K

|ϕ(y)|2 dy
∫
RN \My

) |ei(x−y)(A(0)−A(
εx+εy

2 ))−1|2
|x − y|N+2α dx

≤ C
∫
K

|ϕ(y)|2 dy
∫
My

|x − y|2
|x − y|N+2α dx

+ C
∫
K

|ϕ(y)|2 dy
∫
RN \My

1

|x − y|N+2α dx =: Sα > 0,

concluding the proof. ��

4. Proof of Theorem 1.1 concluded

We shall prove that there exists ε0 > 0 such that for any ε ∈ (0, ε0), problem (1.1)
admits a solution uε ∈ Xε close to the trivial one in Xε for the norm ‖ · ‖Xε . For
any t > 0, from Lemma 3.6 we have

Iε(tψε,δ) ≤ c
− 2

q−2
1

q − 2

2q
εN−2α

(∫
R2N

|ψδ(x) − ei(x−y)·A(
εx+εy

2 )ψδ(y)|2
|x − y|N+2α dxdy

+
∫
RN

V (εx)|ψδ|2 dx
) q

q−2

≤ c
− 2

q−2
1

q − 2

2q
εN−2α

(
Cδ

2N−(N−2α)q
q + 1

1 − α
δ2α + 4

α
δ2α

+
∫
RN

V (εx)|ψδ|2 dx
) q

q−2

.

Choose now δ > 0, depending only upon N , α, f, A, K , such that

c
− 2

q−2
1

q − 2

2q

(
Cδ

2N−(N−2α)q
q + 1

1 − α
δ2α + 4

α
δ2α + δ

) q
q−2

< C0,
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where C0 is defined in (3.14). Since V (x) → 0 as |x | → 0, there is x0,δ > 0 with

|V (x)| <
δ

‖ψδ‖2L2

, for all |x | < x0,δ.

We take ε1 = min
{
ε0,

x0,δ
rδ

}
. Then, for any ε < ε1, we have

∫
Brδ

V (εx)|ψδ(x)|2 dx < δ.

From the above estimate, we obtain

max
t≥0

Iε(tψε,δ) < C0ε
N−2α

Denote, for every ε > 0,

cε := inf
γ∈�

max
t∈[0,1] Iε(γ (t)), �ε :=

{
γ ∈ C([0, 1], Xε) : γ (0) = 0, γ (1) = t0ψε,δ

}
.

Then, we have

inf‖u‖ε=ρε,δ

Iε(u) > Iε(0) > Iε(t0ψε,δ)

and, by using the curve γ (t)(x) := t t0ψε,δ(x) of �ε, we get

0 < dε,δ ≤ cε ≤ max
t∈[0,1] Iε(t t0ψε,δ) ≤ max

t≥0
Iε(tψε,δ) < C0ε

N−2α. (4.1)

By the Mountain Pass Theorem, there exists a sequence {un}n∈N ⊂ Xε such that

Iε(un) → cε and I ′
ε(un) → 0 in X∗

ε (the dual space of Xε), as n → ∞.

By Proposition 3.1, there is a subsequence {un j } j∈N such that un j → uε in Xε.
Thus Iε(uε) = cε and I ′

ε(uε) = 0, namely uε is a nontrivial weak solution of (1.1).
Besides, from (4.1) we get

C0ε
N−2α > cε = Iε(uε) − 1

μ
〈I ′

ε(uε), uε〉

≥
(
1

2
− 1

μ

)
[uε]2α,Aε

+
(
1

2
− 1

μ

)
ε−2α

∫
RN

V (x)|uε|2 dx,

which implies that

[uε]2α,Aε
<

2C0μ

μ − 2
εN−2α,

∫
RN

V (x)|uε|2 dx <
2C0μ

μ − 2
εN .

Then uε → 0 in Xε for the norm ‖ · ‖Xε , as ε → 0. ��
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5. Some results without magnetic field

In this section, we consider the existence of solutions for (1.1) without magnetic
field, i.e. A ≡ 0. We first establish the existence of m pairs of solutions of via the
Ljusternik-Schnirelmann theory of critical points.

Let �(Xε) be the family of sets F ⊆ �(Xε)\{0} such that F is closed in Xε

and symmetric with respect to 0, i.e. x ∈ F implies −x ∈ F . For F ∈ �(Xε),
we define the genus of F to be k, denoted by gen(F) = k, if there is a continuous
and odd map ψ : F → R

k\{0} and k is the smallest integer with this property.
The definition of genus here, which was by Coffman [6], is equivalent with the
Krasnoselski original genus. Denote by �∗ the set of all odd homeomorphisms
g ∈ C(Xε, Xε) such that g(0) = 0 and g(B1) ⊆ {u ∈ Xε : Iε(u) ≥ 0}. We denote
by �m the set of all compact subsets F of Xε which are symmetric with respect to
the origin and satisfies gen(F ∩ g(∂B1)) ≥ m for any g ∈ �∗. We refer to [7] for
more details.

Theorem 5.1. Assume that hypotheses (V1)-(V2), ( f1)-( f4) and (K ) are fulfilled.
If the subcritical nonlinearity f (x, t) is odd in t, for any m ∈ N there exist εm > 0
such that for any ε ∈ (0, εm), problem (1.1) has at least m pairs of nontrivial weak
solutions in Xε.

Proof. As in Lemma 3.5, for anym ∈ N, we can take φ
j
δ ∈ C∞

0 (RN ) such that, for
any j = 1 . . . ,m,

suppφ
j
δ ⊂ Brm,δ (x j,δ), ‖φ j

δ ‖Lq = 1, [φ j
δ ]α,0 < Cδ

2N−(N−2α)q
q ,

with Brm,δ (xi,δ) ∩ Brm,δ (x j,δ) = ∅, for any i �= j . Set e jε,δ(x) = φ
j
δ (ε−1x). Thus

∫
R2N

|e jε,δ(x) − e jε,δ(y)|2
|x − y|N+2α dxdy < Cδ

2N−(N−2α)q
q εN−2α,

∫
RN

|e jε,δ|q dx = εN .

Define m-dimensional subspace Fε,δ
m := span{e jε,δ} j=1,...,m . For any δ > 0 with

m
3q−2
q−2 c

− 2
q−2

1
q − 2

2q

(
Cδ

2N−(N−2α)q
q + δ

) q
q−2

< C0.

Let now for any j = 1, . . . ,m radii R j,δ > 0 with Brm,δ (x j,δ) ⊂ BRj,δ (0). There-
fore, since V (x) → 0 as |x | → 0, there is x j,δ > 0 with

|V (x)| <
δ

‖φ j
δ ‖2

L2

, for all |x | < x j,δ.

Then, for any ε <
x j,δ
R j,δ

, we have

∫
Brm,δ (x j )

V (εx)|φ j
δ (x)|2 dx ≤

∫
BR j,δ (0)

V (εx)|φ j
δ (x)|2 dx < δ.
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Then, for any ε < min j=1,...,m{ x j,δ
R j,δ

} and u ∈ Fε,δ
m with u = ∑m

j=1 t j e
j
ε,δ , by ( f4)

we get

Iε(u) ≤ 1

2

∫
R2N

|u(x) − u(y)|2
|x − y|N+2α dxdy

+ ε−2α

2

∫
RN

V (x)u2 dx − c1ε−2α

q

∫
RN

|u|q dx

≤
m∑
j=1

(
m2

t2j
2

∫
R2N

|e jε,δ(x) − e jε,δ(y)|2
|x − y|N+2α dxdy

+ ε−2αm2
t2j
2

∫
RN

V (x)|e jε,δ|2 dx − ε−2α c1
q
tqj

∫
RN

|e jε,δ|q dx
)

≤ εN−2α
m∑
j=1

([
m2
∫
R2N

|φ j
δ (x) − φ

j
δ (y)|2

|x − y|N+2α dxdy

+ m2
∫
RN

V (εx)|φ j
δ |2 dx

] t2j
2

− c1
tqj
q

)

≤ m
3q−2
q−2 c

− 2
q−2

1
q − 2

2q

(
Cδ

2N−(N−2α)q
q + δ

) q
q−2

εN−2α < C0ε
N−2α.

Since dim(Fε,δ
m ) < ∞, ‖ · ‖Lq (RN ) and ‖ · ‖ε are equivalent. Then Iε(u) → −∞,

as u ∈ Fε,δ
m with ‖u‖ε → ∞. For any 1 ≤ j ≤ m, let

c jε = inf
F∈�m

max
u∈F Iε(u),

we have

dε ≤ c1ε ≤ c2ε ≤ · · · ≤ cmε ≤ sup
u∈Fε,δ

m

Iε(u) ≤ C0ε
N−2α.

From Proposition 3.1, Iε satisfies (PS)
c jε
condition. Thus, c jε is a critical value of Iε

and uε, j is a critical point of Iε with Iε(uε, j ) = c jε . As f (x, t) is odd in t , we derive
that −uε, j is also a critical point of Iε. Then Iε has at least m pairs of nontrivial
solutions. ��
Finally, we verify that problem (1.1) has one pair of sign-changing solutions. We
recall that a map η : R

N → R
N is called an orthogonal involution if η �= Id

and η2 = Id where Id denotes the identity map in R
N . Let g : RN → R

N be an
orthogonal involution. Then the action of g on X is defined by

gu(x) = −u(gx), for any u ∈ Xε.

If V (gx) = V (x), h(gx) = h(x) and f (gx, t) = f (x, t), it is easy to verify
that Iε is g-invariant, i.e. Iε(gu) = Iε(u) and I ′

ε(gu) = gI ′
ε(u). The subspace of

g-invariant functions is defined by

Xg = {u ∈ Xε : gu = u}.
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Then the critical points of Ĩε = Iε|Xg are critical points of Iε. Therefore, it suffices
to prove the existence of critical points for Ĩε on Xg . As a consequence, we obtain
the following result:

Theorem 5.2. Assume that (V1)-(V2), ( f1)-( f4) and (K ) are satisfied. If the non-
linearity f (x, t) is odd in t and there is an orthogonal involution g such that
V (gx) = V (x), h(gx) = h(x) and f (gx, t) = f (x, t), then there exist ε∗ > 0
such that for any ε ∈ (0, ε∗), problem (1.1) has at least one pair of sign-changing
weak solutions in X.

Proof. Note that for any φ ∈ C∞
0 (RN ), φ̃ = φ + gφ

2
∈ C∞

0 (RN )∩ Xg.One could

verify that

inf

{∫
R2N

|φ(x) − φ(y)|2
|x − y|N+2α dxdy : φ ∈ C∞

0 (RN ) ∩ Xg with ‖φ‖Lq (RN ) = 1

}
= 0.

Then, it is readily seen that Ĩε has a Mountain Pass geometry: for any ε > 0 and
δ > 0:

(1) there exists t̃0 > 0 and ẽε,δ ∈ Xg such that Ĩε(̃t0ẽε,δ) < 0.
(2) there exists d̃ε > 0 and 0 < ρ̃ε < ‖t0ẽε,δ‖ε such that Ĩε(u) ≥ d̃ε for any

u ∈ Xg with ‖u‖ε = ρ̃ε and Ĩε(u) > 0 for any u ∈ Xg with ‖u‖ε < ρ̃ε.
Denote

c̃ε = inf
γ∈�

max
t∈[0,1] Ĩε(γ (t)),

where � = {γ ∈ C([0, 1], Xg) : γ (0) = 0, γ (1) = t̃0ẽε,δ}. Then, there is
ε∗ > 0 with, for 0 < ε < ε∗,

inf‖u‖ε=ρ̃ε

Ĩε(u) > Ĩε(0) > Ĩε(̃t0ẽε,δ),

0 < d̃ε ≤ c̃ε ≤ Ĩε(t t̃0ẽε,δ) ≤ c
− 2

q−2
1

q − 2

2q

(
Cδ

2N−(N−2α)q
q + δ

) q
q−2 εN−2α

< C0ε
N−2α.

where C0 is as in Proposition 3.1. Then there exists ũε ∈ Xg such that Ĩ ′
ε(̃uε) = 0.

Then, ũε is a critical point of Iε and ũε(x) = gũε(x) = −ũε(gx). It is easy to show
that ũε(gx) is also a critical point of Iε and ũε(x), ũε(gx) change sign. ��
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